1
0
mirror of git://git.gnupg.org/gnupg.git synced 2025-01-10 13:04:23 +01:00
NIIBE Yutaka 61ac580a20 gpg: Emit compatible Ed25519 signature.
* g10/pkglue.c (sexp_extract_param_sos_nlz): New.
* g10/pkglue.h: Add the declaration.
* g10/sign.c (do_sign): Use sexp_extract_param_sos_nlz for Ed25519.

--

Ed25519 signature in GnuPG 2.2 has no leading zeros.

GnuPG-bug-id: 5331
Signed-off-by: NIIBE Yutaka <gniibe@fsij.org>
2021-12-10 15:43:28 +09:00

622 lines
18 KiB
C

/* pkglue.c - public key operations glue code
* Copyright (C) 2000, 2003, 2010 Free Software Foundation, Inc.
* Copyright (C) 2014 Werner Koch
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <https://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include "gpg.h"
#include "../common/util.h"
#include "pkglue.h"
#include "main.h"
#include "options.h"
/* FIXME: Better change the function name because mpi_ is used by
gcrypt macros. */
gcry_mpi_t
get_mpi_from_sexp (gcry_sexp_t sexp, const char *item, int mpifmt)
{
gcry_sexp_t list;
gcry_mpi_t data;
list = gcry_sexp_find_token (sexp, item, 0);
log_assert (list);
data = gcry_sexp_nth_mpi (list, 1, mpifmt);
log_assert (data);
gcry_sexp_release (list);
return data;
}
/*
* SOS (Simply, Octet String) is an attempt to handle opaque octet
* string in OpenPGP, where well-formed MPI cannot represent octet
* string with leading zero octets.
*
* To retain maximum compatibility to existing MPI handling, SOS
* has same structure, but allows leading zero octets. When there
* is no leading zero octets, SOS representation is as same as MPI one.
* With leading zero octets, NBITS is 8*(length of octets), regardless
* of leading zero bits.
*/
/* Extract SOS representation from SEXP for PARAM, return the result
* in R_SOS. It is represented by opaque MPI with GCRYMPI_FLAG_USER2
* flag. */
gpg_error_t
sexp_extract_param_sos (gcry_sexp_t sexp, const char *param, gcry_mpi_t *r_sos)
{
gpg_error_t err;
gcry_sexp_t l2 = gcry_sexp_find_token (sexp, param, 0);
*r_sos = NULL;
if (!l2)
err = gpg_error (GPG_ERR_NO_OBJ);
else
{
size_t buflen;
void *p0 = gcry_sexp_nth_buffer (l2, 1, &buflen);
if (!p0)
err = gpg_error_from_syserror ();
else
{
gcry_mpi_t sos;
unsigned int nbits = buflen*8;
unsigned char *p = p0;
if (*p && nbits >= 8 && !(*p & 0x80))
if (--nbits >= 7 && !(*p & 0x40))
if (--nbits >= 6 && !(*p & 0x20))
if (--nbits >= 5 && !(*p & 0x10))
if (--nbits >= 4 && !(*p & 0x08))
if (--nbits >= 3 && !(*p & 0x04))
if (--nbits >= 2 && !(*p & 0x02))
if (--nbits >= 1 && !(*p & 0x01))
--nbits;
sos = gcry_mpi_set_opaque (NULL, p0, nbits);
if (sos)
{
gcry_mpi_set_flag (sos, GCRYMPI_FLAG_USER2);
*r_sos = sos;
err = 0;
}
else
err = gpg_error_from_syserror ();
}
gcry_sexp_release (l2);
}
return err;
}
/* "No leading zero octets" (nlz) version of the function above.
*
* This routine is used for backward compatibility to existing
* implementation with the weird handling of little endian integer
* representation with leading zero octets. For the sake of
* "well-fomed" MPI, which is designed for big endian integer, leading
* zero octets are removed when output, and they are recovered at
* input.
*
* Extract SOS representation from SEXP for PARAM, removing leading
* zeros, return the result in R_SOS. */
gpg_error_t
sexp_extract_param_sos_nlz (gcry_sexp_t sexp, const char *param,
gcry_mpi_t *r_sos)
{
gpg_error_t err;
gcry_sexp_t l2 = gcry_sexp_find_token (sexp, param, 0);
*r_sos = NULL;
if (!l2)
err = gpg_error (GPG_ERR_NO_OBJ);
else
{
size_t buflen;
const void *p0 = gcry_sexp_nth_data (l2, 1, &buflen);
if (!p0)
err = gpg_error_from_syserror ();
else
{
gcry_mpi_t sos;
unsigned int nbits = buflen*8;
const unsigned char *p = p0;
/* Strip leading zero bits. */
for (; nbits >= 8 && !*p; p++, nbits -= 8)
;
if (nbits >= 8 && !(*p & 0x80))
if (--nbits >= 7 && !(*p & 0x40))
if (--nbits >= 6 && !(*p & 0x20))
if (--nbits >= 5 && !(*p & 0x10))
if (--nbits >= 4 && !(*p & 0x08))
if (--nbits >= 3 && !(*p & 0x04))
if (--nbits >= 2 && !(*p & 0x02))
if (--nbits >= 1 && !(*p & 0x01))
--nbits;
sos = gcry_mpi_set_opaque_copy (NULL, p, nbits);
if (sos)
{
gcry_mpi_set_flag (sos, GCRYMPI_FLAG_USER2);
*r_sos = sos;
err = 0;
}
else
err = gpg_error_from_syserror ();
}
gcry_sexp_release (l2);
}
return err;
}
static byte *
get_data_from_sexp (gcry_sexp_t sexp, const char *item, size_t *r_size)
{
gcry_sexp_t list;
size_t valuelen;
const char *value;
byte *v;
if (DBG_CRYPTO)
log_printsexp ("get_data_from_sexp:", sexp);
list = gcry_sexp_find_token (sexp, item, 0);
log_assert (list);
value = gcry_sexp_nth_data (list, 1, &valuelen);
log_assert (value);
v = xtrymalloc (valuelen);
memcpy (v, value, valuelen);
gcry_sexp_release (list);
*r_size = valuelen;
return v;
}
/****************
* Emulate our old PK interface here - sometime in the future we might
* change the internal design to directly fit to libgcrypt.
*/
int
pk_verify (pubkey_algo_t pkalgo, gcry_mpi_t hash,
gcry_mpi_t *data, gcry_mpi_t *pkey)
{
gcry_sexp_t s_sig, s_hash, s_pkey;
int rc;
/* Make a sexp from pkey. */
if (pkalgo == PUBKEY_ALGO_DSA)
{
rc = gcry_sexp_build (&s_pkey, NULL,
"(public-key(dsa(p%m)(q%m)(g%m)(y%m)))",
pkey[0], pkey[1], pkey[2], pkey[3]);
}
else if (pkalgo == PUBKEY_ALGO_ELGAMAL_E || pkalgo == PUBKEY_ALGO_ELGAMAL)
{
rc = gcry_sexp_build (&s_pkey, NULL,
"(public-key(elg(p%m)(g%m)(y%m)))",
pkey[0], pkey[1], pkey[2]);
}
else if (pkalgo == PUBKEY_ALGO_RSA || pkalgo == PUBKEY_ALGO_RSA_S)
{
rc = gcry_sexp_build (&s_pkey, NULL,
"(public-key(rsa(n%m)(e%m)))", pkey[0], pkey[1]);
}
else if (pkalgo == PUBKEY_ALGO_ECDSA)
{
char *curve = openpgp_oid_to_str (pkey[0]);
if (!curve)
rc = gpg_error_from_syserror ();
else
{
rc = gcry_sexp_build (&s_pkey, NULL,
"(public-key(ecdsa(curve %s)(q%m)))",
curve, pkey[1]);
xfree (curve);
}
}
else if (pkalgo == PUBKEY_ALGO_EDDSA)
{
char *curve = openpgp_oid_to_str (pkey[0]);
if (!curve)
rc = gpg_error_from_syserror ();
else
{
const char *fmt;
if (openpgp_oid_is_ed25519 (pkey[0]))
fmt = "(public-key(ecc(curve %s)(flags eddsa)(q%m)))";
else
fmt = "(public-key(ecc(curve %s)(q%m)))";
rc = gcry_sexp_build (&s_pkey, NULL, fmt, curve, pkey[1]);
xfree (curve);
}
}
else
return GPG_ERR_PUBKEY_ALGO;
if (rc)
BUG (); /* gcry_sexp_build should never fail. */
/* Put hash into a S-Exp s_hash. */
if (pkalgo == PUBKEY_ALGO_EDDSA)
{
const char *fmt;
if (openpgp_oid_is_ed25519 (pkey[0]))
fmt = "(data(flags eddsa)(hash-algo sha512)(value %m))";
else
fmt = "(data(value %m))";
if (gcry_sexp_build (&s_hash, NULL, fmt, hash))
BUG (); /* gcry_sexp_build should never fail. */
}
else
{
if (gcry_sexp_build (&s_hash, NULL, "%m", hash))
BUG (); /* gcry_sexp_build should never fail. */
}
/* Put data into a S-Exp s_sig. */
s_sig = NULL;
if (pkalgo == PUBKEY_ALGO_DSA)
{
if (!data[0] || !data[1])
rc = gpg_error (GPG_ERR_BAD_MPI);
else
rc = gcry_sexp_build (&s_sig, NULL,
"(sig-val(dsa(r%m)(s%m)))", data[0], data[1]);
}
else if (pkalgo == PUBKEY_ALGO_ECDSA)
{
if (!data[0] || !data[1])
rc = gpg_error (GPG_ERR_BAD_MPI);
else
rc = gcry_sexp_build (&s_sig, NULL,
"(sig-val(ecdsa(r%m)(s%m)))", data[0], data[1]);
}
else if (pkalgo == PUBKEY_ALGO_EDDSA)
{
gcry_mpi_t r = data[0];
gcry_mpi_t s = data[1];
if (openpgp_oid_is_ed25519 (pkey[0]))
{
size_t rlen, slen, n; /* (bytes) */
char buf[64];
unsigned int nbits;
unsigned int neededfixedlen = 256 / 8;
log_assert (neededfixedlen <= sizeof buf);
if (!r || !s)
rc = gpg_error (GPG_ERR_BAD_MPI);
else if ((rlen = (gcry_mpi_get_nbits (r)+7)/8) > neededfixedlen || !rlen)
rc = gpg_error (GPG_ERR_BAD_MPI);
else if ((slen = (gcry_mpi_get_nbits (s)+7)/8) > neededfixedlen || !slen)
rc = gpg_error (GPG_ERR_BAD_MPI);
else
{
/* We need to fixup the length in case of leading zeroes.
* OpenPGP does not allow leading zeroes and the parser for
* the signature packet has no information on the use curve,
* thus we need to do it here. We won't do it for opaque
* MPIs under the assumption that they are known to be fine;
* we won't see them here anyway but the check is anyway
* required. Fixme: A nifty feature for gcry_sexp_build
* would be a format to left pad the value (e.g. "%*M"). */
rc = 0;
if (rlen < neededfixedlen
&& !gcry_mpi_get_flag (r, GCRYMPI_FLAG_OPAQUE)
&& !(rc=gcry_mpi_print (GCRYMPI_FMT_USG, buf, sizeof buf, &n, r)))
{
log_assert (n < neededfixedlen);
memmove (buf + (neededfixedlen - n), buf, n);
memset (buf, 0, neededfixedlen - n);
r = gcry_mpi_set_opaque_copy (NULL, buf, neededfixedlen * 8);
}
else if (rlen < neededfixedlen
&& gcry_mpi_get_flag (r, GCRYMPI_FLAG_OPAQUE))
{
const unsigned char *p;
p = gcry_mpi_get_opaque (r, &nbits);
n = (nbits+7)/8;
memcpy (buf + (neededfixedlen - n), p, n);
memset (buf, 0, neededfixedlen - n);
gcry_mpi_set_opaque_copy (r, buf, neededfixedlen * 8);
}
if (slen < neededfixedlen
&& !gcry_mpi_get_flag (s, GCRYMPI_FLAG_OPAQUE)
&& !(rc=gcry_mpi_print (GCRYMPI_FMT_USG, buf, sizeof buf, &n, s)))
{
log_assert (n < neededfixedlen);
memmove (buf + (neededfixedlen - n), buf, n);
memset (buf, 0, neededfixedlen - n);
s = gcry_mpi_set_opaque_copy (NULL, buf, neededfixedlen * 8);
}
else if (slen < neededfixedlen
&& gcry_mpi_get_flag (s, GCRYMPI_FLAG_OPAQUE))
{
const unsigned char *p;
p = gcry_mpi_get_opaque (s, &nbits);
n = (nbits+7)/8;
memcpy (buf + (neededfixedlen - n), p, n);
memset (buf, 0, neededfixedlen - n);
gcry_mpi_set_opaque_copy (s, buf, neededfixedlen * 8);
}
}
}
else
rc = 0;
if (!rc)
rc = gcry_sexp_build (&s_sig, NULL,
"(sig-val(eddsa(r%M)(s%M)))", r, s);
if (r != data[0])
gcry_mpi_release (r);
if (s != data[1])
gcry_mpi_release (s);
}
else if (pkalgo == PUBKEY_ALGO_ELGAMAL || pkalgo == PUBKEY_ALGO_ELGAMAL_E)
{
if (!data[0] || !data[1])
rc = gpg_error (GPG_ERR_BAD_MPI);
else
rc = gcry_sexp_build (&s_sig, NULL,
"(sig-val(elg(r%m)(s%m)))", data[0], data[1]);
}
else if (pkalgo == PUBKEY_ALGO_RSA || pkalgo == PUBKEY_ALGO_RSA_S)
{
if (!data[0])
rc = gpg_error (GPG_ERR_BAD_MPI);
else
rc = gcry_sexp_build (&s_sig, NULL, "(sig-val(rsa(s%m)))", data[0]);
}
else
BUG ();
if (!rc)
rc = gcry_pk_verify (s_sig, s_hash, s_pkey);
gcry_sexp_release (s_sig);
gcry_sexp_release (s_hash);
gcry_sexp_release (s_pkey);
return rc;
}
/****************
* Emulate our old PK interface here - sometime in the future we might
* change the internal design to directly fit to libgcrypt.
* PK is only required to compute the fingerprint for ECDH.
*/
int
pk_encrypt (pubkey_algo_t algo, gcry_mpi_t *resarr, gcry_mpi_t data,
PKT_public_key *pk, gcry_mpi_t *pkey)
{
gcry_sexp_t s_ciph = NULL;
gcry_sexp_t s_data = NULL;
gcry_sexp_t s_pkey = NULL;
int rc;
/* Make a sexp from pkey. */
if (algo == PUBKEY_ALGO_ELGAMAL || algo == PUBKEY_ALGO_ELGAMAL_E)
{
rc = gcry_sexp_build (&s_pkey, NULL,
"(public-key(elg(p%m)(g%m)(y%m)))",
pkey[0], pkey[1], pkey[2]);
/* Put DATA into a simplified S-expression. */
if (!rc)
rc = gcry_sexp_build (&s_data, NULL, "%m", data);
}
else if (algo == PUBKEY_ALGO_RSA || algo == PUBKEY_ALGO_RSA_E)
{
rc = gcry_sexp_build (&s_pkey, NULL,
"(public-key(rsa(n%m)(e%m)))",
pkey[0], pkey[1]);
/* Put DATA into a simplified S-expression. */
if (!rc)
rc = gcry_sexp_build (&s_data, NULL, "%m", data);
}
else if (algo == PUBKEY_ALGO_ECDH)
{
gcry_mpi_t k;
rc = pk_ecdh_generate_ephemeral_key (pkey, &k);
if (!rc)
{
char *curve;
curve = openpgp_oid_to_str (pkey[0]);
if (!curve)
rc = gpg_error_from_syserror ();
else
{
int with_djb_tweak_flag = openpgp_oid_is_cv25519 (pkey[0]);
/* Now use the ephemeral secret to compute the shared point. */
rc = gcry_sexp_build (&s_pkey, NULL,
with_djb_tweak_flag ?
"(public-key(ecdh(curve%s)(flags djb-tweak)(q%m)))"
: "(public-key(ecdh(curve%s)(q%m)))",
curve, pkey[1]);
xfree (curve);
/* Put K into a simplified S-expression. */
if (!rc)
rc = gcry_sexp_build (&s_data, NULL, "%m", k);
}
gcry_mpi_release (k);
}
}
else
rc = gpg_error (GPG_ERR_PUBKEY_ALGO);
/* Pass it to libgcrypt. */
if (!rc)
rc = gcry_pk_encrypt (&s_ciph, s_data, s_pkey);
gcry_sexp_release (s_data);
gcry_sexp_release (s_pkey);
if (rc)
;
else if (algo == PUBKEY_ALGO_ECDH)
{
gcry_mpi_t public, result;
byte fp[MAX_FINGERPRINT_LEN];
byte *shared;
size_t nshared;
/* Get the shared point and the ephemeral public key. */
shared = get_data_from_sexp (s_ciph, "s", &nshared);
if (!shared)
{
rc = gpg_error_from_syserror ();
goto leave;
}
rc = sexp_extract_param_sos (s_ciph, "e", &public);
gcry_sexp_release (s_ciph);
s_ciph = NULL;
if (DBG_CRYPTO)
{
log_debug ("ECDH ephemeral key:");
gcry_mpi_dump (public);
log_printf ("\n");
}
result = NULL;
fingerprint_from_pk (pk, fp, NULL);
if (!rc)
{
unsigned int nbits;
byte *p = gcry_mpi_get_opaque (data, &nbits);
rc = pk_ecdh_encrypt_with_shared_point (shared, nshared, fp, p,
(nbits+7)/8, pkey, &result);
}
xfree (shared);
if (!rc)
{
resarr[0] = public;
resarr[1] = result;
}
else
{
gcry_mpi_release (public);
gcry_mpi_release (result);
}
}
else /* Elgamal or RSA case. */
{ /* Fixme: Add better error handling or make gnupg use
S-expressions directly. */
resarr[0] = get_mpi_from_sexp (s_ciph, "a", GCRYMPI_FMT_USG);
if (!is_RSA (algo))
resarr[1] = get_mpi_from_sexp (s_ciph, "b", GCRYMPI_FMT_USG);
}
leave:
gcry_sexp_release (s_ciph);
return rc;
}
/* Check whether SKEY is a suitable secret key. */
int
pk_check_secret_key (pubkey_algo_t pkalgo, gcry_mpi_t *skey)
{
gcry_sexp_t s_skey;
int rc;
if (pkalgo == PUBKEY_ALGO_DSA)
{
rc = gcry_sexp_build (&s_skey, NULL,
"(private-key(dsa(p%m)(q%m)(g%m)(y%m)(x%m)))",
skey[0], skey[1], skey[2], skey[3], skey[4]);
}
else if (pkalgo == PUBKEY_ALGO_ELGAMAL || pkalgo == PUBKEY_ALGO_ELGAMAL_E)
{
rc = gcry_sexp_build (&s_skey, NULL,
"(private-key(elg(p%m)(g%m)(y%m)(x%m)))",
skey[0], skey[1], skey[2], skey[3]);
}
else if (is_RSA (pkalgo))
{
rc = gcry_sexp_build (&s_skey, NULL,
"(private-key(rsa(n%m)(e%m)(d%m)(p%m)(q%m)(u%m)))",
skey[0], skey[1], skey[2], skey[3], skey[4],
skey[5]);
}
else if (pkalgo == PUBKEY_ALGO_ECDSA || pkalgo == PUBKEY_ALGO_ECDH)
{
char *curve = openpgp_oid_to_str (skey[0]);
if (!curve)
rc = gpg_error_from_syserror ();
else
{
rc = gcry_sexp_build (&s_skey, NULL,
"(private-key(ecc(curve%s)(q%m)(d%m)))",
curve, skey[1], skey[2]);
xfree (curve);
}
}
else if (pkalgo == PUBKEY_ALGO_EDDSA)
{
char *curve = openpgp_oid_to_str (skey[0]);
if (!curve)
rc = gpg_error_from_syserror ();
else
{
const char *fmt;
if (openpgp_oid_is_ed25519 (skey[0]))
fmt = "(private-key(ecc(curve %s)(flags eddsa)(q%m)(d%m)))";
else
fmt = "(private-key(ecc(curve %s)(q%m)(d%m)))";
rc = gcry_sexp_build (&s_skey, NULL, fmt, curve, skey[1], skey[2]);
xfree (curve);
}
}
else
return GPG_ERR_PUBKEY_ALGO;
if (!rc)
{
rc = gcry_pk_testkey (s_skey);
gcry_sexp_release (s_skey);
}
return rc;
}