1
0
mirror of git://git.gnupg.org/gnupg.git synced 2024-10-31 20:08:43 +01:00
Go to file
2002-07-01 09:44:27 +00:00
agent * query.c (start_pinentry): Use GNUPG_DERAULT_PINENTRY. 2002-06-29 14:01:35 +00:00
assuan * gpgsm.c (main): Use GNUPG_DEFAULT_HOMEDIR constant. 2002-06-27 07:29:57 +00:00
checks Update head to match stable 1.0 2002-06-29 13:31:13 +00:00
cipher * rndlinux.c: Removed HAVE_LINUX_RANDOM_H conditional because it 2002-06-29 20:46:43 +00:00
common * maperror.c (map_to_assuan_status): Map more errorcodes to Bad 2002-06-28 16:16:57 +00:00
contrib Update head to match stable 1.0 2002-06-29 13:31:13 +00:00
debian Update head to match stable 1.0 2002-06-29 13:31:13 +00:00
doc Better keep it in the CVS 2002-07-01 08:52:37 +00:00
g10 * photoid.c: Use __MINGW32__ to include windows because 2002-06-30 07:40:40 +00:00
include Update head to match stable 1.0 2002-06-29 13:31:13 +00:00
kbx * keybox-init.c (keybox_set_ephemeral): New. 2002-06-19 08:29:41 +00:00
keyserver Update head to match stable 1.0 2002-06-29 13:31:13 +00:00
mpi Update head to match stable 1.0 2002-06-29 14:15:02 +00:00
po msgmerge'd. 2002-06-30 07:38:33 +00:00
scd * gpgsm.c (main): Use GNUPG_DEFAULT_HOMEDIR constant. 2002-06-27 07:29:57 +00:00
scripts typo fix 2002-07-01 09:44:27 +00:00
sm * gpgsm.c: New option --auto-issuer-key-retrieve. 2002-06-29 14:01:53 +00:00
tests released 0.3.5 2002-04-15 17:15:21 +00:00
tools Update head to match stable 1.0 2002-06-29 13:46:34 +00:00
util * argparse.c (optfile_parse): Renamed an auto I to P2 to avoid 2002-06-29 20:46:28 +00:00
zlib Update head to match stable 1.0 2002-06-29 13:31:13 +00:00
acinclude.m4 Update head to match stable 1.0 2002-06-29 14:15:02 +00:00
AUTHORS * configure.ac (development_version): New. 2002-06-29 20:47:08 +00:00
autogen.sh Update head to match stable 1.0 2002-06-29 14:15:02 +00:00
BUGS * configure.ac (development_version): New. 2002-06-29 20:47:08 +00:00
ChangeLog * configure.ac: Link W32 version against libwsock32. 2002-06-30 07:40:57 +00:00
configure.ac * configure.ac: Link W32 version against libwsock32. 2002-06-30 07:40:57 +00:00
COPYING Update head to match stable 1.0 2002-06-29 14:15:02 +00:00
gnupg.txt Update head to match stable 1.0 2002-06-29 14:15:02 +00:00
INSTALL * configure.ac (development_version): New. 2002-06-29 20:47:08 +00:00
Makefile.am Update head to match stable 1.0 2002-06-29 14:15:02 +00:00
NEWS Update head to match stable 1.0 2002-06-29 14:15:02 +00:00
NOTES Update head to match stable 1.0 2002-06-29 14:15:02 +00:00
OBUGS Update head to match stable 1.0 2002-06-29 14:15:02 +00:00
PROJECTS Update head to match stable 1.0 2002-06-29 14:15:02 +00:00
README Update head to match stable 1.0 2002-06-29 14:15:02 +00:00
stamp-h.in initially checkin 1997-11-18 14:06:00 +00:00
THANKS Update head to match stable 1.0 2002-06-29 14:15:02 +00:00
THOUGHTS Update head to match stable 1.0 2002-06-29 14:15:02 +00:00
TODO Update head to match stable 1.0 2002-06-29 14:15:02 +00:00

		    GnuPG - The GNU Privacy Guard
		   -------------------------------
			    Version 1.0

    Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.

    This file is free software; as a special exception the author gives
    unlimited permission to copy and/or distribute it, with or without
    modifications, as long as this notice is preserved.

    This file is distributed in the hope that it will be useful, but
    WITHOUT ANY WARRANTY, to the extent permitted by law; without even the
    implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

    Intro
    -----

    GnuPG is GNU's tool for secure communication and data storage.
    It can be used to encrypt data and to create digital signatures.
    It includes an advanced key management facility and is compliant
    with the proposed OpenPGP Internet standard as described in RFC2440.

    GnuPG works best on GNU/Linux or *BSD systems.  Most other Unices
    are also supported but are not as well tested as the Free Unices.
    See http://www.gnupg.org/gnupg.html#supsys for a list of systems
    which are known to work.

    See the file COPYING for copyright and warranty information.

    Because GnuPG does not use use any patented algorithm it cannot be
    compatible with PGP2 versions.  PGP 2.x uses IDEA (which is patented
    worldwide).

    The default algorithms are DSA and ElGamal.  ElGamal for signing
    is still available, but because of the larger size of such
    signatures it is deprecated (Please note that the GnuPG
    implementation of ElGamal signatures is *not* insecure).  Symmetric
    algorithms are: AES, 3DES, Blowfish, CAST5 and Twofish 
    Digest algorithms available are MD5, RIPEMD160 and SHA1.


    Installation
    ------------

    Please read the file INSTALL!

    Here is a quick summary:

    1) Check that you have unmodified sources.	The below on how to do this.
       Don't skip it - this is an important step!

    2)	Unpack the TAR.  With GNU tar you can do it this way:
	"tar xzvf gnupg-x.y.z.tar.gz"

    3) "cd gnupg-x.y.z"

    4)	"./configure"

    5) "make"

    6) "make install"

    7) You end up with a "gpg" binary in /usr/local/bin.
       Note: Because some old programs rely on the existence of a
       binary named "gpgm" (which was build by some Beta versions
       of GnuPG); you may want to install a symbolic link to it:
       "cd /usr/local/bin; ln -s gpg gpgm"

    8) To avoid swapping out of sensitive data, you can install "gpg" as
       suid root.  If you don't do so, you may want to add the option
       "no-secmem-warning" to ~/.gnupg/options


    How to Verify the Source
    ------------------------

    In order to check that the version of GnuPG which you are going to
    install is an original and unmodified one, you can do it in one of
    the following ways:

    a) If you already have a trusted Version of GnuPG installed, you
       can simply check the supplied signature:

	$ gpg --verify gnupg-x.y.z.tar.gz.asc

       This checks that the detached signature gnupg-x.y.z.tar.gz.asc
       is indeed a a signature of gnupg-x.y.z.tar.gz.  The key used to
       create this signature is:

       "pub  1024D/57548DCD 1998-07-07 Werner Koch (gnupg sig) <dd9jn@gnu.org>"

       If you do not have this key, you can get it from the source in
       the file doc/samplekeys.asc (use "gpg --import  doc/samplekeys.asc"
       to add it to the keyring) or from any keyserver.  You have to
       make sure that this is really the key and not a faked one. You
       can do this by comparing the output of:

		$ gpg --fingerprint 0x57548DCD

       with the elsewhere published fingerprint

       Please note, that you have to use an old version of GnuPG to
       do all this stuff.  *Never* use the version which you are going
       to check!


    b) If you don't have any of the above programs, you have to verify
       the MD5 checksum:

	$ md5sum gnupg-x.y.z.tar.gz

       This should yield an output _similar_ to this:

	fd9351b26b3189c1d577f0970f9dcadc  gnupg-x.y.z.tar.gz

       Now check that this checksum is _exactly_ the same as the one
       published via the announcement list and probably via Usenet.



    Documentation
    -------------

    The manual will be distributed separate under the name "gph".
    An online version of the latest manual draft is available at the
    GnuPG web pages:

	http://www.gnupg.org/gph/

    A list of frequently asked questions is available in GnuPG's
    distibution in the file doc/FAQ and online as:

	http://www.gnupg.org/faq.html

    A couple of HOWTO documents are available online; for a listing see:

	http://www.gnupg.org/docs.html#howtos

    A man page with a description of all commands and options gets installed
    along with the program. 


    Introduction
    ------------

    Here is a brief overview on how to use GnuPG - it is strongly suggested
    that you read the manual and other information about the use of
    cryptography.  GnuPG is only a tool, secure usage requires that
    YOU KNOW WHAT YOU ARE DOING.

    If you already have a DSA key from PGP 5 (they call them DH/ElGamal)
    you can simply copy the pgp keyrings over the GnuPG keyrings after
    running gpg once to create the correct directory.

    The normal way to create a key is

	gpg --gen-key

    This asks some questions and then starts key generation. To create
    good random numbers for the key parameters, GnuPG needs to gather
    enough noise (entropy) from your system.  If you see no progress
    during key generation you should start some other activities such
    as mouse moves or hitting on the CTRL and SHIFT keys.

    Generate a key ONLY on a machine where you have direct physical
    access - don't do it over the network or on a machine used also
    by others - especially if you have no access to the root account.

    When you are asked for a passphrase use a good one which you can
    easy remember.  Don't make the passphrase too long because you have
    to type it for every decryption or signing; but, - AND THIS IS VERY
    IMPORTANT - use a good one that is not easily to guess because the
    security of the whole system relies on your secret key and the
    passphrase that protects it when someone gains access to your secret
    keyring.  A good way to select a passphrase is to figure out a short
    nonsense sentence which makes some sense for you and modify it by
    inserting extra spaces, non-letters and changing the case of some
    characters - this is really easy to remember especially if you
    associate some pictures with it.

    Next, you should create a revocation certificate in case someone
    gets knowledge of your secret key or you forgot your passphrase

	gpg --gen-revoke your_user_id

    Run this command and store the revocation certificate away.  The output
    is always ASCII armored, so that you can print it and (hopefully
    never) re-create it if your electronic media fails.

    Now you can use your key to create digital signatures

	gpg -s file

    This creates a file "file.gpg" which is compressed and has a
    signature attached.

	gpg -sa file

    Same as above, but creates a file "file.asc" which is ASCII armored
    and and ready for sending by mail.	It is better to use your
    mailers features to create signatures (The mailer uses GnuPG to do
    this) because the mailer has the ability to MIME encode such
    signatures - but this is not a security issue.

	gpg -s -o out file

    Creates a signature of "file", but writes the output to the file
    "out".

    Everyone who knows your public key (you can and should publish
    your key by putting it on a key server, a web page or in your .plan
    file) is now able to check whether you really signed this text

	gpg --verify file

    GnuPG now checks whether the signature is valid and prints an
    appropriate message.  If the signature is good, you know at least
    that the person (or machine) has access to the secret key which
    corresponds to the published public key.

    If you run gpg without an option it will verify the signature and
    create a new file that is identical to the original.  gpg can also
    run as a filter, so that you can pipe data to verify trough it

	cat signed-file | gpg | wc -l

    which will check the signature of signed-file and then display the
    number of lines in the original file.

    To send a message encrypted to someone you can use

	gpg -e -r heine file

    This encrypts "file" with the public key of the user "heine" and
    writes it to "file.gpg"

	echo "hello" | gpg -ea -r heine | mail heine

    Ditto, but encrypts "hello\n" and mails it as ASCII armored message
    to the user with the mail address heine.

	gpg -se -r heine file

    This encrypts "file" with the public key of "heine" and writes it
    to "file.gpg" after signing it with your user id.

	gpg -se -r heine -u Suttner file

    Ditto, but sign the file with your alternative user id "Suttner"


    GnuPG has some options to help you publish public keys.  This is
    called "exporting" a key, thus

	gpg --export >all-my-keys

    exports all the keys in the keyring and writes them (in a binary
    format) to "all-my-keys".  You may then mail "all-my-keys" as an
    MIME attachment to someone else or put it on an FTP server. To
    export only some user IDs, you give them as arguments on the command
    line.

    To mail a public key or put it on a web page you have to create
    the key in ASCII armored format

	gpg --export --armor | mail panther@tiger.int

    This will send all your public keys to your friend panther.

    If you have received a key from someone else you can put it
    into your public keyring.  This is called "importing"

	gpg --import [filenames]

    New keys are appended to your keyring and already existing
    keys are updated. Note that GnuPG does not import keys that
    are not self-signed.

    Because anyone can claim that a public key belongs to her
    we must have some way to check that a public key really belongs
    to the owner.  This can be achieved by comparing the key during
    a phone call.  Sure, it is not very easy to compare a binary file
    by reading the complete hex dump of the file - GnuPG (and nearly
    every other program used for management of cryptographic keys)
    provides other solutions.

	gpg --fingerprint <username>

    prints the so called "fingerprint" of the given username which
    is a sequence of hex bytes (which you may have noticed in mail
    sigs or on business cards) that uniquely identifies the public
    key - different keys will always have different fingerprints.
    It is easy to compare fingerprints by phone and I suggest
    that you print your fingerprint on the back of your business
    card.  To see the fingerprints of the secondary keys, you can
    give the command twice; but this is normally not needed.

    If you don't know the owner of the public key you are in trouble.
    Suppose however that friend of yours knows someone who knows someone
    who has met the owner of the public key at some computer conference.
    Suppose that all the people between you and the public key holder
    may now act as introducers to you.	Introducers signing keys thereby
    certify that they know the owner of the keys they sign.  If you then
    trust all the introducers to have correctly signed other keys, you
    can be be sure that the other key really belongs to the one who
    claims to own it..

    There are 2 steps to validate a key:
	1. First check that there is a complete chain
	   of signed keys from the public key you want to use
	   and your key and verify each signature.
	2. Make sure that you have full trust in the certificates
	   of all the introduces between the public key holder and
	   you.
    Step 2 is the more complicated part because there is no easy way
    for a computer to decide who is trustworthy and who is not.  GnuPG
    leaves this decision to you and will ask you for a trust value
    (here also referenced as the owner-trust of a key) for every key
    needed to check the chain of certificates.	You may choose from:
      a) "I don't know" - then it is not possible to use any
	 of the chains of certificates, in which this key is used
	 as an introducer, to validate the target key.	Use this if
	 you don't know the introducer.
      b) "I do not trust" - Use this if you know that the introducer
	 does not do a good job in certifying other keys.  The effect
	 is the same as with a) but for a) you may later want to
	 change the value because you got new information about this
	 introducer.
      c) "I trust marginally" - Use this if you assume that the
	 introducer knows what he is doing.  Together with some
	 other marginally trusted keys, GnuPG validates the target
	 key then as good.
      d) "I fully trust" - Use this if you really know that this
	 introducer does a good job when certifying other keys.
	 If all the introducer are of this trust value, GnuPG
	 normally needs only one chain of signatures to validate
	 a target key okay. (But this may be adjusted with the help
	 of some options).
    This information is confidential because it gives your personal
    opinion on the trustworthiness of someone else.  Therefore this data
    is not stored in the keyring but in the "trustdb"
    (~/.gnupg/trustdb.gpg).  Do not assign a high trust value just
    because the introducer is a friend of yours - decide how well she
    understands the implications of key signatures and you may want to
    tell her more about public key cryptography so you can later change
    the trust value you assigned.

    Okay, here is how GnuPG helps you with key management.  Most stuff
    is done with the --edit-key command

	gpg --edit-key <keyid or username>

    GnuPG displays some information about the key and then prompts
    for a command (enter "help" to see a list of commands and see
    the man page for a more detailed explanation).  To sign a key
    you select the user ID you want to sign by entering the number
    that is displayed in the leftmost column (or do nothing if the
    key has only one user ID) and then enter the command "sign" and
    follow all the prompts.  When you are ready, give the command
    "save" (or use "quit" to cancel your actions).

    If you want to sign the key with another of your user IDs, you
    must give an "-u" option on the command line together with the
    "--edit-key".

    Normally you want to sign only one user ID because GnuPG
    uses only one and this keeps the public key certificate
    small.  Because such key signatures are very important you
    should make sure that the signatories of your key sign a user ID
    which is very likely to stay for a long time - choose one with an
    email address you have full control of or do not enter an email
    address at all.  In future GnuPG will have a way to tell which
    user ID is the one with an email address you prefer - because
    you have no signatures on this email address it is easy to change
    this address.  Remember, your signatories sign your public key (the
    primary one) together with one of your user IDs - so it is not possible
    to change the user ID later without voiding all the signatures.

    Tip: If you hear about a key signing party on a computer conference
    join it because this is a very convenient way to get your key
    certified (But remember that signatures have nothing to to with the
    trust you assign to a key).


    8 Ways to Specify a User ID
    --------------------------
    There are several ways to specify a user ID, here are some examples.

    * Only by the short keyid (prepend a zero if it begins with A..F):

	"234567C4"
	"0F34E556E"
	"01347A56A"
	"0xAB123456

    * By a complete keyid:

	"234AABBCC34567C4"
	"0F323456784E56EAB"
	"01AB3FED1347A5612"
	"0x234AABBCC34567C4"

    * By a fingerprint:

	"1234343434343434C434343434343434"
	"123434343434343C3434343434343734349A3434"
	"0E12343434343434343434EAB3484343434343434"

      The first one is MD5 the others are ripemd160 or sha1.

    * By an exact string:

	"=Heinrich Heine <heinrichh@uni-duesseldorf.de>"

    * By an email address:

	"<heinrichh@uni-duesseldorf.de>"

    * By word match

	"+Heinrich Heine duesseldorf"

      All words must match exactly (not case sensitive) and appear in
      any order in the user ID.  Words are any sequences of letters,
      digits, the underscore and characters with bit 7 set.

    * Or by the usual substring:

	"Heine"
	"*Heine"

      The '*' indicates substring search explicitly.


    Batch mode
    ----------
    If you use the option "--batch", GnuPG runs in non-interactive mode and
    never prompts for input data.  This does not even allow entering the
    passphrase.  Until we have a better solution (something like ssh-agent),
    you can use the option "--passphrase-fd n", which works like PGP's
    PGPPASSFD.

    Batch mode also causes GnuPG to terminate as soon as a BAD signature is
    detected.


    Exit status
    -----------
    GnuPG returns with an exit status of 1 if in batch mode and a bad signature
    has been detected or 2 or higher for all other errors.  You should parse
    stderr or, better, the output of the fd specified with --status-fd to get
    detailed information about the errors.


    How to Get More Information
    ---------------------------

    The primary WWW page is "http://www.gnupg.org"
    The primary FTP site is "ftp://ftp.gnupg.org/gcrypt/"

    See http://www.gnupg.org/mirrors.html for a list of mirrors
    and use them if possible.  You may also find GnuPG mirrored on
    some of the regular GNU mirrors.

    We have some mailing lists dedicated to GnuPG:

	gnupg-announce@gnupg.org    For important announcements like
				    new versions and such stuff.
				    This is a moderated list and has
				    very low traffic.

	gnupg-users@gnupg.org	    For general user discussion and
				    help.

	gnupg-devel@gnupg.org	    GnuPG developers main forum.

    You subscribe to one of the list by sending mail with a subject
    of "subscribe" to x-request@gnupg.org, where x is the name of the
    mailing list (gnupg-announce, gnupg-users, etc.).  An archive of
    the mailing lists is available at http://lists.gnupg.org .

    The gnupg.org domain is hosted in Germany to avoid possible legal
    problems (technical advices may count as a violation of ITAR).

    Please direct bug reports to <gnupg-bugs@gnu.org> or post
    them direct to the mailing list <gnupg-devel@gnupg.org>.

    Please direct questions about GnuPG to the users mailing list or
    one of the pgp newsgroups; please do not direct questions to one
    of the authors directly as we are busy working on improvements
    and bug fixes.  Both mailing lists are watched by the authors
    and we try to answer questions when time allows us to do so.

    Commercial grade support for GnuPG is available; please see
    the GNU service directory or search other resources.