1
0
mirror of git://git.gnupg.org/gnupg.git synced 2024-11-11 21:48:50 +01:00
gnupg/cipher/cipher.c
1998-04-08 19:49:02 +00:00

424 lines
11 KiB
C

/* cipher.c - cipher dispatcher
* Copyright (C) 1998 Free Software Foundation, Inc.
*
* This file is part of GNUPG.
*
* GNUPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* GNUPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#define DEFINES_CIPHER_HANDLE 1
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include "util.h"
#include "errors.h"
#include "cipher.h"
#include "blowfish.h"
#include "cast5.h"
#define STD_BLOCKSIZE 8
#if BLOWFISH_BLOCKSIZE != STD_BLOCKSIZE
#error Invalid BLOWFISH blocksize
#elif CAST5_BLOCKSIZE != STD_BLOCKSIZE
#error Invalid CAST blocksize
#endif
static struct { const char *name; int algo;} cipher_names[] = {
{ "IDEA", CIPHER_ALGO_IDEA },
{ "3DES", CIPHER_ALGO_3DES },
{ "CAST", CIPHER_ALGO_CAST },
{ "BLOWFISH128", CIPHER_ALGO_BLOWFISH128 },
{ "ROT_N", CIPHER_ALGO_ROT_N },
{ "SAFER_SK128", CIPHER_ALGO_SAFER_SK128 },
{ "DES_SK", CIPHER_ALGO_DES_SK },
{ "BLOWFISH", CIPHER_ALGO_BLOWFISH },
{NULL} };
/* Hmmm, no way for a void arg in function pointer? */
#define FNCCAST_SETKEY(f) (void(*)(void*, byte*, unsigned))(f)
#define FNCCAST_CRYPT(f) (void(*)(void*, byte*, byte*))(f)
struct cipher_handle_s {
int algo;
int mode;
byte iv[STD_BLOCKSIZE]; /* (this should be ulong aligned) */
byte lastiv[STD_BLOCKSIZE];
int unused; /* in IV */
void (*setkey)( void *c, byte *key, unsigned keylen );
void (*encrypt)( void *c, byte *outbuf, byte *inbuf );
void (*decrypt)( void *c, byte *outbuf, byte *inbuf );
void (*sync_cfb)( void *c );
union {
int context;
BLOWFISH_context blowfish;
CAST5_context cast5;
} c;
};
/****************
* Map a string to the cipher algo
*/
int
string_to_cipher_algo( const char *string )
{
int i;
const char *s;
for(i=0; (s=cipher_names[i].name); i++ )
if( !stricmp( s, string ) )
return cipher_names[i].algo;
return 0;
}
/****************
* Map a cipher algo to a string
*/
const char *
cipher_algo_to_string( int algo )
{
int i;
for(i=0; cipher_names[i].name; i++ )
if( cipher_names[i].algo == algo )
return cipher_names[i].name;
return NULL;
}
/****************
* Return 0 if the cipher algo is available
*/
int
check_cipher_algo( int algo )
{
switch( algo ) {
case CIPHER_ALGO_BLOWFISH128:
case CIPHER_ALGO_BLOWFISH:
case CIPHER_ALGO_CAST:
return 0;
default:
return G10ERR_CIPHER_ALGO;
}
}
/****************
* Open a cipher handle for use with algorithm ALGO, in mode MODE
* and put it into secure memory if SECURE is true.
*/
CIPHER_HANDLE
cipher_open( int algo, int mode, int secure )
{
CIPHER_HANDLE hd;
fast_random_poll();
/* performance hint:
* It is possible to allocate less memory depending on the cipher */
hd = secure ? m_alloc_secure_clear( sizeof *hd )
: m_alloc_clear( sizeof *hd );
hd->algo = algo;
if( mode == CIPHER_MODE_AUTO_CFB ) {
if( algo == CIPHER_ALGO_CAST )
hd->mode = CIPHER_MODE_PHILS_CFB;
else
hd->mode = CIPHER_MODE_CFB;
}
else
hd->mode = mode;
switch( algo ) {
case CIPHER_ALGO_BLOWFISH:
case CIPHER_ALGO_BLOWFISH128:
hd->setkey = FNCCAST_SETKEY(blowfish_setkey);
hd->encrypt = FNCCAST_CRYPT(blowfish_encrypt_block);
hd->decrypt = FNCCAST_CRYPT(blowfish_decrypt_block);
break;
case CIPHER_ALGO_CAST:
hd->setkey = FNCCAST_SETKEY(cast5_setkey);
hd->encrypt = FNCCAST_CRYPT(cast5_encrypt_block);
hd->decrypt = FNCCAST_CRYPT(cast5_decrypt_block);
break;
default: log_fatal("cipher_open: invalid algo %d\n", algo );
}
return hd;
}
void
cipher_close( CIPHER_HANDLE c )
{
m_free(c);
}
void
cipher_setkey( CIPHER_HANDLE c, byte *key, unsigned keylen )
{
(*c->setkey)( &c->c.context, key, keylen );
}
void
cipher_setiv( CIPHER_HANDLE c, const byte *iv )
{
if( iv )
memcpy( c->iv, iv, STD_BLOCKSIZE );
else
memset( c->iv, 0, STD_BLOCKSIZE );
c->unused = 0;
}
static void
do_ecb_encrypt( CIPHER_HANDLE c, byte *outbuf, byte *inbuf, unsigned nblocks )
{
unsigned n;
for(n=0; n < nblocks; n++ ) {
(*c->encrypt)( &c->c.context, outbuf, inbuf );
inbuf += CAST5_BLOCKSIZE;;
outbuf += CAST5_BLOCKSIZE;
}
}
static void
do_ecb_decrypt( CIPHER_HANDLE c, byte *outbuf, byte *inbuf, unsigned nblocks )
{
unsigned n;
for(n=0; n < nblocks; n++ ) {
(*c->decrypt)( &c->c.context, outbuf, inbuf );
inbuf += CAST5_BLOCKSIZE;;
outbuf += CAST5_BLOCKSIZE;
}
}
static void
do_cfb_encrypt( CIPHER_HANDLE c, byte *outbuf, byte *inbuf, unsigned nbytes )
{
byte *ivp;
if( nbytes <= c->unused ) {
/* short enough to be encoded by the remaining XOR mask */
/* XOR the input with the IV and store input into IV */
for(ivp=c->iv+STD_BLOCKSIZE - c->unused; nbytes; nbytes--, c->unused-- )
*outbuf++ = (*ivp++ ^= *inbuf++);
return;
}
if( c->unused ) {
/* XOR the input with the IV and store input into IV */
nbytes -= c->unused;
for(ivp=c->iv+STD_BLOCKSIZE - c->unused; c->unused; c->unused-- )
*outbuf++ = (*ivp++ ^= *inbuf++);
}
/* now we can process complete blocks */
while( nbytes >= STD_BLOCKSIZE ) {
int i;
/* encrypt the IV (and save the current one) */
memcpy( c->lastiv, c->iv, STD_BLOCKSIZE );
(*c->encrypt)( &c->c.context, c->iv, c->iv );
/* XOR the input with the IV and store input into IV */
for(ivp=c->iv,i=0; i < STD_BLOCKSIZE; i++ )
*outbuf++ = (*ivp++ ^= *inbuf++);
nbytes -= STD_BLOCKSIZE;
}
if( nbytes ) { /* process the remaining bytes */
/* encrypt the IV (and save the current one) */
memcpy( c->lastiv, c->iv, STD_BLOCKSIZE );
(*c->encrypt)( &c->c.context, c->iv, c->iv );
c->unused = STD_BLOCKSIZE;
/* and apply the xor */
c->unused -= nbytes;
for(ivp=c->iv; nbytes; nbytes-- )
*outbuf++ = (*ivp++ ^= *inbuf++);
}
}
static void
do_cfb_decrypt( CIPHER_HANDLE c, byte *outbuf, byte *inbuf, unsigned nbytes )
{
byte *ivp;
ulong temp;
if( nbytes <= c->unused ) {
/* short enough to be encoded by the remaining XOR mask */
/* XOR the input with the IV and store input into IV */
for(ivp=c->iv+STD_BLOCKSIZE - c->unused; nbytes; nbytes--,c->unused--){
temp = *inbuf++;
*outbuf++ = *ivp ^ temp;
*ivp++ = temp;
}
return;
}
if( c->unused ) {
/* XOR the input with the IV and store input into IV */
nbytes -= c->unused;
for(ivp=c->iv+STD_BLOCKSIZE - c->unused; c->unused; c->unused-- ) {
temp = *inbuf++;
*outbuf++ = *ivp ^ temp;
*ivp++ = temp;
}
}
/* now we can process complete blocks */
#ifdef BIG_ENDIAN_HOST
/* This does only make sense for big endian hosts, due to ... ivp = temp*/
if( !((ulong)inbuf % SIZEOF_UNSIGNED_LONG) ) {
while( nbytes >= STD_BLOCKSIZE ) {
/* encrypt the IV (and save the current one) */
memcpy( c->lastiv, c->iv, STD_BLOCKSIZE );
(*c->encrypt)( &c->c.context, c->iv, c->iv );
ivp = c->iv;
/* XOR the input with the IV and store input into IV */
#if SIZEOF_UNSIGNED_LONG == STD_BLOCKSIZE
temp = *(ulong*)inbuf;
*(ulong*)outbuf = *(ulong*)c->iv ^ temp;
*(ulong*)ivp = temp;
#elif (2*SIZEOF_UNSIGNED_LONG) == STD_BLOCKSIZE
temp = ((ulong*)inbuf)[0];
((ulong*)outbuf)[0] = ((ulong*)c->iv)[0] ^ temp;
((ulong*)ivp)[0] = temp;
temp = ((ulong*)inbuf)[1];
((ulong*)outbuf)[1] = ((ulong*)c->iv)[1] ^ temp;
((ulong*)ivp)[1] = temp;
#elif (4*SIZEOF_UNSIGNED_LONG) == STD_BLOCKSIZE
temp = ((ulong*)inbuf)[0];
((ulong*)outbuf)[0] = ((ulong*)c->iv)[0] ^ temp;
((ulong*)ivp)[0] = temp;
temp = ((ulong*)inbuf)[1];
((ulong*)outbuf)[1] = ((ulong*)c->iv)[1] ^ temp;
((ulong*)ivp)[1] = temp;
temp = ((ulong*)inbuf)[2];
((ulong*)outbuf)[2] = ((ulong*)c->iv)[2] ^ temp;
((ulong*)ivp)[2] = temp;
temp = ((ulong*)inbuf)[3];
((ulong*)outbuf)[3] = ((ulong*)c->iv)[3] ^ temp;
((ulong*)ivp)[3] = temp;
#else
#error Please disable the align test.
#endif
nbytes -= STD_BLOCKSIZE;
}
}
else { /* non aligned version */
#endif /* BIG_ENDIAN_HOST */
while( nbytes >= STD_BLOCKSIZE ) {
int i;
/* encrypt the IV (and save the current one) */
memcpy( c->lastiv, c->iv, STD_BLOCKSIZE );
(*c->encrypt)( &c->c.context, c->iv, c->iv );
/* XOR the input with the IV and store input into IV */
for(ivp=c->iv,i=0; i < STD_BLOCKSIZE; i++ ) {
temp = *inbuf++;
*outbuf++ = *ivp ^ temp;
*ivp++ = temp;
}
nbytes -= STD_BLOCKSIZE;
}
#ifdef BIG_ENDIAN_HOST
}
#endif
if( nbytes ) { /* process the remaining bytes */
/* encrypt the IV (and save the current one) */
memcpy( c->lastiv, c->iv, STD_BLOCKSIZE );
(*c->encrypt)( &c->c.context, c->iv, c->iv );
c->unused = STD_BLOCKSIZE;
/* and apply the xor */
c->unused -= nbytes;
for(ivp=c->iv; nbytes; nbytes-- ) {
temp = *inbuf++;
*outbuf++ = *ivp ^ temp;
*ivp++ = temp;
}
}
}
/****************
* Encrypt INBUF to OUTBUF with the mode selected at open.
* inbuf and outbuf may overlap or be the same.
* Depending on the mode some some contraints apply to NBYTES.
*/
void
cipher_encrypt( CIPHER_HANDLE c, byte *outbuf, byte *inbuf, unsigned nbytes )
{
switch( c->mode ) {
case CIPHER_MODE_ECB:
assert(!(nbytes%8));
do_ecb_encrypt(c, outbuf, inbuf, nbytes/8 );
break;
case CIPHER_MODE_CFB:
case CIPHER_MODE_PHILS_CFB:
do_cfb_encrypt(c, outbuf, inbuf, nbytes );
break;
default: log_fatal("cipher_encrypt: invalid mode %d\n", c->mode );
}
}
/****************
* Decrypt INBUF to OUTBUF with the mode selected at open.
* inbuf and outbuf may overlap or be the same.
* Depending on the mode some some contraints apply to NBYTES.
*/
void
cipher_decrypt( CIPHER_HANDLE c, byte *outbuf, byte *inbuf, unsigned nbytes )
{
switch( c->mode ) {
case CIPHER_MODE_ECB:
assert(!(nbytes%8));
do_ecb_decrypt(c, outbuf, inbuf, nbytes/8 );
break;
case CIPHER_MODE_CFB:
case CIPHER_MODE_PHILS_CFB:
do_cfb_decrypt(c, outbuf, inbuf, nbytes );
break;
default: log_fatal("cipher_decrypt: invalid mode %d\n", c->mode );
}
}
/****************
* Used for PGP's somewhat strange CFB mode. Does only work if
* the handle is in PHILS_CFB mode
*/
void
cipher_sync( CIPHER_HANDLE c )
{
if( c->mode == CIPHER_MODE_PHILS_CFB && c->unused ) {
memmove(c->iv + c->unused, c->iv, CAST5_BLOCKSIZE - c->unused );
memcpy(c->iv, c->lastiv + CAST5_BLOCKSIZE - c->unused, c->unused);
c->unused = 0;
}
}