mirror of
git://git.gnupg.org/gnupg.git
synced 2024-12-27 11:10:13 +01:00
6391de3e62
-- Edsger Wybe Dijkstra (1930 --2002) - Dutch computer scientist
426 lines
14 KiB
Org Mode
426 lines
14 KiB
Org Mode
keyformat.txt emacs, please switch to -*- org -*- mode
|
|
-------------
|
|
|
|
|
|
Some notes on the format of the secret keys used with gpg-agent.
|
|
|
|
* Location of keys
|
|
|
|
The secret keys[1] are stored on a per file basis in a directory below
|
|
the ~/.gnupg home directory. This directory is named
|
|
|
|
private-keys-v1.d
|
|
|
|
and should have permissions 700.
|
|
|
|
The secret keys are stored in files with a name matching the
|
|
hexadecimal representation of the keygrip[2] and suffixed with ".key".
|
|
|
|
* Extended Private Key Format
|
|
|
|
GnuPG 2.3+ will use a new format to store private keys that is both
|
|
more flexible and easier to read and edit by human beings. The new
|
|
format stores name,value-pairs using the common mail and http header
|
|
convention. Example (here indented with two spaces):
|
|
|
|
Description: Key to sign all GnuPG released tarballs.
|
|
The key is actually stored on a smart card.
|
|
Use-for-ssh: yes
|
|
OpenSSH-cert: long base64 encoded string wrapped so that this
|
|
key file can be easily edited with a standard editor.
|
|
Key: (shadowed-private-key
|
|
(rsa
|
|
(n #00AA1AD2A55FD8C8FDE9E1941772D9CC903FA43B268CB1B5A1BAFDC900
|
|
2961D8AEA153424DC851EF13B83AC64FBE365C59DC1BD3E83017C90D4365B4
|
|
83E02859FC13DB5842A00E969480DB96CE6F7D1C03600392B8E08EF0C01FC7
|
|
19F9F9086B25AD39B4F1C2A2DF3E2BE317110CFFF21D4A11455508FE407997
|
|
601260816C8422297C0637BB291C3A079B9CB38A92CE9E551F80AA0EBF4F0E
|
|
72C3F250461E4D31F23A7087857FC8438324A013634563D34EFDDCBF2EA80D
|
|
F9662C9CCD4BEF2522D8BDFED24CEF78DC6B309317407EAC576D889F88ADA0
|
|
8C4FFB480981FB68C5C6CA27503381D41018E6CDC52AAAE46B166BDC10637A
|
|
E186A02BA2497FDC5D1221#)
|
|
(e #00010001#)
|
|
(shadowed t1-v1
|
|
(#D2760001240102000005000011730000# OPENPGP.1)
|
|
)))
|
|
|
|
GnuPG 2.2 is able to read and update keys using the new format, but
|
|
will not create new files using the new format. Furthermore, it only
|
|
makes use of the value stored under the name 'Key:'.
|
|
|
|
Keys in the extended format can be recognized by looking at the first
|
|
byte of the file. If it starts with a '(' it is a naked S-expression,
|
|
otherwise it is a key in extended format.
|
|
|
|
** Names
|
|
|
|
A name must start with a letter and end with a colon. Valid
|
|
characters are all ASCII letters, numbers and the hyphen. Comparison
|
|
of names is done case insensitively. Names may be used several times
|
|
to represent an array of values.
|
|
|
|
The name "Key:" is special in that it may occur only once and the
|
|
associated value holds the actual S-expression with the cryptographic
|
|
key. The S-expression is formatted using the 'Advanced Format'
|
|
(GCRYSEXP_FMT_ADVANCED) that avoids non-printable characters so that
|
|
the file can be easily inspected and edited. See section 'Private Key
|
|
Format' below for details.
|
|
|
|
** Values
|
|
|
|
Values are UTF-8 encoded strings. Values can be wrapped at any point,
|
|
and continued in the next line indicated by leading whitespace. A
|
|
continuation line with one leading space does not introduce a blank so
|
|
that the lines can be effectively concatenated. A blank line as part
|
|
of a continuation line encodes a newline.
|
|
|
|
** Comments
|
|
|
|
Lines containing only whitespace, and lines starting with whitespace
|
|
followed by '#' are considered to be comments and are ignored.
|
|
|
|
* Private Key Format
|
|
** Unprotected Private Key Format
|
|
|
|
The content of the file is an S-Expression like the ones used with
|
|
Libgcrypt. Here is an example of an unprotected file:
|
|
|
|
(private-key
|
|
(rsa
|
|
(n #00e0ce9..[some bytes not shown]..51#)
|
|
(e #010001#)
|
|
(d #046129F..[some bytes not shown]..81#)
|
|
(p #00e861b..[some bytes not shown]..f1#)
|
|
(q #00f7a7c..[some bytes not shown]..61#)
|
|
(u #304559a..[some bytes not shown]..9b#)
|
|
)
|
|
(created-at timestamp)
|
|
(uri http://foo.bar x-foo:whatever_you_want)
|
|
(comment whatever)
|
|
)
|
|
|
|
"comment", "created-at" and "uri" are optional. "comment" is
|
|
currently used to keep track of ssh key comments. "created-at" is used
|
|
to keep track of the creation time stamp used with OpenPGP keys; it is
|
|
optional but required for some operations to calculate the fingerprint
|
|
of the key. This timestamp should be a string with the number of
|
|
seconds since Epoch or an ISO time string (yyyymmddThhmmss).
|
|
|
|
** Protected Private Key Format
|
|
|
|
A protected key is like this:
|
|
|
|
(protected-private-key
|
|
(rsa
|
|
(n #00e0ce9..[some bytes not shown]..51#)
|
|
(e #010001#)
|
|
(protected mode (parms) encrypted_octet_string)
|
|
(protected-at <isotimestamp>)
|
|
)
|
|
(uri http://foo.bar x-foo:whatever_you_want)
|
|
(comment whatever)
|
|
)
|
|
|
|
|
|
In this scheme the encrypted_octet_string is encrypted according to
|
|
the algorithm described after the keyword protected; most protection
|
|
algorithms need some parameters, which are given in a list before the
|
|
encrypted_octet_string. The result of the decryption process is a
|
|
list of the secret key parameters. The protected-at expression is
|
|
optional; the isotimestamp is 15 bytes long (e.g. "19610711T172000").
|
|
|
|
The currently defined protection modes are:
|
|
|
|
*** openpgp-s2k3-sha1-aes-cbc
|
|
|
|
This describes an algorithm using AES in CBC mode for
|
|
encryption, SHA-1 for integrity protection and the String to Key
|
|
algorithm 3 from OpenPGP (rfc4880).
|
|
|
|
Example:
|
|
|
|
(protected openpgp-s2k3-sha1-aes-cbc
|
|
((sha1 16byte_salt no_of_iterations) 16byte_iv)
|
|
encrypted_octet_string
|
|
)
|
|
|
|
The encrypted_octet string should yield this S-Exp (in canonical
|
|
representation) after decryption:
|
|
|
|
(
|
|
(
|
|
(d #046129F..[some bytes not shown]..81#)
|
|
(p #00e861b..[some bytes not shown]..f1#)
|
|
(q #00f7a7c..[some bytes not shown]..61#)
|
|
(u #304559a..[some bytes not shown]..9b#)
|
|
)
|
|
(hash sha1 #...[hashvalue]...#)
|
|
)
|
|
|
|
For padding reasons, random bytes are appended to this list - they can
|
|
easily be stripped by looking for the end of the list.
|
|
|
|
The hash is calculated on the concatenation of the public key and
|
|
secret key parameter lists: i.e. it is required to hash the
|
|
concatenation of these 6 canonical encoded lists for RSA, including
|
|
the parenthesis, the algorithm keyword and (if used) the protected-at
|
|
list.
|
|
|
|
(rsa
|
|
(n #00e0ce9..[some bytes not shown]..51#)
|
|
(e #010001#)
|
|
(d #046129F..[some bytes not shown]..81#)
|
|
(p #00e861b..[some bytes not shown]..f1#)
|
|
(q #00f7a7c..[some bytes not shown]..61#)
|
|
(u #304559a..[some bytes not shown]..9b#)
|
|
(protected-at "18950523T000000")
|
|
)
|
|
|
|
After decryption the hash must be recalculated and compared against
|
|
the stored one - If they don't match the integrity of the key is not
|
|
given.
|
|
|
|
*** openpgp-s2k3-ocb-aes
|
|
|
|
This describes an algorithm using AES-128 in OCB mode, a nonce
|
|
of 96 bit, a taglen of 128 bit, and the String to Key algorithm 3
|
|
from OpenPGP (rfc4880).
|
|
|
|
Example:
|
|
|
|
(protected openpgp-s2k3-ocb-aes
|
|
((sha1 16byte_salt no_of_iterations) 12byte_nonce)
|
|
encrypted_octet_string
|
|
)
|
|
|
|
The encrypted_octet string should yield this S-Exp (in canonical
|
|
representation) after decryption:
|
|
|
|
(
|
|
(
|
|
(d #046129F..[some bytes not shown]..81#)
|
|
(p #00e861b..[some bytes not shown]..f1#)
|
|
(q #00f7a7c..[some bytes not shown]..61#)
|
|
(u #304559a..[some bytes not shown]..9b#)
|
|
)
|
|
)
|
|
|
|
For padding reasons, random bytes may be appended to this list -
|
|
they can easily be stripped by looking for the end of the list.
|
|
|
|
The associated data required for this protection mode is the list
|
|
formiing the public key parameters. For the above example this is
|
|
is this canonical encoded S-expression:
|
|
|
|
(rsa
|
|
(n #00e0ce9..[some bytes not shown]..51#)
|
|
(e #010001#)
|
|
(protected-at "18950523T000000")
|
|
)
|
|
|
|
*** openpgp-native
|
|
|
|
This is a wrapper around the OpenPGP Private Key Transport format
|
|
which resembles the standard OpenPGP format and allows the use of an
|
|
existing key without re-encrypting to the default protection format.
|
|
|
|
Example:
|
|
|
|
(protected openpgp-native
|
|
(openpgp-private-key
|
|
(version V)
|
|
(algo PUBKEYALGO)
|
|
(skey _ P1 _ P2 _ P3 ... e PN)
|
|
(csum n)
|
|
(protection PROTTYPE PROTALGO IV S2KMODE S2KHASH S2KSALT S2KCOUNT)))
|
|
|
|
Note that the public key paramaters in SKEY are duplicated and
|
|
should be identical to their copies in the standard parameter
|
|
elements. Here is an example of an entire protected private key
|
|
using this format:
|
|
|
|
(protected-private-key
|
|
(rsa
|
|
(n #00e0ce9..[some bytes not shown]..51#)
|
|
(e #010001#)
|
|
(protected openpgp-native
|
|
(openpgp-private-key
|
|
(version 4)
|
|
(algo rsa)
|
|
(skey _ #00e0ce9..[some bytes not shown]..51#
|
|
_ #010001#
|
|
e #.........................#)
|
|
(protection sha1 aes #aabbccddeeff00112233445566778899#
|
|
3 sha1 #2596f93e85f41e53# 3:190))))
|
|
(uri http://foo.bar x-foo:whatever_you_want)
|
|
(comment whatever))
|
|
|
|
** Shadowed Private Key Format
|
|
|
|
To keep track of keys stored on IC cards we use a third format for
|
|
private kyes which are called shadow keys as they are only a reference
|
|
to keys stored on a token:
|
|
|
|
(shadowed-private-key
|
|
(rsa
|
|
(n #00e0ce9..[some bytes not shown]..51#)
|
|
(e #010001#)
|
|
(shadowed protocol (info))
|
|
)
|
|
(uri http://foo.bar x-foo:whatever_you_want)
|
|
(comment whatever)
|
|
)
|
|
|
|
The currently used protocol is "t1-v1" (token info version 1). The
|
|
second list with the information has this layout:
|
|
|
|
(card_serial_number id_string_of_key fixed_pin_length)
|
|
|
|
FIXED_PIN_LENGTH is optional. It can be used to store the length of
|
|
the PIN; a value of 0 indicates that this information is not
|
|
available. The rationale for this field is that some pinpad equipped
|
|
readers don't allow passing a variable length PIN.
|
|
|
|
More items may be added to the list.
|
|
|
|
** OpenPGP Private Key Transfer Format
|
|
|
|
This format is used to transfer keys between gpg and gpg-agent.
|
|
|
|
(openpgp-private-key
|
|
(version V)
|
|
(algo PUBKEYALGO)
|
|
(curve CURVENAME)
|
|
(skey _ P1 _ P2 _ P3 ... e PN)
|
|
(csum n)
|
|
(protection PROTTYPE PROTALGO IV S2KMODE S2KHASH S2KSALT S2KCOUNT))
|
|
|
|
|
|
* V is the packet version number (3 or 4).
|
|
* PUBKEYALGO is a Libgcrypt algo name
|
|
* CURVENAME is the name of the curve - only used with ECC.
|
|
* P1 .. PN are the parameters; the public parameters are never encrypted
|
|
the secrect key parameters are encrypted if the "protection" list is
|
|
given. To make this more explicit each parameter is preceded by a
|
|
flag "_" for cleartext or "e" for encrypted text.
|
|
* CSUM is the deprecated 16 bit checksum as defined by OpenPGP. This
|
|
is an optional element.
|
|
* If PROTTYPE is "sha1" the new style SHA1 checksum is used if it is "sum"
|
|
the old 16 bit checksum (above) is used and if it is "none" no
|
|
protection at all is used.
|
|
* PROTALGO is a Libgcrypt style cipher algorithm name
|
|
* IV is the initialization verctor.
|
|
* S2KMODE is the value from RFC-4880.
|
|
* S2KHASH is a libgcrypt style hash algorithm identifier.
|
|
* S2KSALT is the 8 byte salt
|
|
* S2KCOUNT is the count value from RFC-4880.
|
|
|
|
** Persistent Passphrase Format
|
|
|
|
Note: That this has not yet been implemented.
|
|
|
|
To allow persistent storage of cached passphrases we use a scheme
|
|
similar to the private-key storage format. This is a master
|
|
passphrase format where each file may protect several secrets under
|
|
one master passphrase. It is possible to have several of those files
|
|
each protected by a dedicated master passphrase. Clear text keywords
|
|
allow listing the available protected passphrases.
|
|
|
|
The name of the files with these protected secrets have this form:
|
|
pw-<string>.dat. STRING may be an arbitrary string, as a default name
|
|
for the passphrase storage the name "pw-default.dat" is suggested.
|
|
|
|
|
|
(protected-shared-secret
|
|
((desc descriptive_text)
|
|
(key [key_1] (keyword_1 keyword_2 keyword_n))
|
|
(key [key_2] (keyword_21 keyword_22 keyword_2n))
|
|
(key [key_n] (keyword_n1 keyword_n2 keyword_nn))
|
|
(protected mode (parms) encrypted_octet_string)
|
|
(protected-at <isotimestamp>)
|
|
)
|
|
)
|
|
|
|
After decryption the encrypted_octet_string yields this S-expression:
|
|
|
|
(
|
|
(
|
|
(value key_1 value_1)
|
|
(value key_2 value_2)
|
|
(value key_n value_n)
|
|
)
|
|
(hash sha1 #...[hashvalue]...#)
|
|
)
|
|
|
|
The "descriptive_text" is displayed with the prompt to enter the
|
|
unprotection passphrase.
|
|
|
|
KEY_1 to KEY_N are unique identifiers for the shared secret, for
|
|
example an URI. In case this information should be kept confidential
|
|
as well, they may not appear in the unprotected part; however they are
|
|
mandatory in the encrypted_octet_string. The list of keywords is
|
|
optional. The oder of the "key" lists and the order of the "value"
|
|
lists mut match, that is the first "key"-list is associated with the
|
|
first "value" list in the encrypted_octet_string.
|
|
|
|
The protection mode etc. is identical to the protection mode as
|
|
described for the private key format.
|
|
|
|
list of the secret key parameters. The protected-at expression is
|
|
optional; the isotimestamp is 15 bytes long (e.g. "19610711T172000").
|
|
|
|
The "hash" in the encrypted_octet_string is calculated on the
|
|
concatenation of the key list and value lists: i.e it is required to
|
|
hash the concatenation of all these lists, including the
|
|
parenthesis and (if used) the protected-at list.
|
|
|
|
Example:
|
|
|
|
(protected-shared-secret
|
|
((desc "List of system passphrases")
|
|
(key "uid-1002" ("Knuth" "Donald Ervin Knuth"))
|
|
(key "uid-1001" ("Dijkstra" "Edsger Wybe Dijkstra"))
|
|
(key)
|
|
(protected mode (parms) encrypted_octet_string)
|
|
(protected-at "20100915T111722")
|
|
)
|
|
)
|
|
|
|
with "encrypted_octet_string" decoding to:
|
|
|
|
(
|
|
(
|
|
(value 4:1002 "signal flags at the lock")
|
|
(value 4:1001 "taocp")
|
|
(value 1:0 "premature optimization is the root of all evil")
|
|
)
|
|
(hash sha1 #0102030405060708091011121314151617181920#)
|
|
)
|
|
|
|
To compute the hash this S-expression (in canoncical format) was
|
|
hashed:
|
|
|
|
((desc "List of system passphrases")
|
|
(key "uid-1002" ("Knuth" "Donald Ervin Knuth"))
|
|
(key "uid-1001" ("Dijkstra" "Edsger Wybe Dijkstra"))
|
|
(key)
|
|
(value 4:1002 "signal flags at the lock")
|
|
(value 4:1001 "taocp")
|
|
(value 1:0 "premature optimization is the root of all evil")
|
|
(protected-at "20100915T111722")
|
|
)
|
|
|
|
* Notes
|
|
|
|
[1] I usually use the terms private and secret key exchangeable but prefer the
|
|
term secret key because it can be visually be better distinguished
|
|
from the term public key.
|
|
|
|
[2] The keygrip is a unique identifier for a key pair, it is
|
|
independent of any protocol, so that the same key can be used with
|
|
different protocols. PKCS-15 calls this a subjectKeyHash; it can be
|
|
calculated using Libgcrypt's gcry_pk_get_keygrip ().
|
|
|
|
[3] Even when canonical representation are required we will show the
|
|
S-expression here in a more readable representation.
|