mirror of
git://git.gnupg.org/gnupg.git
synced 2025-01-03 12:11:33 +01:00
afe5c1a370
Returning -1 as an error code is not very clean given that gpg error has more descriptive error codes. Thus we now return GPG_ERR_NOT_FOUND for all search operations and adjusted all callers.
3052 lines
78 KiB
C
3052 lines
78 KiB
C
/* getkey.c - Get a key from the database
|
||
* Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
|
||
* 2007, 2008, 2010 Free Software Foundation, Inc.
|
||
*
|
||
* This file is part of GnuPG.
|
||
*
|
||
* GnuPG is free software; you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation; either version 3 of the License, or
|
||
* (at your option) any later version.
|
||
*
|
||
* GnuPG is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
|
||
#include <config.h>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <assert.h>
|
||
#include <ctype.h>
|
||
|
||
#include "gpg.h"
|
||
#include "util.h"
|
||
#include "packet.h"
|
||
#include "iobuf.h"
|
||
#include "keydb.h"
|
||
#include "options.h"
|
||
#include "main.h"
|
||
#include "trustdb.h"
|
||
#include "i18n.h"
|
||
#include "keyserver-internal.h"
|
||
#include "call-agent.h"
|
||
|
||
#define MAX_PK_CACHE_ENTRIES PK_UID_CACHE_SIZE
|
||
#define MAX_UID_CACHE_ENTRIES PK_UID_CACHE_SIZE
|
||
|
||
#if MAX_PK_CACHE_ENTRIES < 2
|
||
#error We need the cache for key creation
|
||
#endif
|
||
|
||
struct getkey_ctx_s
|
||
{
|
||
int exact;
|
||
int want_secret; /* The caller requested only secret keys. */
|
||
KBNODE keyblock;
|
||
KBPOS kbpos;
|
||
KBNODE found_key; /* Pointer into some keyblock. */
|
||
strlist_t extra_list; /* Will be freed when releasing the context. */
|
||
int last_rc;
|
||
int req_usage;
|
||
int req_algo;
|
||
KEYDB_HANDLE kr_handle;
|
||
int not_allocated;
|
||
int nitems;
|
||
KEYDB_SEARCH_DESC items[1];
|
||
};
|
||
|
||
#if 0
|
||
static struct
|
||
{
|
||
int any;
|
||
int okay_count;
|
||
int nokey_count;
|
||
int error_count;
|
||
} lkup_stats[21];
|
||
#endif
|
||
|
||
typedef struct keyid_list
|
||
{
|
||
struct keyid_list *next;
|
||
u32 keyid[2];
|
||
} *keyid_list_t;
|
||
|
||
|
||
#if MAX_PK_CACHE_ENTRIES
|
||
typedef struct pk_cache_entry
|
||
{
|
||
struct pk_cache_entry *next;
|
||
u32 keyid[2];
|
||
PKT_public_key *pk;
|
||
} *pk_cache_entry_t;
|
||
static pk_cache_entry_t pk_cache;
|
||
static int pk_cache_entries; /* Number of entries in pk cache. */
|
||
static int pk_cache_disabled;
|
||
#endif
|
||
|
||
#if MAX_UID_CACHE_ENTRIES < 5
|
||
#error we really need the userid cache
|
||
#endif
|
||
typedef struct user_id_db
|
||
{
|
||
struct user_id_db *next;
|
||
keyid_list_t keyids;
|
||
int len;
|
||
char name[1];
|
||
} *user_id_db_t;
|
||
static user_id_db_t user_id_db;
|
||
static int uid_cache_entries; /* Number of entries in uid cache. */
|
||
|
||
static void merge_selfsigs (kbnode_t keyblock);
|
||
static int lookup (getkey_ctx_t ctx, kbnode_t *ret_keyblock, int want_secret);
|
||
|
||
#if 0
|
||
static void
|
||
print_stats ()
|
||
{
|
||
int i;
|
||
for (i = 0; i < DIM (lkup_stats); i++)
|
||
{
|
||
if (lkup_stats[i].any)
|
||
fprintf (stderr,
|
||
"lookup stats: mode=%-2d ok=%-6d nokey=%-6d err=%-6d\n",
|
||
i,
|
||
lkup_stats[i].okay_count,
|
||
lkup_stats[i].nokey_count, lkup_stats[i].error_count);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
|
||
void
|
||
cache_public_key (PKT_public_key * pk)
|
||
{
|
||
#if MAX_PK_CACHE_ENTRIES
|
||
pk_cache_entry_t ce;
|
||
u32 keyid[2];
|
||
|
||
if (pk_cache_disabled)
|
||
return;
|
||
|
||
if (pk->flags.dont_cache)
|
||
return;
|
||
|
||
if (is_ELGAMAL (pk->pubkey_algo)
|
||
|| pk->pubkey_algo == PUBKEY_ALGO_DSA
|
||
|| pk->pubkey_algo == PUBKEY_ALGO_ECDSA
|
||
|| pk->pubkey_algo == PUBKEY_ALGO_ECDH
|
||
|| is_RSA (pk->pubkey_algo))
|
||
{
|
||
keyid_from_pk (pk, keyid);
|
||
}
|
||
else
|
||
return; /* Don't know how to get the keyid. */
|
||
|
||
for (ce = pk_cache; ce; ce = ce->next)
|
||
if (ce->keyid[0] == keyid[0] && ce->keyid[1] == keyid[1])
|
||
{
|
||
if (DBG_CACHE)
|
||
log_debug ("cache_public_key: already in cache\n");
|
||
return;
|
||
}
|
||
|
||
if (pk_cache_entries >= MAX_PK_CACHE_ENTRIES)
|
||
{
|
||
/* fixme: Use another algorithm to free some cache slots. */
|
||
pk_cache_disabled = 1;
|
||
if (opt.verbose > 1)
|
||
log_info (_("too many entries in pk cache - disabled\n"));
|
||
return;
|
||
}
|
||
pk_cache_entries++;
|
||
ce = xmalloc (sizeof *ce);
|
||
ce->next = pk_cache;
|
||
pk_cache = ce;
|
||
ce->pk = copy_public_key (NULL, pk);
|
||
ce->keyid[0] = keyid[0];
|
||
ce->keyid[1] = keyid[1];
|
||
#endif
|
||
}
|
||
|
||
|
||
/* Return a const utf-8 string with the text "[User ID not found]".
|
||
This function is required so that we don't need to switch gettext's
|
||
encoding temporary. */
|
||
static const char *
|
||
user_id_not_found_utf8 (void)
|
||
{
|
||
static char *text;
|
||
|
||
if (!text)
|
||
text = native_to_utf8 (_("[User ID not found]"));
|
||
return text;
|
||
}
|
||
|
||
|
||
|
||
/* Return the user ID from the given keyblock.
|
||
* We use the primary uid flag which has been set by the merge_selfsigs
|
||
* function. The returned value is only valid as long as then given
|
||
* keyblock is not changed. */
|
||
static const char *
|
||
get_primary_uid (KBNODE keyblock, size_t * uidlen)
|
||
{
|
||
KBNODE k;
|
||
const char *s;
|
||
|
||
for (k = keyblock; k; k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_USER_ID
|
||
&& !k->pkt->pkt.user_id->attrib_data
|
||
&& k->pkt->pkt.user_id->is_primary)
|
||
{
|
||
*uidlen = k->pkt->pkt.user_id->len;
|
||
return k->pkt->pkt.user_id->name;
|
||
}
|
||
}
|
||
s = user_id_not_found_utf8 ();
|
||
*uidlen = strlen (s);
|
||
return s;
|
||
}
|
||
|
||
|
||
static void
|
||
release_keyid_list (keyid_list_t k)
|
||
{
|
||
while (k)
|
||
{
|
||
keyid_list_t k2 = k->next;
|
||
xfree (k);
|
||
k = k2;
|
||
}
|
||
}
|
||
|
||
/****************
|
||
* Store the association of keyid and userid
|
||
* Feed only public keys to this function.
|
||
*/
|
||
static void
|
||
cache_user_id (KBNODE keyblock)
|
||
{
|
||
user_id_db_t r;
|
||
const char *uid;
|
||
size_t uidlen;
|
||
keyid_list_t keyids = NULL;
|
||
KBNODE k;
|
||
|
||
for (k = keyblock; k; k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY)
|
||
{
|
||
keyid_list_t a = xmalloc_clear (sizeof *a);
|
||
/* Hmmm: For a long list of keyids it might be an advantage
|
||
* to append the keys. */
|
||
keyid_from_pk (k->pkt->pkt.public_key, a->keyid);
|
||
/* First check for duplicates. */
|
||
for (r = user_id_db; r; r = r->next)
|
||
{
|
||
keyid_list_t b = r->keyids;
|
||
for (b = r->keyids; b; b = b->next)
|
||
{
|
||
if (b->keyid[0] == a->keyid[0]
|
||
&& b->keyid[1] == a->keyid[1])
|
||
{
|
||
if (DBG_CACHE)
|
||
log_debug ("cache_user_id: already in cache\n");
|
||
release_keyid_list (keyids);
|
||
xfree (a);
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
/* Now put it into the cache. */
|
||
a->next = keyids;
|
||
keyids = a;
|
||
}
|
||
}
|
||
if (!keyids)
|
||
BUG (); /* No key no fun. */
|
||
|
||
|
||
uid = get_primary_uid (keyblock, &uidlen);
|
||
|
||
if (uid_cache_entries >= MAX_UID_CACHE_ENTRIES)
|
||
{
|
||
/* fixme: use another algorithm to free some cache slots */
|
||
r = user_id_db;
|
||
user_id_db = r->next;
|
||
release_keyid_list (r->keyids);
|
||
xfree (r);
|
||
uid_cache_entries--;
|
||
}
|
||
r = xmalloc (sizeof *r + uidlen - 1);
|
||
r->keyids = keyids;
|
||
r->len = uidlen;
|
||
memcpy (r->name, uid, r->len);
|
||
r->next = user_id_db;
|
||
user_id_db = r;
|
||
uid_cache_entries++;
|
||
}
|
||
|
||
|
||
void
|
||
getkey_disable_caches ()
|
||
{
|
||
#if MAX_PK_CACHE_ENTRIES
|
||
{
|
||
pk_cache_entry_t ce, ce2;
|
||
|
||
for (ce = pk_cache; ce; ce = ce2)
|
||
{
|
||
ce2 = ce->next;
|
||
free_public_key (ce->pk);
|
||
xfree (ce);
|
||
}
|
||
pk_cache_disabled = 1;
|
||
pk_cache_entries = 0;
|
||
pk_cache = NULL;
|
||
}
|
||
#endif
|
||
/* fixme: disable user id cache ? */
|
||
}
|
||
|
||
|
||
static void
|
||
pk_from_block (GETKEY_CTX ctx, PKT_public_key * pk, KBNODE keyblock)
|
||
{
|
||
KBNODE a = ctx->found_key ? ctx->found_key : keyblock;
|
||
|
||
assert (a->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| a->pkt->pkttype == PKT_PUBLIC_SUBKEY);
|
||
|
||
copy_public_key (pk, a->pkt->pkt.public_key);
|
||
}
|
||
|
||
/* Get a public key and store it into the allocated pk can be called
|
||
* with PK set to NULL to just read it into some internal
|
||
* structures. */
|
||
int
|
||
get_pubkey (PKT_public_key * pk, u32 * keyid)
|
||
{
|
||
int internal = 0;
|
||
int rc = 0;
|
||
|
||
#if MAX_PK_CACHE_ENTRIES
|
||
if (pk)
|
||
{
|
||
/* Try to get it from the cache. We don't do this when pk is
|
||
NULL as it does not guarantee that the user IDs are
|
||
cached. */
|
||
pk_cache_entry_t ce;
|
||
for (ce = pk_cache; ce; ce = ce->next)
|
||
{
|
||
if (ce->keyid[0] == keyid[0] && ce->keyid[1] == keyid[1])
|
||
{
|
||
copy_public_key (pk, ce->pk);
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
/* More init stuff. */
|
||
if (!pk)
|
||
{
|
||
pk = xmalloc_clear (sizeof *pk);
|
||
internal++;
|
||
}
|
||
|
||
|
||
/* Do a lookup. */
|
||
{
|
||
struct getkey_ctx_s ctx;
|
||
KBNODE kb = NULL;
|
||
memset (&ctx, 0, sizeof ctx);
|
||
ctx.exact = 1; /* Use the key ID exactly as given. */
|
||
ctx.not_allocated = 1;
|
||
ctx.kr_handle = keydb_new ();
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = KEYDB_SEARCH_MODE_LONG_KID;
|
||
ctx.items[0].u.kid[0] = keyid[0];
|
||
ctx.items[0].u.kid[1] = keyid[1];
|
||
ctx.req_algo = pk->req_algo;
|
||
ctx.req_usage = pk->req_usage;
|
||
rc = lookup (&ctx, &kb, 0);
|
||
if (!rc)
|
||
{
|
||
pk_from_block (&ctx, pk, kb);
|
||
}
|
||
get_pubkey_end (&ctx);
|
||
release_kbnode (kb);
|
||
}
|
||
if (!rc)
|
||
goto leave;
|
||
|
||
rc = G10ERR_NO_PUBKEY;
|
||
|
||
leave:
|
||
if (!rc)
|
||
cache_public_key (pk);
|
||
if (internal)
|
||
free_public_key (pk);
|
||
return rc;
|
||
}
|
||
|
||
|
||
/* Get a public key and store it into the allocated pk. This function
|
||
differs from get_pubkey() in that it does not do a check of the key
|
||
to avoid recursion. It should be used only in very certain cases.
|
||
It will only retrieve primary keys. */
|
||
int
|
||
get_pubkey_fast (PKT_public_key * pk, u32 * keyid)
|
||
{
|
||
int rc = 0;
|
||
KEYDB_HANDLE hd;
|
||
KBNODE keyblock;
|
||
u32 pkid[2];
|
||
|
||
assert (pk);
|
||
#if MAX_PK_CACHE_ENTRIES
|
||
{
|
||
/* Try to get it from the cache */
|
||
pk_cache_entry_t ce;
|
||
|
||
for (ce = pk_cache; ce; ce = ce->next)
|
||
{
|
||
if (ce->keyid[0] == keyid[0] && ce->keyid[1] == keyid[1])
|
||
{
|
||
if (pk)
|
||
copy_public_key (pk, ce->pk);
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
hd = keydb_new ();
|
||
rc = keydb_search_kid (hd, keyid);
|
||
if (gpg_err_code (rc) == GPG_ERR_NOT_FOUND)
|
||
{
|
||
keydb_release (hd);
|
||
return G10ERR_NO_PUBKEY;
|
||
}
|
||
rc = keydb_get_keyblock (hd, &keyblock);
|
||
keydb_release (hd);
|
||
if (rc)
|
||
{
|
||
log_error ("keydb_get_keyblock failed: %s\n", g10_errstr (rc));
|
||
return G10ERR_NO_PUBKEY;
|
||
}
|
||
|
||
assert (keyblock->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| keyblock->pkt->pkttype == PKT_PUBLIC_SUBKEY);
|
||
|
||
keyid_from_pk (keyblock->pkt->pkt.public_key, pkid);
|
||
if (keyid[0] == pkid[0] && keyid[1] == pkid[1])
|
||
copy_public_key (pk, keyblock->pkt->pkt.public_key);
|
||
else
|
||
rc = G10ERR_NO_PUBKEY;
|
||
|
||
release_kbnode (keyblock);
|
||
|
||
/* Not caching key here since it won't have all of the fields
|
||
properly set. */
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
KBNODE
|
||
get_pubkeyblock (u32 * keyid)
|
||
{
|
||
struct getkey_ctx_s ctx;
|
||
int rc = 0;
|
||
KBNODE keyblock = NULL;
|
||
|
||
memset (&ctx, 0, sizeof ctx);
|
||
/* No need to set exact here because we want the entire block. */
|
||
ctx.not_allocated = 1;
|
||
ctx.kr_handle = keydb_new ();
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = KEYDB_SEARCH_MODE_LONG_KID;
|
||
ctx.items[0].u.kid[0] = keyid[0];
|
||
ctx.items[0].u.kid[1] = keyid[1];
|
||
rc = lookup (&ctx, &keyblock, 0);
|
||
get_pubkey_end (&ctx);
|
||
|
||
return rc ? NULL : keyblock;
|
||
}
|
||
|
||
|
||
|
||
|
||
/*
|
||
* Get a public key and store it into PK. This functions check that a
|
||
* corresponding secret key is available. With no secret key it does
|
||
* not succeeed.
|
||
*/
|
||
gpg_error_t
|
||
get_seckey (PKT_public_key *pk, u32 *keyid)
|
||
{
|
||
gpg_error_t err;
|
||
struct getkey_ctx_s ctx;
|
||
kbnode_t keyblock = NULL;
|
||
|
||
memset (&ctx, 0, sizeof ctx);
|
||
ctx.exact = 1; /* Use the key ID exactly as given. */
|
||
ctx.not_allocated = 1;
|
||
ctx.kr_handle = keydb_new ();
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = KEYDB_SEARCH_MODE_LONG_KID;
|
||
ctx.items[0].u.kid[0] = keyid[0];
|
||
ctx.items[0].u.kid[1] = keyid[1];
|
||
ctx.req_algo = pk->req_algo;
|
||
ctx.req_usage = pk->req_usage;
|
||
err = lookup (&ctx, &keyblock, 1);
|
||
if (!err)
|
||
{
|
||
pk_from_block (&ctx, pk, keyblock);
|
||
}
|
||
get_pubkey_end (&ctx);
|
||
release_kbnode (keyblock);
|
||
|
||
if (!err)
|
||
err = agent_probe_secret_key (/*ctrl*/NULL, pk);
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
static int
|
||
skip_unusable (void *dummy, u32 * keyid, PKT_user_id * uid)
|
||
{
|
||
int unusable = 0;
|
||
KBNODE keyblock;
|
||
|
||
(void) dummy;
|
||
|
||
keyblock = get_pubkeyblock (keyid);
|
||
if (!keyblock)
|
||
{
|
||
log_error ("error checking usability status of %s\n", keystr (keyid));
|
||
goto leave;
|
||
}
|
||
|
||
/* Is the user ID in question revoked/expired? */
|
||
if (uid)
|
||
{
|
||
KBNODE node;
|
||
|
||
for (node = keyblock; node; node = node->next)
|
||
{
|
||
if (node->pkt->pkttype == PKT_USER_ID)
|
||
{
|
||
if (cmp_user_ids (uid, node->pkt->pkt.user_id) == 0
|
||
&& (node->pkt->pkt.user_id->is_revoked
|
||
|| node->pkt->pkt.user_id->is_expired))
|
||
{
|
||
unusable = 1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!unusable)
|
||
unusable = pk_is_disabled (keyblock->pkt->pkt.public_key);
|
||
|
||
leave:
|
||
release_kbnode (keyblock);
|
||
return unusable;
|
||
}
|
||
|
||
|
||
/* Try to get the pubkey by the userid. This function looks for the
|
||
* first pubkey certificate which has the given name in a user_id. If
|
||
* PK has the pubkey algo set, the function will only return a pubkey
|
||
* with that algo. If NAMELIST is NULL, the first key is returned.
|
||
* The caller should provide storage for the PK or pass NULL if it is
|
||
* not needed. If RET_KB is not NULL the function stores the entire
|
||
* keyblock at that address. */
|
||
static int
|
||
key_byname (GETKEY_CTX *retctx, strlist_t namelist,
|
||
PKT_public_key *pk,
|
||
int want_secret, int include_unusable,
|
||
KBNODE * ret_kb, KEYDB_HANDLE * ret_kdbhd)
|
||
{
|
||
int rc = 0;
|
||
int n;
|
||
strlist_t r;
|
||
GETKEY_CTX ctx;
|
||
KBNODE help_kb = NULL;
|
||
|
||
if (retctx)
|
||
{
|
||
/* Reset the returned context in case of error. */
|
||
assert (!ret_kdbhd); /* Not allowed because the handle is stored
|
||
in the context. */
|
||
*retctx = NULL;
|
||
}
|
||
if (ret_kdbhd)
|
||
*ret_kdbhd = NULL;
|
||
|
||
if (!namelist)
|
||
{
|
||
ctx = xmalloc_clear (sizeof *ctx);
|
||
ctx->nitems = 1;
|
||
ctx->items[0].mode = KEYDB_SEARCH_MODE_FIRST;
|
||
if (!include_unusable)
|
||
ctx->items[0].skipfnc = skip_unusable;
|
||
}
|
||
else
|
||
{
|
||
/* Build the search context. */
|
||
for (n = 0, r = namelist; r; r = r->next)
|
||
n++;
|
||
|
||
ctx = xmalloc_clear (sizeof *ctx + (n - 1) * sizeof ctx->items);
|
||
ctx->nitems = n;
|
||
|
||
for (n = 0, r = namelist; r; r = r->next, n++)
|
||
{
|
||
gpg_error_t err;
|
||
|
||
err = classify_user_id (r->d, &ctx->items[n], 1);
|
||
|
||
if (ctx->items[n].exact)
|
||
ctx->exact = 1;
|
||
if (err)
|
||
{
|
||
xfree (ctx);
|
||
return gpg_err_code (err); /* FIXME: remove gpg_err_code. */
|
||
}
|
||
if (!include_unusable
|
||
&& ctx->items[n].mode != KEYDB_SEARCH_MODE_SHORT_KID
|
||
&& ctx->items[n].mode != KEYDB_SEARCH_MODE_LONG_KID
|
||
&& ctx->items[n].mode != KEYDB_SEARCH_MODE_FPR16
|
||
&& ctx->items[n].mode != KEYDB_SEARCH_MODE_FPR20
|
||
&& ctx->items[n].mode != KEYDB_SEARCH_MODE_FPR)
|
||
ctx->items[n].skipfnc = skip_unusable;
|
||
}
|
||
}
|
||
|
||
ctx->want_secret = want_secret;
|
||
ctx->kr_handle = keydb_new ();
|
||
if (!ret_kb)
|
||
ret_kb = &help_kb;
|
||
|
||
if (pk)
|
||
{
|
||
ctx->req_algo = pk->req_algo;
|
||
ctx->req_usage = pk->req_usage;
|
||
}
|
||
|
||
rc = lookup (ctx, ret_kb, want_secret);
|
||
if (!rc && pk)
|
||
{
|
||
pk_from_block (ctx, pk, *ret_kb);
|
||
}
|
||
|
||
release_kbnode (help_kb);
|
||
|
||
if (retctx) /* Caller wants the context. */
|
||
*retctx = ctx;
|
||
else
|
||
{
|
||
if (ret_kdbhd)
|
||
{
|
||
*ret_kdbhd = ctx->kr_handle;
|
||
ctx->kr_handle = NULL;
|
||
}
|
||
get_pubkey_end (ctx);
|
||
}
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
|
||
/* Find a public key from NAME and return the keyblock or the key. If
|
||
ret_kdb is not NULL, the KEYDB handle used to locate this keyblock
|
||
is returned and the caller is responsible for closing it. If a key
|
||
was not found (or if local search has been disabled) and NAME is a
|
||
valid RFC822 mailbox and --auto-key-locate has been enabled, we try
|
||
to import the key via the online mechanisms defined by
|
||
--auto-key-locate. */
|
||
int
|
||
get_pubkey_byname (ctrl_t ctrl, GETKEY_CTX * retctx, PKT_public_key * pk,
|
||
const char *name, KBNODE * ret_keyblock,
|
||
KEYDB_HANDLE * ret_kdbhd, int include_unusable, int no_akl)
|
||
{
|
||
int rc;
|
||
strlist_t namelist = NULL;
|
||
struct akl *akl;
|
||
int is_mbox;
|
||
int nodefault = 0;
|
||
int anylocalfirst = 0;
|
||
|
||
if (retctx)
|
||
*retctx = NULL;
|
||
|
||
is_mbox = is_valid_mailbox (name);
|
||
|
||
/* Check whether we the default local search has been disabled.
|
||
This is the case if either the "nodefault" or the "local" keyword
|
||
are in the list of auto key locate mechanisms.
|
||
|
||
ANYLOCALFIRST is set if the search order has the local method
|
||
before any other or if "local" is used first by default. This
|
||
makes sure that if a RETCTX is used it gets only set if a local
|
||
search has precedence over the other search methods and only then
|
||
a followup call to get_pubkey_next shall succeed. */
|
||
if (!no_akl)
|
||
{
|
||
for (akl = opt.auto_key_locate; akl; akl = akl->next)
|
||
if (akl->type == AKL_NODEFAULT || akl->type == AKL_LOCAL)
|
||
{
|
||
nodefault = 1;
|
||
break;
|
||
}
|
||
for (akl = opt.auto_key_locate; akl; akl = akl->next)
|
||
if (akl->type != AKL_NODEFAULT)
|
||
{
|
||
if (akl->type == AKL_LOCAL)
|
||
anylocalfirst = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!nodefault)
|
||
anylocalfirst = 1;
|
||
|
||
if (nodefault && is_mbox)
|
||
{
|
||
/* Nodefault but a mailbox - let the AKL locate the key. */
|
||
rc = G10ERR_NO_PUBKEY;
|
||
}
|
||
else
|
||
{
|
||
add_to_strlist (&namelist, name);
|
||
rc = key_byname (retctx, namelist, pk, 0,
|
||
include_unusable, ret_keyblock, ret_kdbhd);
|
||
}
|
||
|
||
/* If the requested name resembles a valid mailbox and automatic
|
||
retrieval has been enabled, we try to import the key. */
|
||
if (gpg_err_code (rc) == G10ERR_NO_PUBKEY && !no_akl && is_mbox)
|
||
{
|
||
for (akl = opt.auto_key_locate; akl; akl = akl->next)
|
||
{
|
||
unsigned char *fpr = NULL;
|
||
size_t fpr_len;
|
||
int did_key_byname = 0;
|
||
int no_fingerprint = 0;
|
||
const char *mechanism = "?";
|
||
|
||
switch (akl->type)
|
||
{
|
||
case AKL_NODEFAULT:
|
||
/* This is a dummy mechanism. */
|
||
mechanism = "None";
|
||
rc = G10ERR_NO_PUBKEY;
|
||
break;
|
||
|
||
case AKL_LOCAL:
|
||
mechanism = "Local";
|
||
did_key_byname = 1;
|
||
if (retctx)
|
||
{
|
||
get_pubkey_end (*retctx);
|
||
*retctx = NULL;
|
||
}
|
||
add_to_strlist (&namelist, name);
|
||
rc = key_byname (anylocalfirst ? retctx : NULL,
|
||
namelist, pk, 0,
|
||
include_unusable, ret_keyblock, ret_kdbhd);
|
||
break;
|
||
|
||
case AKL_CERT:
|
||
mechanism = "DNS CERT";
|
||
glo_ctrl.in_auto_key_retrieve++;
|
||
rc = keyserver_import_cert (ctrl, name, &fpr, &fpr_len);
|
||
glo_ctrl.in_auto_key_retrieve--;
|
||
break;
|
||
|
||
case AKL_PKA:
|
||
mechanism = "PKA";
|
||
glo_ctrl.in_auto_key_retrieve++;
|
||
rc = keyserver_import_pka (ctrl, name, &fpr, &fpr_len);
|
||
glo_ctrl.in_auto_key_retrieve--;
|
||
break;
|
||
|
||
case AKL_LDAP:
|
||
mechanism = "LDAP";
|
||
glo_ctrl.in_auto_key_retrieve++;
|
||
rc = keyserver_import_ldap (ctrl, name, &fpr, &fpr_len);
|
||
glo_ctrl.in_auto_key_retrieve--;
|
||
break;
|
||
|
||
case AKL_KEYSERVER:
|
||
/* Strictly speaking, we don't need to only use a valid
|
||
mailbox for the getname search, but it helps cut down
|
||
on the problem of searching for something like "john"
|
||
and getting a whole lot of keys back. */
|
||
if (opt.keyserver)
|
||
{
|
||
mechanism = opt.keyserver->uri;
|
||
glo_ctrl.in_auto_key_retrieve++;
|
||
rc = keyserver_import_name (ctrl, name, &fpr, &fpr_len,
|
||
opt.keyserver);
|
||
glo_ctrl.in_auto_key_retrieve--;
|
||
}
|
||
else
|
||
{
|
||
mechanism = "Unconfigured keyserver";
|
||
rc = G10ERR_NO_PUBKEY;
|
||
}
|
||
break;
|
||
|
||
case AKL_SPEC:
|
||
{
|
||
struct keyserver_spec *keyserver;
|
||
|
||
mechanism = akl->spec->uri;
|
||
keyserver = keyserver_match (akl->spec);
|
||
glo_ctrl.in_auto_key_retrieve++;
|
||
rc = keyserver_import_name (ctrl,
|
||
name, &fpr, &fpr_len, keyserver);
|
||
glo_ctrl.in_auto_key_retrieve--;
|
||
}
|
||
break;
|
||
}
|
||
|
||
/* Use the fingerprint of the key that we actually fetched.
|
||
This helps prevent problems where the key that we fetched
|
||
doesn't have the same name that we used to fetch it. In
|
||
the case of CERT and PKA, this is an actual security
|
||
requirement as the URL might point to a key put in by an
|
||
attacker. By forcing the use of the fingerprint, we
|
||
won't use the attacker's key here. */
|
||
if (!rc && fpr)
|
||
{
|
||
char fpr_string[MAX_FINGERPRINT_LEN * 2 + 1];
|
||
|
||
assert (fpr_len <= MAX_FINGERPRINT_LEN);
|
||
|
||
free_strlist (namelist);
|
||
namelist = NULL;
|
||
|
||
bin2hex (fpr, fpr_len, fpr_string);
|
||
|
||
if (opt.verbose)
|
||
log_info ("auto-key-locate found fingerprint %s\n",
|
||
fpr_string);
|
||
|
||
add_to_strlist (&namelist, fpr_string);
|
||
}
|
||
else if (!rc && !fpr && !did_key_byname)
|
||
{
|
||
no_fingerprint = 1;
|
||
rc = G10ERR_NO_PUBKEY;
|
||
}
|
||
xfree (fpr);
|
||
fpr = NULL;
|
||
|
||
if (!rc && !did_key_byname)
|
||
{
|
||
if (retctx)
|
||
{
|
||
get_pubkey_end (*retctx);
|
||
*retctx = NULL;
|
||
}
|
||
rc = key_byname (anylocalfirst ? retctx : NULL,
|
||
namelist, pk, 0,
|
||
include_unusable, ret_keyblock, ret_kdbhd);
|
||
}
|
||
if (!rc)
|
||
{
|
||
/* Key found. */
|
||
log_info (_("automatically retrieved `%s' via %s\n"),
|
||
name, mechanism);
|
||
break;
|
||
}
|
||
if (rc != G10ERR_NO_PUBKEY || opt.verbose || no_fingerprint)
|
||
log_info (_("error retrieving `%s' via %s: %s\n"),
|
||
name, mechanism,
|
||
no_fingerprint ? _("No fingerprint") : g10_errstr (rc));
|
||
}
|
||
}
|
||
|
||
|
||
if (rc && retctx)
|
||
{
|
||
get_pubkey_end (*retctx);
|
||
*retctx = NULL;
|
||
}
|
||
|
||
if (retctx && *retctx)
|
||
{
|
||
assert (!(*retctx)->extra_list);
|
||
(*retctx)->extra_list = namelist;
|
||
}
|
||
else
|
||
free_strlist (namelist);
|
||
return rc;
|
||
}
|
||
|
||
|
||
int
|
||
get_pubkey_bynames (GETKEY_CTX * retctx, PKT_public_key * pk,
|
||
strlist_t names, KBNODE * ret_keyblock)
|
||
{
|
||
return key_byname (retctx, names, pk, 0, 1, ret_keyblock, NULL);
|
||
}
|
||
|
||
int
|
||
get_pubkey_next (GETKEY_CTX ctx, PKT_public_key * pk, KBNODE * ret_keyblock)
|
||
{
|
||
int rc;
|
||
|
||
rc = lookup (ctx, ret_keyblock, 0);
|
||
if (!rc && pk && ret_keyblock)
|
||
pk_from_block (ctx, pk, *ret_keyblock);
|
||
|
||
return rc;
|
||
}
|
||
|
||
void
|
||
get_pubkey_end (GETKEY_CTX ctx)
|
||
{
|
||
if (ctx)
|
||
{
|
||
memset (&ctx->kbpos, 0, sizeof ctx->kbpos);
|
||
keydb_release (ctx->kr_handle);
|
||
free_strlist (ctx->extra_list);
|
||
if (!ctx->not_allocated)
|
||
xfree (ctx);
|
||
}
|
||
}
|
||
|
||
|
||
/* Search for a key with the given fingerprint.
|
||
* FIXME:
|
||
* We should replace this with the _byname function. This can be done
|
||
* by creating a userID conforming to the unified fingerprint style.
|
||
*/
|
||
int
|
||
get_pubkey_byfprint (PKT_public_key * pk,
|
||
const byte * fprint, size_t fprint_len)
|
||
{
|
||
int rc;
|
||
|
||
if (fprint_len == 20 || fprint_len == 16)
|
||
{
|
||
struct getkey_ctx_s ctx;
|
||
KBNODE kb = NULL;
|
||
|
||
memset (&ctx, 0, sizeof ctx);
|
||
ctx.exact = 1;
|
||
ctx.not_allocated = 1;
|
||
ctx.kr_handle = keydb_new ();
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = fprint_len == 16 ? KEYDB_SEARCH_MODE_FPR16
|
||
: KEYDB_SEARCH_MODE_FPR20;
|
||
memcpy (ctx.items[0].u.fpr, fprint, fprint_len);
|
||
rc = lookup (&ctx, &kb, 0);
|
||
if (!rc && pk)
|
||
pk_from_block (&ctx, pk, kb);
|
||
release_kbnode (kb);
|
||
get_pubkey_end (&ctx);
|
||
}
|
||
else
|
||
rc = G10ERR_GENERAL; /* Oops */
|
||
return rc;
|
||
}
|
||
|
||
|
||
/* Get a public key and store it into the allocated pk. This function
|
||
differs from get_pubkey_byfprint() in that it does not do a check
|
||
of the key to avoid recursion. It should be used only in very
|
||
certain cases. PK may be NULL to check just for the existance of
|
||
the key. */
|
||
int
|
||
get_pubkey_byfprint_fast (PKT_public_key * pk,
|
||
const byte * fprint, size_t fprint_len)
|
||
{
|
||
int rc = 0;
|
||
KEYDB_HANDLE hd;
|
||
KBNODE keyblock;
|
||
byte fprbuf[MAX_FINGERPRINT_LEN];
|
||
int i;
|
||
|
||
for (i = 0; i < MAX_FINGERPRINT_LEN && i < fprint_len; i++)
|
||
fprbuf[i] = fprint[i];
|
||
while (i < MAX_FINGERPRINT_LEN)
|
||
fprbuf[i++] = 0;
|
||
|
||
hd = keydb_new ();
|
||
rc = keydb_search_fpr (hd, fprbuf);
|
||
if (gpg_err_code (rc) == GPG_ERR_NOT_FOUND)
|
||
{
|
||
keydb_release (hd);
|
||
return G10ERR_NO_PUBKEY;
|
||
}
|
||
rc = keydb_get_keyblock (hd, &keyblock);
|
||
keydb_release (hd);
|
||
if (rc)
|
||
{
|
||
log_error ("keydb_get_keyblock failed: %s\n", g10_errstr (rc));
|
||
return G10ERR_NO_PUBKEY;
|
||
}
|
||
|
||
assert (keyblock->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| keyblock->pkt->pkttype == PKT_PUBLIC_SUBKEY);
|
||
if (pk)
|
||
copy_public_key (pk, keyblock->pkt->pkt.public_key);
|
||
release_kbnode (keyblock);
|
||
|
||
/* Not caching key here since it won't have all of the fields
|
||
properly set. */
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Search for a key with the given fingerprint and return the
|
||
* complete keyblock which may have more than only this key. */
|
||
int
|
||
get_keyblock_byfprint (KBNODE * ret_keyblock, const byte * fprint,
|
||
size_t fprint_len)
|
||
{
|
||
int rc;
|
||
|
||
if (fprint_len == 20 || fprint_len == 16)
|
||
{
|
||
struct getkey_ctx_s ctx;
|
||
|
||
memset (&ctx, 0, sizeof ctx);
|
||
ctx.not_allocated = 1;
|
||
ctx.kr_handle = keydb_new ();
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = (fprint_len == 16
|
||
? KEYDB_SEARCH_MODE_FPR16
|
||
: KEYDB_SEARCH_MODE_FPR20);
|
||
memcpy (ctx.items[0].u.fpr, fprint, fprint_len);
|
||
rc = lookup (&ctx, ret_keyblock, 0);
|
||
get_pubkey_end (&ctx);
|
||
}
|
||
else
|
||
rc = G10ERR_GENERAL; /* Oops */
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
/* Get a secret key by NAME and store it into PK. If NAME is NULL use
|
||
* the default key. This functions checks that a corresponding secret
|
||
* key is available. With no secret key it does not succeeed. */
|
||
gpg_error_t
|
||
get_seckey_byname (PKT_public_key *pk, const char *name)
|
||
{
|
||
gpg_error_t err;
|
||
strlist_t namelist = NULL;
|
||
int include_unusable = 1;
|
||
|
||
/* If we have no name, try to use the default secret key. If we
|
||
have no default, we'll use the first usable one. */
|
||
|
||
if (!name && opt.def_secret_key && *opt.def_secret_key)
|
||
add_to_strlist (&namelist, opt.def_secret_key);
|
||
else if (name)
|
||
add_to_strlist (&namelist, name);
|
||
else
|
||
include_unusable = 0;
|
||
|
||
err = key_byname (NULL, namelist, pk, 1, include_unusable, NULL, NULL);
|
||
|
||
free_strlist (namelist);
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
|
||
/* Search for a key with the given fingerprint.
|
||
* FIXME:
|
||
* We should replace this with the _byname function. This can be done
|
||
* by creating a userID conforming to the unified fingerprint style. */
|
||
gpg_error_t
|
||
get_seckey_byfprint (PKT_public_key *pk, const byte * fprint, size_t fprint_len)
|
||
{
|
||
gpg_error_t err;
|
||
|
||
if (fprint_len == 20 || fprint_len == 16)
|
||
{
|
||
struct getkey_ctx_s ctx;
|
||
kbnode_t kb = NULL;
|
||
|
||
memset (&ctx, 0, sizeof ctx);
|
||
ctx.exact = 1;
|
||
ctx.not_allocated = 1;
|
||
ctx.kr_handle = keydb_new ();
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = fprint_len == 16 ? KEYDB_SEARCH_MODE_FPR16
|
||
: KEYDB_SEARCH_MODE_FPR20;
|
||
memcpy (ctx.items[0].u.fpr, fprint, fprint_len);
|
||
err = lookup (&ctx, &kb, 1);
|
||
if (!err && pk)
|
||
pk_from_block (&ctx, pk, kb);
|
||
release_kbnode (kb);
|
||
get_pubkey_end (&ctx);
|
||
}
|
||
else
|
||
err = gpg_error (GPG_ERR_BUG);
|
||
return err;
|
||
}
|
||
|
||
|
||
/* Search for a secret key with the given fingerprint and return the
|
||
complete keyblock which may have more than only this key. Return
|
||
an error if no corresponding secret key is available. */
|
||
gpg_error_t
|
||
get_seckeyblock_byfprint (kbnode_t *ret_keyblock,
|
||
const byte *fprint, size_t fprint_len)
|
||
{
|
||
gpg_error_t err;
|
||
struct getkey_ctx_s ctx;
|
||
|
||
if (fprint_len != 20 && fprint_len == 16)
|
||
return gpg_error (GPG_ERR_BUG);
|
||
|
||
memset (&ctx, 0, sizeof ctx);
|
||
ctx.not_allocated = 1;
|
||
ctx.kr_handle = keydb_new ();
|
||
ctx.nitems = 1;
|
||
ctx.items[0].mode = (fprint_len == 16
|
||
? KEYDB_SEARCH_MODE_FPR16 : KEYDB_SEARCH_MODE_FPR20);
|
||
memcpy (ctx.items[0].u.fpr, fprint, fprint_len);
|
||
err = lookup (&ctx, ret_keyblock, 1);
|
||
get_pubkey_end (&ctx);
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
|
||
/* The new function to return a key.
|
||
FIXME: Document it. */
|
||
gpg_error_t
|
||
getkey_bynames (getkey_ctx_t *retctx, PKT_public_key *pk,
|
||
strlist_t names, int want_secret, kbnode_t *ret_keyblock)
|
||
{
|
||
return key_byname (retctx, names, pk, want_secret, 1,
|
||
ret_keyblock, NULL);
|
||
}
|
||
|
||
|
||
/* Get a key by name and store it into PK if that is not NULL. If
|
||
* RETCTX is not NULL return the search context which needs to be
|
||
* released by the caller using getkey_end. If NAME is NULL use the
|
||
* default key (see below). On success and if RET_KEYBLOCK is not
|
||
* NULL the found keyblock is stored at this address. WANT_SECRET
|
||
* passed as true requires that a secret key is available for the
|
||
* selected key.
|
||
*
|
||
* If WANT_SECRET is true and NAME is NULL and a default key has been
|
||
* defined that defined key is used. In all other cases the first
|
||
* available key is used.
|
||
*
|
||
* FIXME: Explain what is up with unusable keys.
|
||
*
|
||
* FIXME: We also have the get_pubkey_byname function which has a
|
||
* different semantic. Should be merged with this one.
|
||
*/
|
||
gpg_error_t
|
||
getkey_byname (getkey_ctx_t *retctx, PKT_public_key *pk,
|
||
const char *name, int want_secret, kbnode_t *ret_keyblock)
|
||
{
|
||
gpg_error_t err;
|
||
strlist_t namelist = NULL;
|
||
int with_unusable = 1;
|
||
|
||
if (want_secret && !name && opt.def_secret_key && *opt.def_secret_key)
|
||
add_to_strlist (&namelist, opt.def_secret_key);
|
||
else if (name)
|
||
add_to_strlist (&namelist, name);
|
||
else
|
||
with_unusable = 0;
|
||
|
||
err = key_byname (retctx, namelist, pk, want_secret, with_unusable,
|
||
ret_keyblock, NULL);
|
||
|
||
/* FIXME: Check that we really return GPG_ERR_NO_SECKEY if
|
||
WANT_SECRET has been used. */
|
||
|
||
free_strlist (namelist);
|
||
|
||
return err;
|
||
}
|
||
|
||
|
||
/* The new function to return the next key. */
|
||
gpg_error_t
|
||
getkey_next (getkey_ctx_t ctx, PKT_public_key *pk, kbnode_t *ret_keyblock)
|
||
{
|
||
int rc; /* Fixme: Make sure this is proper gpg_error */
|
||
|
||
rc = lookup (ctx, ret_keyblock, ctx->want_secret);
|
||
if (!rc && pk && ret_keyblock)
|
||
pk_from_block (ctx, pk, *ret_keyblock);
|
||
|
||
return rc;
|
||
}
|
||
|
||
|
||
/* The new function to finish a key listing. */
|
||
void
|
||
getkey_end (getkey_ctx_t ctx)
|
||
{
|
||
get_pubkey_end (ctx);
|
||
}
|
||
|
||
|
||
|
||
/************************************************
|
||
************* Merging stuff ********************
|
||
************************************************/
|
||
|
||
/* Merge all self-signatures with the keys. */
|
||
void
|
||
merge_keys_and_selfsig (KBNODE keyblock)
|
||
{
|
||
if (!keyblock)
|
||
;
|
||
else if (keyblock->pkt->pkttype == PKT_PUBLIC_KEY)
|
||
merge_selfsigs (keyblock);
|
||
else
|
||
log_debug ("FIXME: merging secret key blocks is not anymore available\n");
|
||
}
|
||
|
||
|
||
static int
|
||
parse_key_usage (PKT_signature * sig)
|
||
{
|
||
int key_usage = 0;
|
||
const byte *p;
|
||
size_t n;
|
||
byte flags;
|
||
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_FLAGS, &n);
|
||
if (p && n)
|
||
{
|
||
/* First octet of the keyflags. */
|
||
flags = *p;
|
||
|
||
if (flags & 1)
|
||
{
|
||
key_usage |= PUBKEY_USAGE_CERT;
|
||
flags &= ~1;
|
||
}
|
||
|
||
if (flags & 2)
|
||
{
|
||
key_usage |= PUBKEY_USAGE_SIG;
|
||
flags &= ~2;
|
||
}
|
||
|
||
/* We do not distinguish between encrypting communications and
|
||
encrypting storage. */
|
||
if (flags & (0x04 | 0x08))
|
||
{
|
||
key_usage |= PUBKEY_USAGE_ENC;
|
||
flags &= ~(0x04 | 0x08);
|
||
}
|
||
|
||
if (flags & 0x20)
|
||
{
|
||
key_usage |= PUBKEY_USAGE_AUTH;
|
||
flags &= ~0x20;
|
||
}
|
||
|
||
if (flags)
|
||
key_usage |= PUBKEY_USAGE_UNKNOWN;
|
||
}
|
||
|
||
/* We set PUBKEY_USAGE_UNKNOWN to indicate that this key has a
|
||
capability that we do not handle. This serves to distinguish
|
||
between a zero key usage which we handle as the default
|
||
capabilities for that algorithm, and a usage that we do not
|
||
handle. */
|
||
|
||
return key_usage;
|
||
}
|
||
|
||
|
||
/* Apply information from SIGNODE (which is the valid self-signature
|
||
* associated with that UID) to the UIDNODE:
|
||
* - wether the UID has been revoked
|
||
* - assumed creation date of the UID
|
||
* - temporary store the keyflags here
|
||
* - temporary store the key expiration time here
|
||
* - mark whether the primary user ID flag hat been set.
|
||
* - store the preferences
|
||
*/
|
||
static void
|
||
fixup_uidnode (KBNODE uidnode, KBNODE signode, u32 keycreated)
|
||
{
|
||
PKT_user_id *uid = uidnode->pkt->pkt.user_id;
|
||
PKT_signature *sig = signode->pkt->pkt.signature;
|
||
const byte *p, *sym, *hash, *zip;
|
||
size_t n, nsym, nhash, nzip;
|
||
|
||
sig->flags.chosen_selfsig = 1;/* We chose this one. */
|
||
uid->created = 0; /* Not created == invalid. */
|
||
if (IS_UID_REV (sig))
|
||
{
|
||
uid->is_revoked = 1;
|
||
return; /* Has been revoked. */
|
||
}
|
||
else
|
||
uid->is_revoked = 0;
|
||
|
||
uid->expiredate = sig->expiredate;
|
||
|
||
if (sig->flags.expired)
|
||
{
|
||
uid->is_expired = 1;
|
||
return; /* Has expired. */
|
||
}
|
||
else
|
||
uid->is_expired = 0;
|
||
|
||
uid->created = sig->timestamp; /* This one is okay. */
|
||
uid->selfsigversion = sig->version;
|
||
/* If we got this far, it's not expired :) */
|
||
uid->is_expired = 0;
|
||
|
||
/* Store the key flags in the helper variable for later processing. */
|
||
uid->help_key_usage = parse_key_usage (sig);
|
||
|
||
/* Ditto for the key expiration. */
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_EXPIRE, NULL);
|
||
if (p && buffer_to_u32 (p))
|
||
uid->help_key_expire = keycreated + buffer_to_u32 (p);
|
||
else
|
||
uid->help_key_expire = 0;
|
||
|
||
/* Set the primary user ID flag - we will later wipe out some
|
||
* of them to only have one in our keyblock. */
|
||
uid->is_primary = 0;
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_PRIMARY_UID, NULL);
|
||
if (p && *p)
|
||
uid->is_primary = 2;
|
||
|
||
/* We could also query this from the unhashed area if it is not in
|
||
* the hased area and then later try to decide which is the better
|
||
* there should be no security problem with this.
|
||
* For now we only look at the hashed one. */
|
||
|
||
/* Now build the preferences list. These must come from the
|
||
hashed section so nobody can modify the ciphers a key is
|
||
willing to accept. */
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_PREF_SYM, &n);
|
||
sym = p;
|
||
nsym = p ? n : 0;
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_PREF_HASH, &n);
|
||
hash = p;
|
||
nhash = p ? n : 0;
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_PREF_COMPR, &n);
|
||
zip = p;
|
||
nzip = p ? n : 0;
|
||
if (uid->prefs)
|
||
xfree (uid->prefs);
|
||
n = nsym + nhash + nzip;
|
||
if (!n)
|
||
uid->prefs = NULL;
|
||
else
|
||
{
|
||
uid->prefs = xmalloc (sizeof (*uid->prefs) * (n + 1));
|
||
n = 0;
|
||
for (; nsym; nsym--, n++)
|
||
{
|
||
uid->prefs[n].type = PREFTYPE_SYM;
|
||
uid->prefs[n].value = *sym++;
|
||
}
|
||
for (; nhash; nhash--, n++)
|
||
{
|
||
uid->prefs[n].type = PREFTYPE_HASH;
|
||
uid->prefs[n].value = *hash++;
|
||
}
|
||
for (; nzip; nzip--, n++)
|
||
{
|
||
uid->prefs[n].type = PREFTYPE_ZIP;
|
||
uid->prefs[n].value = *zip++;
|
||
}
|
||
uid->prefs[n].type = PREFTYPE_NONE; /* End of list marker */
|
||
uid->prefs[n].value = 0;
|
||
}
|
||
|
||
/* See whether we have the MDC feature. */
|
||
uid->flags.mdc = 0;
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_FEATURES, &n);
|
||
if (p && n && (p[0] & 0x01))
|
||
uid->flags.mdc = 1;
|
||
|
||
/* And the keyserver modify flag. */
|
||
uid->flags.ks_modify = 1;
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KS_FLAGS, &n);
|
||
if (p && n && (p[0] & 0x80))
|
||
uid->flags.ks_modify = 0;
|
||
}
|
||
|
||
static void
|
||
sig_to_revoke_info (PKT_signature * sig, struct revoke_info *rinfo)
|
||
{
|
||
rinfo->date = sig->timestamp;
|
||
rinfo->algo = sig->pubkey_algo;
|
||
rinfo->keyid[0] = sig->keyid[0];
|
||
rinfo->keyid[1] = sig->keyid[1];
|
||
}
|
||
|
||
|
||
/* Note that R_REVOKED may be set to 0, 1 or 2. */
|
||
static void
|
||
merge_selfsigs_main (KBNODE keyblock, int *r_revoked,
|
||
struct revoke_info *rinfo)
|
||
{
|
||
PKT_public_key *pk = NULL;
|
||
KBNODE k;
|
||
u32 kid[2];
|
||
u32 sigdate, uiddate, uiddate2;
|
||
KBNODE signode, uidnode, uidnode2;
|
||
u32 curtime = make_timestamp ();
|
||
unsigned int key_usage = 0;
|
||
u32 keytimestamp = 0;
|
||
u32 key_expire = 0;
|
||
int key_expire_seen = 0;
|
||
byte sigversion = 0;
|
||
|
||
*r_revoked = 0;
|
||
memset (rinfo, 0, sizeof (*rinfo));
|
||
|
||
if (keyblock->pkt->pkttype != PKT_PUBLIC_KEY)
|
||
BUG ();
|
||
pk = keyblock->pkt->pkt.public_key;
|
||
keytimestamp = pk->timestamp;
|
||
|
||
keyid_from_pk (pk, kid);
|
||
pk->main_keyid[0] = kid[0];
|
||
pk->main_keyid[1] = kid[1];
|
||
|
||
if (pk->version < 4)
|
||
{
|
||
/* Before v4 the key packet itself contains the expiration date
|
||
* and there was no way to change it, so we start with the one
|
||
* from the key packet. */
|
||
key_expire = pk->max_expiredate;
|
||
key_expire_seen = 1;
|
||
}
|
||
|
||
/* First pass: Find the latest direct key self-signature. We assume
|
||
* that the newest one overrides all others. */
|
||
|
||
/* In case this key was already merged. */
|
||
xfree (pk->revkey);
|
||
pk->revkey = NULL;
|
||
pk->numrevkeys = 0;
|
||
|
||
signode = NULL;
|
||
sigdate = 0; /* Helper variable to find the latest signature. */
|
||
for (k = keyblock; k && k->pkt->pkttype != PKT_USER_ID; k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_SIGNATURE)
|
||
{
|
||
PKT_signature *sig = k->pkt->pkt.signature;
|
||
if (sig->keyid[0] == kid[0] && sig->keyid[1] == kid[1])
|
||
{
|
||
if (check_key_signature (keyblock, k, NULL))
|
||
; /* Signature did not verify. */
|
||
else if (IS_KEY_REV (sig))
|
||
{
|
||
/* Key has been revoked - there is no way to
|
||
* override such a revocation, so we theoretically
|
||
* can stop now. We should not cope with expiration
|
||
* times for revocations here because we have to
|
||
* assume that an attacker can generate all kinds of
|
||
* signatures. However due to the fact that the key
|
||
* has been revoked it does not harm either and by
|
||
* continuing we gather some more info on that
|
||
* key. */
|
||
*r_revoked = 1;
|
||
sig_to_revoke_info (sig, rinfo);
|
||
}
|
||
else if (IS_KEY_SIG (sig))
|
||
{
|
||
/* Add any revocation keys onto the pk. This is
|
||
particularly interesting since we normally only
|
||
get data from the most recent 1F signature, but
|
||
you need multiple 1F sigs to properly handle
|
||
revocation keys (PGP does it this way, and a
|
||
revocation key could be sensitive and hence in a
|
||
different signature). */
|
||
if (sig->revkey)
|
||
{
|
||
int i;
|
||
|
||
pk->revkey =
|
||
xrealloc (pk->revkey, sizeof (struct revocation_key) *
|
||
(pk->numrevkeys + sig->numrevkeys));
|
||
|
||
for (i = 0; i < sig->numrevkeys; i++)
|
||
memcpy (&pk->revkey[pk->numrevkeys++],
|
||
sig->revkey[i],
|
||
sizeof (struct revocation_key));
|
||
}
|
||
|
||
if (sig->timestamp >= sigdate)
|
||
{
|
||
if (sig->flags.expired)
|
||
; /* Signature has expired - ignore it. */
|
||
else
|
||
{
|
||
sigdate = sig->timestamp;
|
||
signode = k;
|
||
if (sig->version > sigversion)
|
||
sigversion = sig->version;
|
||
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Remove dupes from the revocation keys. */
|
||
|
||
if (pk->revkey)
|
||
{
|
||
int i, j, x, changed = 0;
|
||
|
||
for (i = 0; i < pk->numrevkeys; i++)
|
||
{
|
||
for (j = i + 1; j < pk->numrevkeys; j++)
|
||
{
|
||
if (memcmp (&pk->revkey[i], &pk->revkey[j],
|
||
sizeof (struct revocation_key)) == 0)
|
||
{
|
||
/* remove j */
|
||
|
||
for (x = j; x < pk->numrevkeys - 1; x++)
|
||
pk->revkey[x] = pk->revkey[x + 1];
|
||
|
||
pk->numrevkeys--;
|
||
j--;
|
||
changed = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (changed)
|
||
pk->revkey = xrealloc (pk->revkey,
|
||
pk->numrevkeys *
|
||
sizeof (struct revocation_key));
|
||
}
|
||
|
||
if (signode)
|
||
{
|
||
/* Some information from a direct key signature take precedence
|
||
* over the same information given in UID sigs. */
|
||
PKT_signature *sig = signode->pkt->pkt.signature;
|
||
const byte *p;
|
||
|
||
key_usage = parse_key_usage (sig);
|
||
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_EXPIRE, NULL);
|
||
if (p && buffer_to_u32 (p))
|
||
{
|
||
key_expire = keytimestamp + buffer_to_u32 (p);
|
||
key_expire_seen = 1;
|
||
}
|
||
|
||
/* Mark that key as valid: One direct key signature should
|
||
* render a key as valid. */
|
||
pk->flags.valid = 1;
|
||
}
|
||
|
||
/* Pass 1.5: Look for key revocation signatures that were not made
|
||
by the key (i.e. did a revocation key issue a revocation for
|
||
us?). Only bother to do this if there is a revocation key in the
|
||
first place and we're not revoked already. */
|
||
|
||
if (!*r_revoked && pk->revkey)
|
||
for (k = keyblock; k && k->pkt->pkttype != PKT_USER_ID; k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_SIGNATURE)
|
||
{
|
||
PKT_signature *sig = k->pkt->pkt.signature;
|
||
|
||
if (IS_KEY_REV (sig) &&
|
||
(sig->keyid[0] != kid[0] || sig->keyid[1] != kid[1]))
|
||
{
|
||
int rc = check_revocation_keys (pk, sig);
|
||
if (rc == 0)
|
||
{
|
||
*r_revoked = 2;
|
||
sig_to_revoke_info (sig, rinfo);
|
||
/* Don't continue checking since we can't be any
|
||
more revoked than this. */
|
||
break;
|
||
}
|
||
else if (rc == G10ERR_NO_PUBKEY)
|
||
pk->flags.maybe_revoked = 1;
|
||
|
||
/* A failure here means the sig did not verify, was
|
||
not issued by a revocation key, or a revocation
|
||
key loop was broken. If a revocation key isn't
|
||
findable, however, the key might be revoked and
|
||
we don't know it. */
|
||
|
||
/* TODO: In the future handle subkey and cert
|
||
revocations? PGP doesn't, but it's in 2440. */
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Second pass: Look at the self-signature of all user IDs. */
|
||
signode = uidnode = NULL;
|
||
sigdate = 0; /* Helper variable to find the latest signature in one UID. */
|
||
for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_USER_ID)
|
||
{
|
||
if (uidnode && signode)
|
||
{
|
||
fixup_uidnode (uidnode, signode, keytimestamp);
|
||
pk->flags.valid = 1;
|
||
}
|
||
uidnode = k;
|
||
signode = NULL;
|
||
sigdate = 0;
|
||
}
|
||
else if (k->pkt->pkttype == PKT_SIGNATURE && uidnode)
|
||
{
|
||
PKT_signature *sig = k->pkt->pkt.signature;
|
||
if (sig->keyid[0] == kid[0] && sig->keyid[1] == kid[1])
|
||
{
|
||
if (check_key_signature (keyblock, k, NULL))
|
||
; /* signature did not verify */
|
||
else if ((IS_UID_SIG (sig) || IS_UID_REV (sig))
|
||
&& sig->timestamp >= sigdate)
|
||
{
|
||
/* Note: we allow to invalidate cert revocations
|
||
* by a newer signature. An attacker can't use this
|
||
* because a key should be revoced with a key revocation.
|
||
* The reason why we have to allow for that is that at
|
||
* one time an email address may become invalid but later
|
||
* the same email address may become valid again (hired,
|
||
* fired, hired again). */
|
||
|
||
sigdate = sig->timestamp;
|
||
signode = k;
|
||
signode->pkt->pkt.signature->flags.chosen_selfsig = 0;
|
||
if (sig->version > sigversion)
|
||
sigversion = sig->version;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (uidnode && signode)
|
||
{
|
||
fixup_uidnode (uidnode, signode, keytimestamp);
|
||
pk->flags.valid = 1;
|
||
}
|
||
|
||
/* If the key isn't valid yet, and we have
|
||
--allow-non-selfsigned-uid set, then force it valid. */
|
||
if (!pk->flags.valid && opt.allow_non_selfsigned_uid)
|
||
{
|
||
if (opt.verbose)
|
||
log_info (_("Invalid key %s made valid by"
|
||
" --allow-non-selfsigned-uid\n"), keystr_from_pk (pk));
|
||
pk->flags.valid = 1;
|
||
}
|
||
|
||
/* The key STILL isn't valid, so try and find an ultimately
|
||
trusted signature. */
|
||
if (!pk->flags.valid)
|
||
{
|
||
uidnode = NULL;
|
||
|
||
for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_USER_ID)
|
||
uidnode = k;
|
||
else if (k->pkt->pkttype == PKT_SIGNATURE && uidnode)
|
||
{
|
||
PKT_signature *sig = k->pkt->pkt.signature;
|
||
|
||
if (sig->keyid[0] != kid[0] || sig->keyid[1] != kid[1])
|
||
{
|
||
PKT_public_key *ultimate_pk;
|
||
|
||
ultimate_pk = xmalloc_clear (sizeof (*ultimate_pk));
|
||
|
||
/* We don't want to use the full get_pubkey to
|
||
avoid infinite recursion in certain cases.
|
||
There is no reason to check that an ultimately
|
||
trusted key is still valid - if it has been
|
||
revoked or the user should also renmove the
|
||
ultimate trust flag. */
|
||
if (get_pubkey_fast (ultimate_pk, sig->keyid) == 0
|
||
&& check_key_signature2 (keyblock, k, ultimate_pk,
|
||
NULL, NULL, NULL, NULL) == 0
|
||
&& get_ownertrust (ultimate_pk) == TRUST_ULTIMATE)
|
||
{
|
||
free_public_key (ultimate_pk);
|
||
pk->flags.valid = 1;
|
||
break;
|
||
}
|
||
|
||
free_public_key (ultimate_pk);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Record the highest selfsig version so we know if this is a v3
|
||
key through and through, or a v3 key with a v4 selfsig
|
||
somewhere. This is useful in a few places to know if the key
|
||
must be treated as PGP2-style or OpenPGP-style. Note that a
|
||
selfsig revocation with a higher version number will also raise
|
||
this value. This is okay since such a revocation must be
|
||
issued by the user (i.e. it cannot be issued by someone else to
|
||
modify the key behavior.) */
|
||
|
||
pk->selfsigversion = sigversion;
|
||
|
||
/* Now that we had a look at all user IDs we can now get some information
|
||
* from those user IDs.
|
||
*/
|
||
|
||
if (!key_usage)
|
||
{
|
||
/* Find the latest user ID with key flags set. */
|
||
uiddate = 0; /* Helper to find the latest user ID. */
|
||
for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_USER_ID)
|
||
{
|
||
PKT_user_id *uid = k->pkt->pkt.user_id;
|
||
if (uid->help_key_usage && uid->created > uiddate)
|
||
{
|
||
key_usage = uid->help_key_usage;
|
||
uiddate = uid->created;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (!key_usage)
|
||
{
|
||
/* No key flags at all: get it from the algo. */
|
||
key_usage = openpgp_pk_algo_usage (pk->pubkey_algo);
|
||
}
|
||
else
|
||
{
|
||
/* Check that the usage matches the usage as given by the algo. */
|
||
int x = openpgp_pk_algo_usage (pk->pubkey_algo);
|
||
if (x) /* Mask it down to the actual allowed usage. */
|
||
key_usage &= x;
|
||
}
|
||
|
||
/* Whatever happens, it's a primary key, so it can certify. */
|
||
pk->pubkey_usage = key_usage | PUBKEY_USAGE_CERT;
|
||
|
||
if (!key_expire_seen)
|
||
{
|
||
/* Find the latest valid user ID with a key expiration set
|
||
* Note, that this may be a different one from the above because
|
||
* some user IDs may have no expiration date set. */
|
||
uiddate = 0;
|
||
for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_USER_ID)
|
||
{
|
||
PKT_user_id *uid = k->pkt->pkt.user_id;
|
||
if (uid->help_key_expire && uid->created > uiddate)
|
||
{
|
||
key_expire = uid->help_key_expire;
|
||
uiddate = uid->created;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Currently only v3 keys have a maximum expiration date, but I'll
|
||
bet v5 keys get this feature again. */
|
||
if (key_expire == 0
|
||
|| (pk->max_expiredate && key_expire > pk->max_expiredate))
|
||
key_expire = pk->max_expiredate;
|
||
|
||
pk->has_expired = key_expire >= curtime ? 0 : key_expire;
|
||
pk->expiredate = key_expire;
|
||
|
||
/* Fixme: we should see how to get rid of the expiretime fields but
|
||
* this needs changes at other places too. */
|
||
|
||
/* And now find the real primary user ID and delete all others. */
|
||
uiddate = uiddate2 = 0;
|
||
uidnode = uidnode2 = NULL;
|
||
for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_USER_ID && !k->pkt->pkt.user_id->attrib_data)
|
||
{
|
||
PKT_user_id *uid = k->pkt->pkt.user_id;
|
||
if (uid->is_primary)
|
||
{
|
||
if (uid->created > uiddate)
|
||
{
|
||
uiddate = uid->created;
|
||
uidnode = k;
|
||
}
|
||
else if (uid->created == uiddate && uidnode)
|
||
{
|
||
/* The dates are equal, so we need to do a
|
||
different (and arbitrary) comparison. This
|
||
should rarely, if ever, happen. It's good to
|
||
try and guarantee that two different GnuPG
|
||
users with two different keyrings at least pick
|
||
the same primary. */
|
||
if (cmp_user_ids (uid, uidnode->pkt->pkt.user_id) > 0)
|
||
uidnode = k;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (uid->created > uiddate2)
|
||
{
|
||
uiddate2 = uid->created;
|
||
uidnode2 = k;
|
||
}
|
||
else if (uid->created == uiddate2 && uidnode2)
|
||
{
|
||
if (cmp_user_ids (uid, uidnode2->pkt->pkt.user_id) > 0)
|
||
uidnode2 = k;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (uidnode)
|
||
{
|
||
for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_USER_ID &&
|
||
!k->pkt->pkt.user_id->attrib_data)
|
||
{
|
||
PKT_user_id *uid = k->pkt->pkt.user_id;
|
||
if (k != uidnode)
|
||
uid->is_primary = 0;
|
||
}
|
||
}
|
||
}
|
||
else if (uidnode2)
|
||
{
|
||
/* None is flagged primary - use the latest user ID we have,
|
||
and disambiguate with the arbitrary packet comparison. */
|
||
uidnode2->pkt->pkt.user_id->is_primary = 1;
|
||
}
|
||
else
|
||
{
|
||
/* None of our uids were self-signed, so pick the one that
|
||
sorts first to be the primary. This is the best we can do
|
||
here since there are no self sigs to date the uids. */
|
||
|
||
uidnode = NULL;
|
||
|
||
for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_USER_ID
|
||
&& !k->pkt->pkt.user_id->attrib_data)
|
||
{
|
||
if (!uidnode)
|
||
{
|
||
uidnode = k;
|
||
uidnode->pkt->pkt.user_id->is_primary = 1;
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
if (cmp_user_ids (k->pkt->pkt.user_id,
|
||
uidnode->pkt->pkt.user_id) > 0)
|
||
{
|
||
uidnode->pkt->pkt.user_id->is_primary = 0;
|
||
uidnode = k;
|
||
uidnode->pkt->pkt.user_id->is_primary = 1;
|
||
}
|
||
else
|
||
k->pkt->pkt.user_id->is_primary = 0; /* just to be
|
||
safe */
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Convert a buffer to a signature. Useful for 0x19 embedded sigs.
|
||
Caller must free the signature when they are done. */
|
||
static PKT_signature *
|
||
buf_to_sig (const byte * buf, size_t len)
|
||
{
|
||
PKT_signature *sig = xmalloc_clear (sizeof (PKT_signature));
|
||
IOBUF iobuf = iobuf_temp_with_content (buf, len);
|
||
int save_mode = set_packet_list_mode (0);
|
||
|
||
if (parse_signature (iobuf, PKT_SIGNATURE, len, sig) != 0)
|
||
{
|
||
xfree (sig);
|
||
sig = NULL;
|
||
}
|
||
|
||
set_packet_list_mode (save_mode);
|
||
iobuf_close (iobuf);
|
||
|
||
return sig;
|
||
}
|
||
|
||
static void
|
||
merge_selfsigs_subkey (KBNODE keyblock, KBNODE subnode)
|
||
{
|
||
PKT_public_key *mainpk = NULL, *subpk = NULL;
|
||
PKT_signature *sig;
|
||
KBNODE k;
|
||
u32 mainkid[2];
|
||
u32 sigdate = 0;
|
||
KBNODE signode;
|
||
u32 curtime = make_timestamp ();
|
||
unsigned int key_usage = 0;
|
||
u32 keytimestamp = 0;
|
||
u32 key_expire = 0;
|
||
const byte *p;
|
||
|
||
if (subnode->pkt->pkttype != PKT_PUBLIC_SUBKEY)
|
||
BUG ();
|
||
mainpk = keyblock->pkt->pkt.public_key;
|
||
if (mainpk->version < 4)
|
||
return;/* (actually this should never happen) */
|
||
keyid_from_pk (mainpk, mainkid);
|
||
subpk = subnode->pkt->pkt.public_key;
|
||
keytimestamp = subpk->timestamp;
|
||
|
||
subpk->flags.valid = 0;
|
||
subpk->main_keyid[0] = mainpk->main_keyid[0];
|
||
subpk->main_keyid[1] = mainpk->main_keyid[1];
|
||
|
||
/* Find the latest key binding self-signature. */
|
||
signode = NULL;
|
||
sigdate = 0; /* Helper to find the latest signature. */
|
||
for (k = subnode->next; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_SIGNATURE)
|
||
{
|
||
sig = k->pkt->pkt.signature;
|
||
if (sig->keyid[0] == mainkid[0] && sig->keyid[1] == mainkid[1])
|
||
{
|
||
if (check_key_signature (keyblock, k, NULL))
|
||
; /* Signature did not verify. */
|
||
else if (IS_SUBKEY_REV (sig))
|
||
{
|
||
/* Note that this means that the date on a
|
||
revocation sig does not matter - even if the
|
||
binding sig is dated after the revocation sig,
|
||
the subkey is still marked as revoked. This
|
||
seems ok, as it is just as easy to make new
|
||
subkeys rather than re-sign old ones as the
|
||
problem is in the distribution. Plus, PGP (7)
|
||
does this the same way. */
|
||
subpk->flags.revoked = 1;
|
||
sig_to_revoke_info (sig, &subpk->revoked);
|
||
/* Although we could stop now, we continue to
|
||
* figure out other information like the old expiration
|
||
* time. */
|
||
}
|
||
else if (IS_SUBKEY_SIG (sig) && sig->timestamp >= sigdate)
|
||
{
|
||
if (sig->flags.expired)
|
||
; /* Signature has expired - ignore it. */
|
||
else
|
||
{
|
||
sigdate = sig->timestamp;
|
||
signode = k;
|
||
signode->pkt->pkt.signature->flags.chosen_selfsig = 0;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* No valid key binding. */
|
||
if (!signode)
|
||
return;
|
||
|
||
sig = signode->pkt->pkt.signature;
|
||
sig->flags.chosen_selfsig = 1; /* So we know which selfsig we chose later. */
|
||
|
||
key_usage = parse_key_usage (sig);
|
||
if (!key_usage)
|
||
{
|
||
/* No key flags at all: get it from the algo. */
|
||
key_usage = openpgp_pk_algo_usage (subpk->pubkey_algo);
|
||
}
|
||
else
|
||
{
|
||
/* Check that the usage matches the usage as given by the algo. */
|
||
int x = openpgp_pk_algo_usage (subpk->pubkey_algo);
|
||
if (x) /* Mask it down to the actual allowed usage. */
|
||
key_usage &= x;
|
||
}
|
||
|
||
subpk->pubkey_usage = key_usage;
|
||
|
||
p = parse_sig_subpkt (sig->hashed, SIGSUBPKT_KEY_EXPIRE, NULL);
|
||
if (p && buffer_to_u32 (p))
|
||
key_expire = keytimestamp + buffer_to_u32 (p);
|
||
else
|
||
key_expire = 0;
|
||
subpk->has_expired = key_expire >= curtime ? 0 : key_expire;
|
||
subpk->expiredate = key_expire;
|
||
|
||
/* Algo doesn't exist. */
|
||
if (openpgp_pk_test_algo (subpk->pubkey_algo))
|
||
return;
|
||
|
||
subpk->flags.valid = 1;
|
||
|
||
/* Find the most recent 0x19 embedded signature on our self-sig. */
|
||
if (!subpk->flags.backsig)
|
||
{
|
||
int seq = 0;
|
||
size_t n;
|
||
PKT_signature *backsig = NULL;
|
||
|
||
sigdate = 0;
|
||
|
||
/* We do this while() since there may be other embedded
|
||
signatures in the future. We only want 0x19 here. */
|
||
|
||
while ((p = enum_sig_subpkt (sig->hashed,
|
||
SIGSUBPKT_SIGNATURE, &n, &seq, NULL)))
|
||
if (n > 3
|
||
&& ((p[0] == 3 && p[2] == 0x19) || (p[0] == 4 && p[1] == 0x19)))
|
||
{
|
||
PKT_signature *tempsig = buf_to_sig (p, n);
|
||
if (tempsig)
|
||
{
|
||
if (tempsig->timestamp > sigdate)
|
||
{
|
||
if (backsig)
|
||
free_seckey_enc (backsig);
|
||
|
||
backsig = tempsig;
|
||
sigdate = backsig->timestamp;
|
||
}
|
||
else
|
||
free_seckey_enc (tempsig);
|
||
}
|
||
}
|
||
|
||
seq = 0;
|
||
|
||
/* It is safe to have this in the unhashed area since the 0x19
|
||
is located on the selfsig for convenience, not security. */
|
||
|
||
while ((p = enum_sig_subpkt (sig->unhashed, SIGSUBPKT_SIGNATURE,
|
||
&n, &seq, NULL)))
|
||
if (n > 3
|
||
&& ((p[0] == 3 && p[2] == 0x19) || (p[0] == 4 && p[1] == 0x19)))
|
||
{
|
||
PKT_signature *tempsig = buf_to_sig (p, n);
|
||
if (tempsig)
|
||
{
|
||
if (tempsig->timestamp > sigdate)
|
||
{
|
||
if (backsig)
|
||
free_seckey_enc (backsig);
|
||
|
||
backsig = tempsig;
|
||
sigdate = backsig->timestamp;
|
||
}
|
||
else
|
||
free_seckey_enc (tempsig);
|
||
}
|
||
}
|
||
|
||
if (backsig)
|
||
{
|
||
/* At ths point, backsig contains the most recent 0x19 sig.
|
||
Let's see if it is good. */
|
||
|
||
/* 2==valid, 1==invalid, 0==didn't check */
|
||
if (check_backsig (mainpk, subpk, backsig) == 0)
|
||
subpk->flags.backsig = 2;
|
||
else
|
||
subpk->flags.backsig = 1;
|
||
|
||
free_seckey_enc (backsig);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/*
|
||
* Merge information from the self-signatures with the key, so that
|
||
* we can later use them more easy.
|
||
* The function works by first applying the self signatures to the
|
||
* primary key and the to each subkey.
|
||
* Here are the rules we use to decide which inormation from which
|
||
* self-signature is used:
|
||
* We check all self signatures or validity and ignore all invalid signatures.
|
||
* All signatures are then ordered by their creation date ....
|
||
* For the primary key:
|
||
* FIXME the docs
|
||
*/
|
||
static void
|
||
merge_selfsigs (KBNODE keyblock)
|
||
{
|
||
KBNODE k;
|
||
int revoked;
|
||
struct revoke_info rinfo;
|
||
PKT_public_key *main_pk;
|
||
prefitem_t *prefs;
|
||
unsigned int mdc_feature;
|
||
|
||
if (keyblock->pkt->pkttype != PKT_PUBLIC_KEY)
|
||
{
|
||
if (keyblock->pkt->pkttype == PKT_SECRET_KEY)
|
||
{
|
||
log_error ("expected public key but found secret key "
|
||
"- must stop\n");
|
||
/* We better exit here because a public key is expected at
|
||
other places too. FIXME: Figure this out earlier and
|
||
don't get to here at all */
|
||
g10_exit (1);
|
||
}
|
||
BUG ();
|
||
}
|
||
|
||
merge_selfsigs_main (keyblock, &revoked, &rinfo);
|
||
|
||
/* Now merge in the data from each of the subkeys. */
|
||
for (k = keyblock; k; k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_PUBLIC_SUBKEY)
|
||
{
|
||
merge_selfsigs_subkey (keyblock, k);
|
||
}
|
||
}
|
||
|
||
main_pk = keyblock->pkt->pkt.public_key;
|
||
if (revoked || main_pk->has_expired || !main_pk->flags.valid)
|
||
{
|
||
/* If the primary key is revoked, expired, or invalid we
|
||
* better set the appropriate flags on that key and all
|
||
* subkeys. */
|
||
for (k = keyblock; k; k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY)
|
||
{
|
||
PKT_public_key *pk = k->pkt->pkt.public_key;
|
||
if (!main_pk->flags.valid)
|
||
pk->flags.valid = 0;
|
||
if (revoked && !pk->flags.revoked)
|
||
{
|
||
pk->flags.revoked = revoked;
|
||
memcpy (&pk->revoked, &rinfo, sizeof (rinfo));
|
||
}
|
||
if (main_pk->has_expired)
|
||
pk->has_expired = main_pk->has_expired;
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* Set the preference list of all keys to those of the primary real
|
||
* user ID. Note: we use these preferences when we don't know by
|
||
* which user ID the key has been selected.
|
||
* fixme: we should keep atoms of commonly used preferences or
|
||
* use reference counting to optimize the preference lists storage.
|
||
* FIXME: it might be better to use the intersection of
|
||
* all preferences.
|
||
* Do a similar thing for the MDC feature flag. */
|
||
prefs = NULL;
|
||
mdc_feature = 0;
|
||
for (k = keyblock; k && k->pkt->pkttype != PKT_PUBLIC_SUBKEY; k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_USER_ID
|
||
&& !k->pkt->pkt.user_id->attrib_data
|
||
&& k->pkt->pkt.user_id->is_primary)
|
||
{
|
||
prefs = k->pkt->pkt.user_id->prefs;
|
||
mdc_feature = k->pkt->pkt.user_id->flags.mdc;
|
||
break;
|
||
}
|
||
}
|
||
for (k = keyblock; k; k = k->next)
|
||
{
|
||
if (k->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY)
|
||
{
|
||
PKT_public_key *pk = k->pkt->pkt.public_key;
|
||
if (pk->prefs)
|
||
xfree (pk->prefs);
|
||
pk->prefs = copy_prefs (prefs);
|
||
pk->flags.mdc = mdc_feature;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* See whether the key fits our requirements and in case we do not
|
||
* request the primary key, select a suitable subkey.
|
||
*
|
||
* Returns: True when a suitable key has been found.
|
||
*
|
||
* We have to distinguish four cases: FIXME!
|
||
* 1. No usage and no primary key requested
|
||
* Examples for this case are that we have a keyID to be used
|
||
* for decrytion or verification.
|
||
* 2. No usage but primary key requested
|
||
* This is the case for all functions which work on an
|
||
* entire keyblock, e.g. for editing or listing
|
||
* 3. Usage and primary key requested
|
||
* FXME
|
||
* 4. Usage but no primary key requested
|
||
* FIXME
|
||
* FIXME: Tell what is going to happen here and something about the rationale
|
||
* Note: We don't use this function if no specific usage is requested;
|
||
* This way the getkey functions can be used for plain key listings.
|
||
*
|
||
* CTX ist the keyblock we are investigating, if FOUNDK is not NULL this
|
||
* is the key we actually found by looking at the keyid or a fingerprint and
|
||
* may either point to the primary or one of the subkeys. */
|
||
static int
|
||
finish_lookup (GETKEY_CTX ctx)
|
||
{
|
||
KBNODE keyblock = ctx->keyblock;
|
||
KBNODE k;
|
||
KBNODE foundk = NULL;
|
||
PKT_user_id *foundu = NULL;
|
||
#define USAGE_MASK (PUBKEY_USAGE_SIG|PUBKEY_USAGE_ENC|PUBKEY_USAGE_CERT)
|
||
unsigned int req_usage = (ctx->req_usage & USAGE_MASK);
|
||
/* Request the primary if we're certifying another key, and also
|
||
if signing data while --pgp6 or --pgp7 is on since pgp 6 and 7
|
||
do not understand signatures made by a signing subkey. PGP 8
|
||
does. */
|
||
int req_prim = (ctx->req_usage & PUBKEY_USAGE_CERT) ||
|
||
((PGP6 || PGP7) && (ctx->req_usage & PUBKEY_USAGE_SIG));
|
||
u32 latest_date;
|
||
KBNODE latest_key;
|
||
u32 curtime = make_timestamp ();
|
||
|
||
assert (keyblock->pkt->pkttype == PKT_PUBLIC_KEY);
|
||
|
||
ctx->found_key = NULL;
|
||
|
||
if (ctx->exact)
|
||
{
|
||
for (k = keyblock; k; k = k->next)
|
||
{
|
||
if ((k->flag & 1))
|
||
{
|
||
assert (k->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| k->pkt->pkttype == PKT_PUBLIC_SUBKEY);
|
||
foundk = k;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
for (k = keyblock; k; k = k->next)
|
||
{
|
||
if ((k->flag & 2))
|
||
{
|
||
assert (k->pkt->pkttype == PKT_USER_ID);
|
||
foundu = k->pkt->pkt.user_id;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (DBG_CACHE)
|
||
log_debug ("finish_lookup: checking key %08lX (%s)(req_usage=%x)\n",
|
||
(ulong) keyid_from_pk (keyblock->pkt->pkt.public_key, NULL),
|
||
foundk ? "one" : "all", req_usage);
|
||
|
||
if (!req_usage)
|
||
{
|
||
latest_key = foundk ? foundk : keyblock;
|
||
goto found;
|
||
}
|
||
|
||
latest_date = 0;
|
||
latest_key = NULL;
|
||
/* Do not look at subkeys if a certification key is requested. */
|
||
if ((!foundk || foundk->pkt->pkttype == PKT_PUBLIC_SUBKEY) && !req_prim)
|
||
{
|
||
KBNODE nextk;
|
||
/* Either start a loop or check just this one subkey. */
|
||
for (k = foundk ? foundk : keyblock; k; k = nextk)
|
||
{
|
||
PKT_public_key *pk;
|
||
nextk = k->next;
|
||
if (k->pkt->pkttype != PKT_PUBLIC_SUBKEY)
|
||
continue;
|
||
if (foundk)
|
||
nextk = NULL; /* what a hack */
|
||
pk = k->pkt->pkt.public_key;
|
||
if (DBG_CACHE)
|
||
log_debug ("\tchecking subkey %08lX\n",
|
||
(ulong) keyid_from_pk (pk, NULL));
|
||
if (!pk->flags.valid)
|
||
{
|
||
if (DBG_CACHE)
|
||
log_debug ("\tsubkey not valid\n");
|
||
continue;
|
||
}
|
||
if (pk->flags.revoked)
|
||
{
|
||
if (DBG_CACHE)
|
||
log_debug ("\tsubkey has been revoked\n");
|
||
continue;
|
||
}
|
||
if (pk->has_expired)
|
||
{
|
||
if (DBG_CACHE)
|
||
log_debug ("\tsubkey has expired\n");
|
||
continue;
|
||
}
|
||
if (pk->timestamp > curtime && !opt.ignore_valid_from)
|
||
{
|
||
if (DBG_CACHE)
|
||
log_debug ("\tsubkey not yet valid\n");
|
||
continue;
|
||
}
|
||
|
||
if (!((pk->pubkey_usage & USAGE_MASK) & req_usage))
|
||
{
|
||
if (DBG_CACHE)
|
||
log_debug ("\tusage does not match: want=%x have=%x\n",
|
||
req_usage, pk->pubkey_usage);
|
||
continue;
|
||
}
|
||
|
||
if (DBG_CACHE)
|
||
log_debug ("\tsubkey might be fine\n");
|
||
/* In case a key has a timestamp of 0 set, we make sure
|
||
that it is used. A better change would be to compare
|
||
">=" but that might also change the selected keys and
|
||
is as such a more intrusive change. */
|
||
if (pk->timestamp > latest_date || (!pk->timestamp && !latest_date))
|
||
{
|
||
latest_date = pk->timestamp;
|
||
latest_key = k;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Okay now try the primary key unless we want an exact
|
||
* key ID match on a subkey */
|
||
if ((!latest_key && !(ctx->exact && foundk != keyblock)) || req_prim)
|
||
{
|
||
PKT_public_key *pk;
|
||
if (DBG_CACHE && !foundk && !req_prim)
|
||
log_debug ("\tno suitable subkeys found - trying primary\n");
|
||
pk = keyblock->pkt->pkt.public_key;
|
||
if (!pk->flags.valid)
|
||
{
|
||
if (DBG_CACHE)
|
||
log_debug ("\tprimary key not valid\n");
|
||
}
|
||
else if (pk->flags.revoked)
|
||
{
|
||
if (DBG_CACHE)
|
||
log_debug ("\tprimary key has been revoked\n");
|
||
}
|
||
else if (pk->has_expired)
|
||
{
|
||
if (DBG_CACHE)
|
||
log_debug ("\tprimary key has expired\n");
|
||
}
|
||
else if (!((pk->pubkey_usage & USAGE_MASK) & req_usage))
|
||
{
|
||
if (DBG_CACHE)
|
||
log_debug ("\tprimary key usage does not match: "
|
||
"want=%x have=%x\n", req_usage, pk->pubkey_usage);
|
||
}
|
||
else /* Okay. */
|
||
{
|
||
if (DBG_CACHE)
|
||
log_debug ("\tprimary key may be used\n");
|
||
latest_key = keyblock;
|
||
latest_date = pk->timestamp;
|
||
}
|
||
}
|
||
|
||
if (!latest_key)
|
||
{
|
||
if (DBG_CACHE)
|
||
log_debug ("\tno suitable key found - giving up\n");
|
||
return 0; /* Not found. */
|
||
}
|
||
|
||
found:
|
||
if (DBG_CACHE)
|
||
log_debug ("\tusing key %08lX\n",
|
||
(ulong) keyid_from_pk (latest_key->pkt->pkt.public_key, NULL));
|
||
|
||
if (latest_key)
|
||
{
|
||
PKT_public_key *pk = latest_key->pkt->pkt.public_key;
|
||
if (pk->user_id)
|
||
free_user_id (pk->user_id);
|
||
pk->user_id = scopy_user_id (foundu);
|
||
}
|
||
|
||
ctx->found_key = latest_key;
|
||
|
||
if (latest_key != keyblock && opt.verbose)
|
||
{
|
||
char *tempkeystr =
|
||
xstrdup (keystr_from_pk (latest_key->pkt->pkt.public_key));
|
||
log_info (_("using subkey %s instead of primary key %s\n"),
|
||
tempkeystr, keystr_from_pk (keyblock->pkt->pkt.public_key));
|
||
xfree (tempkeystr);
|
||
}
|
||
|
||
cache_user_id (keyblock);
|
||
|
||
return 1; /* Found. */
|
||
}
|
||
|
||
|
||
/* The main function to lookup a key. On success the found keyblock
|
||
is stored at RET_KEYBLOCK and also in CTX. If WANT_SECRET is true
|
||
a corresponding secret key is required. */
|
||
static int
|
||
lookup (getkey_ctx_t ctx, kbnode_t *ret_keyblock, int want_secret)
|
||
{
|
||
int rc;
|
||
int no_suitable_key = 0;
|
||
|
||
rc = 0;
|
||
while (!(rc = keydb_search (ctx->kr_handle, ctx->items, ctx->nitems)))
|
||
{
|
||
/* If we are searching for the first key we have to make sure
|
||
that the next iteration does not do an implicit reset.
|
||
This can be triggered by an empty key ring. */
|
||
if (ctx->nitems && ctx->items->mode == KEYDB_SEARCH_MODE_FIRST)
|
||
ctx->items->mode = KEYDB_SEARCH_MODE_NEXT;
|
||
|
||
rc = keydb_get_keyblock (ctx->kr_handle, &ctx->keyblock);
|
||
if (rc)
|
||
{
|
||
log_error ("keydb_get_keyblock failed: %s\n", g10_errstr (rc));
|
||
rc = 0;
|
||
goto skip;
|
||
}
|
||
|
||
if (want_secret && agent_probe_any_secret_key (NULL, ctx->keyblock))
|
||
goto skip; /* No secret key available. */
|
||
|
||
/* Warning: node flag bits 0 and 1 should be preserved by
|
||
* merge_selfsigs. For secret keys, premerge did tranfer the
|
||
* keys to the keyblock. */
|
||
merge_selfsigs (ctx->keyblock);
|
||
if (finish_lookup (ctx))
|
||
{
|
||
no_suitable_key = 0;
|
||
goto found;
|
||
}
|
||
else
|
||
no_suitable_key = 1;
|
||
|
||
skip:
|
||
/* Release resources and continue search. */
|
||
release_kbnode (ctx->keyblock);
|
||
ctx->keyblock = NULL;
|
||
}
|
||
|
||
found:
|
||
if (rc && gpg_err_code (rc) != GPG_ERR_NOT_FOUND)
|
||
log_error ("keydb_search failed: %s\n", g10_errstr (rc));
|
||
|
||
if (!rc)
|
||
{
|
||
*ret_keyblock = ctx->keyblock; /* Return the keyblock. */
|
||
ctx->keyblock = NULL;
|
||
}
|
||
else if (gpg_err_code (rc) == GPG_ERR_NOT_FOUND && no_suitable_key)
|
||
rc = want_secret? G10ERR_UNU_SECKEY : G10ERR_UNU_PUBKEY;
|
||
else if (gpg_err_code (rc) == GPG_ERR_NOT_FOUND)
|
||
rc = want_secret? G10ERR_NO_SECKEY : G10ERR_NO_PUBKEY;
|
||
|
||
release_kbnode (ctx->keyblock);
|
||
ctx->keyblock = NULL;
|
||
|
||
ctx->last_rc = rc;
|
||
return rc;
|
||
}
|
||
|
||
|
||
|
||
|
||
/*
|
||
* Enumerate certain secret keys. Caller must use these procedure:
|
||
* 1) create a void pointer and initialize it to NULL
|
||
* 2) pass this void pointer by reference to this function
|
||
* and provide space for the secret key (pass a buffer for sk)
|
||
* 3) call this function as long as it does not return an error.
|
||
* The error code GPG_ERR_EOF indicates the end of the listing.
|
||
* 4) Always call this function a last time with SK set to NULL,
|
||
* so that can free it's context.
|
||
*/
|
||
gpg_error_t
|
||
enum_secret_keys (void **context, PKT_public_key *sk)
|
||
{
|
||
gpg_error_t err = 0;
|
||
const char *name;
|
||
struct
|
||
{
|
||
int eof;
|
||
int state;
|
||
strlist_t sl;
|
||
kbnode_t keyblock;
|
||
kbnode_t node;
|
||
} *c = *context;
|
||
|
||
if (!c)
|
||
{
|
||
/* Make a new context. */
|
||
c = xtrycalloc (1, sizeof *c);
|
||
if (!c)
|
||
return gpg_error_from_syserror ();
|
||
*context = c;
|
||
}
|
||
|
||
if (!sk)
|
||
{
|
||
/* Free the context. */
|
||
release_kbnode (c->keyblock);
|
||
xfree (c);
|
||
*context = NULL;
|
||
return 0;
|
||
}
|
||
|
||
if (c->eof)
|
||
return gpg_error (GPG_ERR_EOF);
|
||
|
||
for (;;)
|
||
{
|
||
/* Loop until we have a keyblock. */
|
||
while (!c->keyblock)
|
||
{
|
||
/* Loop over the list of secret keys. */
|
||
do
|
||
{
|
||
name = NULL;
|
||
switch (c->state)
|
||
{
|
||
case 0: /* First try to use the --default-key. */
|
||
if (opt.def_secret_key && *opt.def_secret_key)
|
||
name = opt.def_secret_key;
|
||
c->state = 1;
|
||
break;
|
||
|
||
case 1: /* Init list of keys to try. */
|
||
c->sl = opt.secret_keys_to_try;
|
||
c->state++;
|
||
break;
|
||
|
||
case 2: /* Get next item from list. */
|
||
if (c->sl)
|
||
{
|
||
name = c->sl->d;
|
||
c->sl = c->sl->next;
|
||
}
|
||
else
|
||
c->state++;
|
||
break;
|
||
|
||
default: /* No more names to check - stop. */
|
||
c->eof = 1;
|
||
return gpg_error (GPG_ERR_EOF);
|
||
}
|
||
}
|
||
while (!name || !*name);
|
||
|
||
err = getkey_byname (NULL, NULL, name, 1, &c->keyblock);
|
||
if (err)
|
||
{
|
||
/* getkey_byname might return a keyblock even in the
|
||
error case - I have not checked. Thus better release
|
||
it. */
|
||
release_kbnode (c->keyblock);
|
||
c->keyblock = NULL;
|
||
}
|
||
else
|
||
c->node = c->keyblock;
|
||
}
|
||
|
||
/* Get the next key from the current keyblock. */
|
||
for (; c->node; c->node = c->node->next)
|
||
{
|
||
if (c->node->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| c->node->pkt->pkttype == PKT_PUBLIC_SUBKEY)
|
||
{
|
||
copy_public_key (sk, c->node->pkt->pkt.public_key);
|
||
c->node = c->node->next;
|
||
return 0; /* Found. */
|
||
}
|
||
}
|
||
|
||
/* Dispose the keyblock and continue. */
|
||
release_kbnode (c->keyblock);
|
||
c->keyblock = NULL;
|
||
}
|
||
}
|
||
|
||
|
||
/*********************************************
|
||
*********** User ID printing helpers *******
|
||
*********************************************/
|
||
|
||
/* Return a string with a printable representation of the user_id.
|
||
* this string must be freed by xfree. */
|
||
char *
|
||
get_user_id_string (u32 * keyid)
|
||
{
|
||
user_id_db_t r;
|
||
char *p;
|
||
int pass = 0;
|
||
/* Try it two times; second pass reads from key resources. */
|
||
do
|
||
{
|
||
for (r = user_id_db; r; r = r->next)
|
||
{
|
||
keyid_list_t a;
|
||
for (a = r->keyids; a; a = a->next)
|
||
{
|
||
if (a->keyid[0] == keyid[0] && a->keyid[1] == keyid[1])
|
||
{
|
||
p = xmalloc (keystrlen () + 1 + r->len + 1);
|
||
sprintf (p, "%s %.*s", keystr (keyid), r->len, r->name);
|
||
return p;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
while (++pass < 2 && !get_pubkey (NULL, keyid));
|
||
p = xmalloc (keystrlen () + 5);
|
||
sprintf (p, "%s [?]", keystr (keyid));
|
||
return p;
|
||
}
|
||
|
||
|
||
char *
|
||
get_user_id_string_native (u32 * keyid)
|
||
{
|
||
char *p = get_user_id_string (keyid);
|
||
char *p2 = utf8_to_native (p, strlen (p), 0);
|
||
xfree (p);
|
||
return p2;
|
||
}
|
||
|
||
|
||
char *
|
||
get_long_user_id_string (u32 * keyid)
|
||
{
|
||
user_id_db_t r;
|
||
char *p;
|
||
int pass = 0;
|
||
/* Try it two times; second pass reads from key resources. */
|
||
do
|
||
{
|
||
for (r = user_id_db; r; r = r->next)
|
||
{
|
||
keyid_list_t a;
|
||
for (a = r->keyids; a; a = a->next)
|
||
{
|
||
if (a->keyid[0] == keyid[0] && a->keyid[1] == keyid[1])
|
||
{
|
||
p = xmalloc (r->len + 20);
|
||
sprintf (p, "%08lX%08lX %.*s",
|
||
(ulong) keyid[0], (ulong) keyid[1],
|
||
r->len, r->name);
|
||
return p;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
while (++pass < 2 && !get_pubkey (NULL, keyid));
|
||
p = xmalloc (25);
|
||
sprintf (p, "%08lX%08lX [?]", (ulong) keyid[0], (ulong) keyid[1]);
|
||
return p;
|
||
}
|
||
|
||
char *
|
||
get_user_id (u32 * keyid, size_t * rn)
|
||
{
|
||
user_id_db_t r;
|
||
char *p;
|
||
int pass = 0;
|
||
|
||
/* Try it two times; second pass reads from key resources. */
|
||
do
|
||
{
|
||
for (r = user_id_db; r; r = r->next)
|
||
{
|
||
keyid_list_t a;
|
||
for (a = r->keyids; a; a = a->next)
|
||
{
|
||
if (a->keyid[0] == keyid[0] && a->keyid[1] == keyid[1])
|
||
{
|
||
p = xmalloc (r->len);
|
||
memcpy (p, r->name, r->len);
|
||
*rn = r->len;
|
||
return p;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
while (++pass < 2 && !get_pubkey (NULL, keyid));
|
||
p = xstrdup (user_id_not_found_utf8 ());
|
||
*rn = strlen (p);
|
||
return p;
|
||
}
|
||
|
||
char *
|
||
get_user_id_native (u32 * keyid)
|
||
{
|
||
size_t rn;
|
||
char *p = get_user_id (keyid, &rn);
|
||
char *p2 = utf8_to_native (p, rn, 0);
|
||
xfree (p);
|
||
return p2;
|
||
}
|
||
|
||
KEYDB_HANDLE
|
||
get_ctx_handle (GETKEY_CTX ctx)
|
||
{
|
||
return ctx->kr_handle;
|
||
}
|
||
|
||
static void
|
||
free_akl (struct akl *akl)
|
||
{
|
||
if (akl->spec)
|
||
free_keyserver_spec (akl->spec);
|
||
|
||
xfree (akl);
|
||
}
|
||
|
||
void
|
||
release_akl (void)
|
||
{
|
||
while (opt.auto_key_locate)
|
||
{
|
||
struct akl *akl2 = opt.auto_key_locate;
|
||
opt.auto_key_locate = opt.auto_key_locate->next;
|
||
free_akl (akl2);
|
||
}
|
||
}
|
||
|
||
/* Returns false on error. */
|
||
int
|
||
parse_auto_key_locate (char *options)
|
||
{
|
||
char *tok;
|
||
|
||
while ((tok = optsep (&options)))
|
||
{
|
||
struct akl *akl, *check, *last = NULL;
|
||
int dupe = 0;
|
||
|
||
if (tok[0] == '\0')
|
||
continue;
|
||
|
||
akl = xmalloc_clear (sizeof (*akl));
|
||
|
||
if (ascii_strcasecmp (tok, "nodefault") == 0)
|
||
akl->type = AKL_NODEFAULT;
|
||
else if (ascii_strcasecmp (tok, "local") == 0)
|
||
akl->type = AKL_LOCAL;
|
||
else if (ascii_strcasecmp (tok, "ldap") == 0)
|
||
akl->type = AKL_LDAP;
|
||
else if (ascii_strcasecmp (tok, "keyserver") == 0)
|
||
akl->type = AKL_KEYSERVER;
|
||
#ifdef USE_DNS_CERT
|
||
else if (ascii_strcasecmp (tok, "cert") == 0)
|
||
akl->type = AKL_CERT;
|
||
#endif
|
||
#ifdef USE_DNS_PKA
|
||
else if (ascii_strcasecmp (tok, "pka") == 0)
|
||
akl->type = AKL_PKA;
|
||
#endif
|
||
else if ((akl->spec = parse_keyserver_uri (tok, 1, NULL, 0)))
|
||
akl->type = AKL_SPEC;
|
||
else
|
||
{
|
||
free_akl (akl);
|
||
return 0;
|
||
}
|
||
|
||
/* We must maintain the order the user gave us */
|
||
for (check = opt.auto_key_locate; check;
|
||
last = check, check = check->next)
|
||
{
|
||
/* Check for duplicates */
|
||
if (check->type == akl->type
|
||
&& (akl->type != AKL_SPEC
|
||
|| (akl->type == AKL_SPEC
|
||
&& strcmp (check->spec->uri, akl->spec->uri) == 0)))
|
||
{
|
||
dupe = 1;
|
||
free_akl (akl);
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (!dupe)
|
||
{
|
||
if (last)
|
||
last->next = akl;
|
||
else
|
||
opt.auto_key_locate = akl;
|
||
}
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
|
||
/* Return true if a secret key or secret subkey is available for one
|
||
of the public keys in KEYBLOCK. */
|
||
int
|
||
have_any_secret_key (ctrl_t ctrl, kbnode_t keyblock)
|
||
{
|
||
kbnode_t node;
|
||
|
||
for (node = keyblock; node; node = node->next)
|
||
if ((node->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| node->pkt->pkttype == PKT_PUBLIC_SUBKEY)
|
||
&& !agent_probe_secret_key (ctrl, node->pkt->pkt.public_key))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Return true if a secret key is available for the public key with
|
||
* the given KEYID. This is just a fast check and does not tell us
|
||
* whether the secret key is valid. It merely tells os whether there
|
||
* is some secret key. */
|
||
int
|
||
have_secret_key_with_kid (u32 *keyid)
|
||
{
|
||
gpg_error_t err;
|
||
KEYDB_HANDLE kdbhd;
|
||
KEYDB_SEARCH_DESC desc;
|
||
kbnode_t keyblock;
|
||
kbnode_t node;
|
||
int result = 0;
|
||
|
||
kdbhd = keydb_new ();
|
||
memset (&desc, 0, sizeof desc);
|
||
desc.mode = KEYDB_SEARCH_MODE_LONG_KID;
|
||
desc.u.kid[0] = keyid[0];
|
||
desc.u.kid[1] = keyid[1];
|
||
while (!result && !(err = keydb_search (kdbhd, &desc, 1)))
|
||
{
|
||
desc.mode = KEYDB_SEARCH_MODE_NEXT;
|
||
err = keydb_get_keyblock (kdbhd, &keyblock);
|
||
if (err)
|
||
{
|
||
log_error (_("error reading keyblock: %s\n"), g10_errstr (err));
|
||
break;
|
||
}
|
||
|
||
for (node = keyblock; node; node = node->next)
|
||
{
|
||
/* Bit 0 of the flags is set if the search found the key
|
||
using that key or subkey. */
|
||
if ((node->flag & 1))
|
||
{
|
||
assert (node->pkt->pkttype == PKT_PUBLIC_KEY
|
||
|| node->pkt->pkttype == PKT_PUBLIC_SUBKEY);
|
||
|
||
if (!agent_probe_secret_key (NULL, node->pkt->pkt.public_key))
|
||
{
|
||
result = 1;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
release_kbnode (keyblock);
|
||
}
|
||
keydb_release (kdbhd);
|
||
return result;
|
||
}
|
||
|
||
|
||
|
||
#if 0
|
||
/*
|
||
* Merge the secret keys from secblock into the pubblock thereby
|
||
* replacing the public (sub)keys with their secret counterparts Hmmm:
|
||
* It might be better to get away from the concept of entire secret
|
||
* keys at all and have a way to store just the real secret parts
|
||
* from the key.
|
||
*
|
||
* FIXME: this is not anymore needed but we keep it as example code for the
|
||
* new code we need to write for the import/export feature.
|
||
*/
|
||
static void
|
||
merge_public_with_secret (KBNODE pubblock, KBNODE secblock)
|
||
{
|
||
KBNODE pub;
|
||
|
||
assert (pubblock->pkt->pkttype == PKT_PUBLIC_KEY);
|
||
assert (secblock->pkt->pkttype == PKT_SECRET_KEY);
|
||
|
||
for (pub = pubblock; pub; pub = pub->next)
|
||
{
|
||
if (pub->pkt->pkttype == PKT_PUBLIC_KEY)
|
||
{
|
||
PKT_public_key *pk = pub->pkt->pkt.public_key;
|
||
PKT_secret_key *sk = secblock->pkt->pkt.secret_key;
|
||
assert (pub == pubblock); /* Only in the first node. */
|
||
/* There is nothing to compare in this case, so just replace
|
||
* some information. */
|
||
copy_public_parts_to_secret_key (pk, sk);
|
||
free_public_key (pk);
|
||
pub->pkt->pkttype = PKT_SECRET_KEY;
|
||
pub->pkt->pkt.secret_key = copy_secret_key (NULL, sk);
|
||
}
|
||
else if (pub->pkt->pkttype == PKT_PUBLIC_SUBKEY)
|
||
{
|
||
KBNODE sec;
|
||
PKT_public_key *pk = pub->pkt->pkt.public_key;
|
||
|
||
/* This is more complicated: It may happen that the sequence
|
||
* of the subkeys dosn't match, so we have to find the
|
||
* appropriate secret key. */
|
||
for (sec = secblock->next; sec; sec = sec->next)
|
||
{
|
||
if (sec->pkt->pkttype == PKT_SECRET_SUBKEY)
|
||
{
|
||
PKT_secret_key *sk = sec->pkt->pkt.secret_key;
|
||
if (!cmp_public_secret_key (pk, sk))
|
||
{
|
||
copy_public_parts_to_secret_key (pk, sk);
|
||
free_public_key (pk);
|
||
pub->pkt->pkttype = PKT_SECRET_SUBKEY;
|
||
pub->pkt->pkt.secret_key = copy_secret_key (NULL, sk);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
if (!sec)
|
||
BUG (); /* Already checked in premerge. */
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* This function checks that for every public subkey a corresponding
|
||
* secret subkey is available and deletes the public subkey otherwise.
|
||
* We need this function because we can't delete it later when we
|
||
* actually merge the secret parts into the pubring.
|
||
* The function also plays some games with the node flags.
|
||
*
|
||
* FIXME: this is not anymore needed but we keep it as example code for the
|
||
* new code we need to write for the import/export feature.
|
||
*/
|
||
static void
|
||
premerge_public_with_secret (KBNODE pubblock, KBNODE secblock)
|
||
{
|
||
KBNODE last, pub;
|
||
|
||
assert (pubblock->pkt->pkttype == PKT_PUBLIC_KEY);
|
||
assert (secblock->pkt->pkttype == PKT_SECRET_KEY);
|
||
|
||
for (pub = pubblock, last = NULL; pub; last = pub, pub = pub->next)
|
||
{
|
||
pub->flag &= ~3; /* Reset bits 0 and 1. */
|
||
if (pub->pkt->pkttype == PKT_PUBLIC_SUBKEY)
|
||
{
|
||
KBNODE sec;
|
||
PKT_public_key *pk = pub->pkt->pkt.public_key;
|
||
|
||
for (sec = secblock->next; sec; sec = sec->next)
|
||
{
|
||
if (sec->pkt->pkttype == PKT_SECRET_SUBKEY)
|
||
{
|
||
PKT_secret_key *sk = sec->pkt->pkt.secret_key;
|
||
if (!cmp_public_secret_key (pk, sk))
|
||
{
|
||
if (sk->protect.s2k.mode == 1001)
|
||
{
|
||
/* The secret parts are not available so
|
||
we can't use that key for signing etc.
|
||
Fix the pubkey usage */
|
||
pk->pubkey_usage &= ~(PUBKEY_USAGE_SIG
|
||
| PUBKEY_USAGE_AUTH);
|
||
}
|
||
/* Transfer flag bits 0 and 1 to the pubblock. */
|
||
pub->flag |= (sec->flag & 3);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
if (!sec)
|
||
{
|
||
KBNODE next, ll;
|
||
|
||
if (opt.verbose)
|
||
log_info (_("no secret subkey"
|
||
" for public subkey %s - ignoring\n"),
|
||
keystr_from_pk (pk));
|
||
/* We have to remove the subkey in this case. */
|
||
assert (last);
|
||
/* Find the next subkey. */
|
||
for (next = pub->next, ll = pub;
|
||
next && next->pkt->pkttype != PKT_PUBLIC_SUBKEY;
|
||
ll = next, next = next->next)
|
||
;
|
||
/* Make new link. */
|
||
last->next = next;
|
||
/* Release this public subkey with all sigs. */
|
||
ll->next = NULL;
|
||
release_kbnode (pub);
|
||
/* Let the loop continue. */
|
||
pub = last;
|
||
}
|
||
}
|
||
}
|
||
/* We need to copy the found bits (0 and 1) from the secret key to
|
||
the public key. This has already been done for the subkeys but
|
||
got lost on the primary key - fix it here. */
|
||
pubblock->flag |= (secblock->flag & 3);
|
||
}
|
||
#endif /*0*/
|