mirror of
git://git.gnupg.org/gnupg.git
synced 2024-11-04 20:38:50 +01:00
1065 lines
50 KiB
C
1065 lines
50 KiB
C
/* Twofish for GPG
|
||
* By Matthew Skala <mskala@ansuz.sooke.bc.ca>, July 26, 1998
|
||
* 256-bit key length added March 20, 1999
|
||
* Some modifications to reduce the text size by Werner Koch, April, 1998
|
||
*
|
||
* The original author has disclaimed all copyright interest in this
|
||
* code and thus putting it in the public domain.
|
||
*
|
||
* This code is a "clean room" implementation, written from the paper
|
||
* _Twofish: A 128-Bit Block Cipher_ by Bruce Schneier, John Kelsey,
|
||
* Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson, available
|
||
* through http://www.counterpane.com/twofish.html
|
||
*
|
||
* For background information on multiplication in finite fields, used for
|
||
* the matrix operations in the key schedule, see the book _Contemporary
|
||
* Abstract Algebra_ by Joseph A. Gallian, especially chapter 22 in the
|
||
* Third Edition.
|
||
*
|
||
* Only the 128- and 256-bit key sizes are supported. This code is intended
|
||
* for GNU C on a 32-bit system, but it should work almost anywhere. Loops
|
||
* are unrolled, precomputation tables are used, etc., for maximum speed at
|
||
* some cost in memory consumption. */
|
||
|
||
#include <config.h>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h> /* for memcmp() */
|
||
|
||
#include "types.h" /* for byte and u32 typedefs */
|
||
#include "g10lib.h"
|
||
#include "dynload.h"
|
||
|
||
|
||
/* Prototype for the self-test function. */
|
||
static const char *selftest(void);
|
||
|
||
/* Macros used by the info function. */
|
||
#define FNCCAST_SETKEY(f) ((int(*)(void*, byte*, unsigned))(f))
|
||
#define FNCCAST_CRYPT(f) ((void(*)(void*, byte*, byte*))(f))
|
||
|
||
/* Structure for an expanded Twofish key. s contains the key-dependent
|
||
* S-boxes composed with the MDS matrix; w contains the eight "whitening"
|
||
* subkeys, K[0] through K[7]. k holds the remaining, "round" subkeys. Note
|
||
* that k[i] corresponds to what the Twofish paper calls K[i+8]. */
|
||
typedef struct {
|
||
u32 s[4][256], w[8], k[32];
|
||
} TWOFISH_context;
|
||
|
||
/* These two tables are the q0 and q1 permutations, exactly as described in
|
||
* the Twofish paper. */
|
||
|
||
static const byte q0[256] = {
|
||
0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76, 0x9A, 0x92, 0x80, 0x78,
|
||
0xE4, 0xDD, 0xD1, 0x38, 0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C,
|
||
0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48, 0xF2, 0xD0, 0x8B, 0x30,
|
||
0x84, 0x54, 0xDF, 0x23, 0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
|
||
0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C, 0xA6, 0xEB, 0xA5, 0xBE,
|
||
0x16, 0x0C, 0xE3, 0x61, 0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B,
|
||
0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1, 0xE1, 0xE6, 0xBD, 0x45,
|
||
0xE2, 0xF4, 0xB6, 0x66, 0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
|
||
0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA, 0xEA, 0x77, 0x39, 0xAF,
|
||
0x33, 0xC9, 0x62, 0x71, 0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8,
|
||
0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7, 0xA1, 0x1D, 0xAA, 0xED,
|
||
0x06, 0x70, 0xB2, 0xD2, 0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
|
||
0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB, 0x9E, 0x9C, 0x52, 0x1B,
|
||
0x5F, 0x93, 0x0A, 0xEF, 0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B,
|
||
0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64, 0x2A, 0xCE, 0xCB, 0x2F,
|
||
0xFC, 0x97, 0x05, 0x7A, 0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
|
||
0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02, 0xB8, 0xDA, 0xB0, 0x17,
|
||
0x55, 0x1F, 0x8A, 0x7D, 0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72,
|
||
0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34, 0x6E, 0x50, 0xDE, 0x68,
|
||
0x65, 0xBC, 0xDB, 0xF8, 0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
|
||
0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00, 0x6F, 0x9D, 0x36, 0x42,
|
||
0x4A, 0x5E, 0xC1, 0xE0
|
||
};
|
||
|
||
static const byte q1[256] = {
|
||
0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8, 0x4A, 0xD3, 0xE6, 0x6B,
|
||
0x45, 0x7D, 0xE8, 0x4B, 0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1,
|
||
0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F, 0x5E, 0xBA, 0xAE, 0x5B,
|
||
0x8A, 0x00, 0xBC, 0x9D, 0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
|
||
0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3, 0xB2, 0x73, 0x4C, 0x54,
|
||
0x92, 0x74, 0x36, 0x51, 0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96,
|
||
0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C, 0x13, 0x95, 0x9C, 0xC7,
|
||
0x24, 0x46, 0x3B, 0x70, 0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
|
||
0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC, 0x03, 0x6F, 0x08, 0xBF,
|
||
0x40, 0xE7, 0x2B, 0xE2, 0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9,
|
||
0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17, 0x66, 0x94, 0xA1, 0x1D,
|
||
0x3D, 0xF0, 0xDE, 0xB3, 0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
|
||
0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49, 0x81, 0x88, 0xEE, 0x21,
|
||
0xC4, 0x1A, 0xEB, 0xD9, 0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01,
|
||
0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48, 0x4F, 0xF2, 0x65, 0x8E,
|
||
0x78, 0x5C, 0x58, 0x19, 0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
|
||
0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5, 0xCE, 0xE9, 0x68, 0x44,
|
||
0xE0, 0x4D, 0x43, 0x69, 0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E,
|
||
0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC, 0x22, 0xC9, 0xC0, 0x9B,
|
||
0x89, 0xD4, 0xED, 0xAB, 0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
|
||
0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2, 0x16, 0x25, 0x86, 0x56,
|
||
0x55, 0x09, 0xBE, 0x91
|
||
};
|
||
|
||
/* These MDS tables are actually tables of MDS composed with q0 and q1,
|
||
* because it is only ever used that way and we can save some time by
|
||
* precomputing. Of course the main saving comes from precomputing the
|
||
* GF(2^8) multiplication involved in the MDS matrix multiply; by looking
|
||
* things up in these tables we reduce the matrix multiply to four lookups
|
||
* and three XORs. Semi-formally, the definition of these tables is:
|
||
* mds[0][i] = MDS (q1[i] 0 0 0)^T mds[1][i] = MDS (0 q0[i] 0 0)^T
|
||
* mds[2][i] = MDS (0 0 q1[i] 0)^T mds[3][i] = MDS (0 0 0 q0[i])^T
|
||
* where ^T means "transpose", the matrix multiply is performed in GF(2^8)
|
||
* represented as GF(2)[x]/v(x) where v(x)=x^8+x^6+x^5+x^3+1 as described
|
||
* by Schneier et al, and I'm casually glossing over the byte/word
|
||
* conversion issues. */
|
||
|
||
static const u32 mds[4][256] = {
|
||
{0xBCBC3275, 0xECEC21F3, 0x202043C6, 0xB3B3C9F4, 0xDADA03DB, 0x02028B7B,
|
||
0xE2E22BFB, 0x9E9EFAC8, 0xC9C9EC4A, 0xD4D409D3, 0x18186BE6, 0x1E1E9F6B,
|
||
0x98980E45, 0xB2B2387D, 0xA6A6D2E8, 0x2626B74B, 0x3C3C57D6, 0x93938A32,
|
||
0x8282EED8, 0x525298FD, 0x7B7BD437, 0xBBBB3771, 0x5B5B97F1, 0x474783E1,
|
||
0x24243C30, 0x5151E20F, 0xBABAC6F8, 0x4A4AF31B, 0xBFBF4887, 0x0D0D70FA,
|
||
0xB0B0B306, 0x7575DE3F, 0xD2D2FD5E, 0x7D7D20BA, 0x666631AE, 0x3A3AA35B,
|
||
0x59591C8A, 0x00000000, 0xCDCD93BC, 0x1A1AE09D, 0xAEAE2C6D, 0x7F7FABC1,
|
||
0x2B2BC7B1, 0xBEBEB90E, 0xE0E0A080, 0x8A8A105D, 0x3B3B52D2, 0x6464BAD5,
|
||
0xD8D888A0, 0xE7E7A584, 0x5F5FE807, 0x1B1B1114, 0x2C2CC2B5, 0xFCFCB490,
|
||
0x3131272C, 0x808065A3, 0x73732AB2, 0x0C0C8173, 0x79795F4C, 0x6B6B4154,
|
||
0x4B4B0292, 0x53536974, 0x94948F36, 0x83831F51, 0x2A2A3638, 0xC4C49CB0,
|
||
0x2222C8BD, 0xD5D5F85A, 0xBDBDC3FC, 0x48487860, 0xFFFFCE62, 0x4C4C0796,
|
||
0x4141776C, 0xC7C7E642, 0xEBEB24F7, 0x1C1C1410, 0x5D5D637C, 0x36362228,
|
||
0x6767C027, 0xE9E9AF8C, 0x4444F913, 0x1414EA95, 0xF5F5BB9C, 0xCFCF18C7,
|
||
0x3F3F2D24, 0xC0C0E346, 0x7272DB3B, 0x54546C70, 0x29294CCA, 0xF0F035E3,
|
||
0x0808FE85, 0xC6C617CB, 0xF3F34F11, 0x8C8CE4D0, 0xA4A45993, 0xCACA96B8,
|
||
0x68683BA6, 0xB8B84D83, 0x38382820, 0xE5E52EFF, 0xADAD569F, 0x0B0B8477,
|
||
0xC8C81DC3, 0x9999FFCC, 0x5858ED03, 0x19199A6F, 0x0E0E0A08, 0x95957EBF,
|
||
0x70705040, 0xF7F730E7, 0x6E6ECF2B, 0x1F1F6EE2, 0xB5B53D79, 0x09090F0C,
|
||
0x616134AA, 0x57571682, 0x9F9F0B41, 0x9D9D803A, 0x111164EA, 0x2525CDB9,
|
||
0xAFAFDDE4, 0x4545089A, 0xDFDF8DA4, 0xA3A35C97, 0xEAEAD57E, 0x353558DA,
|
||
0xEDEDD07A, 0x4343FC17, 0xF8F8CB66, 0xFBFBB194, 0x3737D3A1, 0xFAFA401D,
|
||
0xC2C2683D, 0xB4B4CCF0, 0x32325DDE, 0x9C9C71B3, 0x5656E70B, 0xE3E3DA72,
|
||
0x878760A7, 0x15151B1C, 0xF9F93AEF, 0x6363BFD1, 0x3434A953, 0x9A9A853E,
|
||
0xB1B1428F, 0x7C7CD133, 0x88889B26, 0x3D3DA65F, 0xA1A1D7EC, 0xE4E4DF76,
|
||
0x8181942A, 0x91910149, 0x0F0FFB81, 0xEEEEAA88, 0x161661EE, 0xD7D77321,
|
||
0x9797F5C4, 0xA5A5A81A, 0xFEFE3FEB, 0x6D6DB5D9, 0x7878AEC5, 0xC5C56D39,
|
||
0x1D1DE599, 0x7676A4CD, 0x3E3EDCAD, 0xCBCB6731, 0xB6B6478B, 0xEFEF5B01,
|
||
0x12121E18, 0x6060C523, 0x6A6AB0DD, 0x4D4DF61F, 0xCECEE94E, 0xDEDE7C2D,
|
||
0x55559DF9, 0x7E7E5A48, 0x2121B24F, 0x03037AF2, 0xA0A02665, 0x5E5E198E,
|
||
0x5A5A6678, 0x65654B5C, 0x62624E58, 0xFDFD4519, 0x0606F48D, 0x404086E5,
|
||
0xF2F2BE98, 0x3333AC57, 0x17179067, 0x05058E7F, 0xE8E85E05, 0x4F4F7D64,
|
||
0x89896AAF, 0x10109563, 0x74742FB6, 0x0A0A75FE, 0x5C5C92F5, 0x9B9B74B7,
|
||
0x2D2D333C, 0x3030D6A5, 0x2E2E49CE, 0x494989E9, 0x46467268, 0x77775544,
|
||
0xA8A8D8E0, 0x9696044D, 0x2828BD43, 0xA9A92969, 0xD9D97929, 0x8686912E,
|
||
0xD1D187AC, 0xF4F44A15, 0x8D8D1559, 0xD6D682A8, 0xB9B9BC0A, 0x42420D9E,
|
||
0xF6F6C16E, 0x2F2FB847, 0xDDDD06DF, 0x23233934, 0xCCCC6235, 0xF1F1C46A,
|
||
0xC1C112CF, 0x8585EBDC, 0x8F8F9E22, 0x7171A1C9, 0x9090F0C0, 0xAAAA539B,
|
||
0x0101F189, 0x8B8BE1D4, 0x4E4E8CED, 0x8E8E6FAB, 0xABABA212, 0x6F6F3EA2,
|
||
0xE6E6540D, 0xDBDBF252, 0x92927BBB, 0xB7B7B602, 0x6969CA2F, 0x3939D9A9,
|
||
0xD3D30CD7, 0xA7A72361, 0xA2A2AD1E, 0xC3C399B4, 0x6C6C4450, 0x07070504,
|
||
0x04047FF6, 0x272746C2, 0xACACA716, 0xD0D07625, 0x50501386, 0xDCDCF756,
|
||
0x84841A55, 0xE1E15109, 0x7A7A25BE, 0x1313EF91},
|
||
|
||
{0xA9D93939, 0x67901717, 0xB3719C9C, 0xE8D2A6A6, 0x04050707, 0xFD985252,
|
||
0xA3658080, 0x76DFE4E4, 0x9A084545, 0x92024B4B, 0x80A0E0E0, 0x78665A5A,
|
||
0xE4DDAFAF, 0xDDB06A6A, 0xD1BF6363, 0x38362A2A, 0x0D54E6E6, 0xC6432020,
|
||
0x3562CCCC, 0x98BEF2F2, 0x181E1212, 0xF724EBEB, 0xECD7A1A1, 0x6C774141,
|
||
0x43BD2828, 0x7532BCBC, 0x37D47B7B, 0x269B8888, 0xFA700D0D, 0x13F94444,
|
||
0x94B1FBFB, 0x485A7E7E, 0xF27A0303, 0xD0E48C8C, 0x8B47B6B6, 0x303C2424,
|
||
0x84A5E7E7, 0x54416B6B, 0xDF06DDDD, 0x23C56060, 0x1945FDFD, 0x5BA33A3A,
|
||
0x3D68C2C2, 0x59158D8D, 0xF321ECEC, 0xAE316666, 0xA23E6F6F, 0x82165757,
|
||
0x63951010, 0x015BEFEF, 0x834DB8B8, 0x2E918686, 0xD9B56D6D, 0x511F8383,
|
||
0x9B53AAAA, 0x7C635D5D, 0xA63B6868, 0xEB3FFEFE, 0xA5D63030, 0xBE257A7A,
|
||
0x16A7ACAC, 0x0C0F0909, 0xE335F0F0, 0x6123A7A7, 0xC0F09090, 0x8CAFE9E9,
|
||
0x3A809D9D, 0xF5925C5C, 0x73810C0C, 0x2C273131, 0x2576D0D0, 0x0BE75656,
|
||
0xBB7B9292, 0x4EE9CECE, 0x89F10101, 0x6B9F1E1E, 0x53A93434, 0x6AC4F1F1,
|
||
0xB499C3C3, 0xF1975B5B, 0xE1834747, 0xE66B1818, 0xBDC82222, 0x450E9898,
|
||
0xE26E1F1F, 0xF4C9B3B3, 0xB62F7474, 0x66CBF8F8, 0xCCFF9999, 0x95EA1414,
|
||
0x03ED5858, 0x56F7DCDC, 0xD4E18B8B, 0x1C1B1515, 0x1EADA2A2, 0xD70CD3D3,
|
||
0xFB2BE2E2, 0xC31DC8C8, 0x8E195E5E, 0xB5C22C2C, 0xE9894949, 0xCF12C1C1,
|
||
0xBF7E9595, 0xBA207D7D, 0xEA641111, 0x77840B0B, 0x396DC5C5, 0xAF6A8989,
|
||
0x33D17C7C, 0xC9A17171, 0x62CEFFFF, 0x7137BBBB, 0x81FB0F0F, 0x793DB5B5,
|
||
0x0951E1E1, 0xADDC3E3E, 0x242D3F3F, 0xCDA47676, 0xF99D5555, 0xD8EE8282,
|
||
0xE5864040, 0xC5AE7878, 0xB9CD2525, 0x4D049696, 0x44557777, 0x080A0E0E,
|
||
0x86135050, 0xE730F7F7, 0xA1D33737, 0x1D40FAFA, 0xAA346161, 0xED8C4E4E,
|
||
0x06B3B0B0, 0x706C5454, 0xB22A7373, 0xD2523B3B, 0x410B9F9F, 0x7B8B0202,
|
||
0xA088D8D8, 0x114FF3F3, 0x3167CBCB, 0xC2462727, 0x27C06767, 0x90B4FCFC,
|
||
0x20283838, 0xF67F0404, 0x60784848, 0xFF2EE5E5, 0x96074C4C, 0x5C4B6565,
|
||
0xB1C72B2B, 0xAB6F8E8E, 0x9E0D4242, 0x9CBBF5F5, 0x52F2DBDB, 0x1BF34A4A,
|
||
0x5FA63D3D, 0x9359A4A4, 0x0ABCB9B9, 0xEF3AF9F9, 0x91EF1313, 0x85FE0808,
|
||
0x49019191, 0xEE611616, 0x2D7CDEDE, 0x4FB22121, 0x8F42B1B1, 0x3BDB7272,
|
||
0x47B82F2F, 0x8748BFBF, 0x6D2CAEAE, 0x46E3C0C0, 0xD6573C3C, 0x3E859A9A,
|
||
0x6929A9A9, 0x647D4F4F, 0x2A948181, 0xCE492E2E, 0xCB17C6C6, 0x2FCA6969,
|
||
0xFCC3BDBD, 0x975CA3A3, 0x055EE8E8, 0x7AD0EDED, 0xAC87D1D1, 0x7F8E0505,
|
||
0xD5BA6464, 0x1AA8A5A5, 0x4BB72626, 0x0EB9BEBE, 0xA7608787, 0x5AF8D5D5,
|
||
0x28223636, 0x14111B1B, 0x3FDE7575, 0x2979D9D9, 0x88AAEEEE, 0x3C332D2D,
|
||
0x4C5F7979, 0x02B6B7B7, 0xB896CACA, 0xDA583535, 0xB09CC4C4, 0x17FC4343,
|
||
0x551A8484, 0x1FF64D4D, 0x8A1C5959, 0x7D38B2B2, 0x57AC3333, 0xC718CFCF,
|
||
0x8DF40606, 0x74695353, 0xB7749B9B, 0xC4F59797, 0x9F56ADAD, 0x72DAE3E3,
|
||
0x7ED5EAEA, 0x154AF4F4, 0x229E8F8F, 0x12A2ABAB, 0x584E6262, 0x07E85F5F,
|
||
0x99E51D1D, 0x34392323, 0x6EC1F6F6, 0x50446C6C, 0xDE5D3232, 0x68724646,
|
||
0x6526A0A0, 0xBC93CDCD, 0xDB03DADA, 0xF8C6BABA, 0xC8FA9E9E, 0xA882D6D6,
|
||
0x2BCF6E6E, 0x40507070, 0xDCEB8585, 0xFE750A0A, 0x328A9393, 0xA48DDFDF,
|
||
0xCA4C2929, 0x10141C1C, 0x2173D7D7, 0xF0CCB4B4, 0xD309D4D4, 0x5D108A8A,
|
||
0x0FE25151, 0x00000000, 0x6F9A1919, 0x9DE01A1A, 0x368F9494, 0x42E6C7C7,
|
||
0x4AECC9C9, 0x5EFDD2D2, 0xC1AB7F7F, 0xE0D8A8A8},
|
||
|
||
{0xBC75BC32, 0xECF3EC21, 0x20C62043, 0xB3F4B3C9, 0xDADBDA03, 0x027B028B,
|
||
0xE2FBE22B, 0x9EC89EFA, 0xC94AC9EC, 0xD4D3D409, 0x18E6186B, 0x1E6B1E9F,
|
||
0x9845980E, 0xB27DB238, 0xA6E8A6D2, 0x264B26B7, 0x3CD63C57, 0x9332938A,
|
||
0x82D882EE, 0x52FD5298, 0x7B377BD4, 0xBB71BB37, 0x5BF15B97, 0x47E14783,
|
||
0x2430243C, 0x510F51E2, 0xBAF8BAC6, 0x4A1B4AF3, 0xBF87BF48, 0x0DFA0D70,
|
||
0xB006B0B3, 0x753F75DE, 0xD25ED2FD, 0x7DBA7D20, 0x66AE6631, 0x3A5B3AA3,
|
||
0x598A591C, 0x00000000, 0xCDBCCD93, 0x1A9D1AE0, 0xAE6DAE2C, 0x7FC17FAB,
|
||
0x2BB12BC7, 0xBE0EBEB9, 0xE080E0A0, 0x8A5D8A10, 0x3BD23B52, 0x64D564BA,
|
||
0xD8A0D888, 0xE784E7A5, 0x5F075FE8, 0x1B141B11, 0x2CB52CC2, 0xFC90FCB4,
|
||
0x312C3127, 0x80A38065, 0x73B2732A, 0x0C730C81, 0x794C795F, 0x6B546B41,
|
||
0x4B924B02, 0x53745369, 0x9436948F, 0x8351831F, 0x2A382A36, 0xC4B0C49C,
|
||
0x22BD22C8, 0xD55AD5F8, 0xBDFCBDC3, 0x48604878, 0xFF62FFCE, 0x4C964C07,
|
||
0x416C4177, 0xC742C7E6, 0xEBF7EB24, 0x1C101C14, 0x5D7C5D63, 0x36283622,
|
||
0x672767C0, 0xE98CE9AF, 0x441344F9, 0x149514EA, 0xF59CF5BB, 0xCFC7CF18,
|
||
0x3F243F2D, 0xC046C0E3, 0x723B72DB, 0x5470546C, 0x29CA294C, 0xF0E3F035,
|
||
0x088508FE, 0xC6CBC617, 0xF311F34F, 0x8CD08CE4, 0xA493A459, 0xCAB8CA96,
|
||
0x68A6683B, 0xB883B84D, 0x38203828, 0xE5FFE52E, 0xAD9FAD56, 0x0B770B84,
|
||
0xC8C3C81D, 0x99CC99FF, 0x580358ED, 0x196F199A, 0x0E080E0A, 0x95BF957E,
|
||
0x70407050, 0xF7E7F730, 0x6E2B6ECF, 0x1FE21F6E, 0xB579B53D, 0x090C090F,
|
||
0x61AA6134, 0x57825716, 0x9F419F0B, 0x9D3A9D80, 0x11EA1164, 0x25B925CD,
|
||
0xAFE4AFDD, 0x459A4508, 0xDFA4DF8D, 0xA397A35C, 0xEA7EEAD5, 0x35DA3558,
|
||
0xED7AEDD0, 0x431743FC, 0xF866F8CB, 0xFB94FBB1, 0x37A137D3, 0xFA1DFA40,
|
||
0xC23DC268, 0xB4F0B4CC, 0x32DE325D, 0x9CB39C71, 0x560B56E7, 0xE372E3DA,
|
||
0x87A78760, 0x151C151B, 0xF9EFF93A, 0x63D163BF, 0x345334A9, 0x9A3E9A85,
|
||
0xB18FB142, 0x7C337CD1, 0x8826889B, 0x3D5F3DA6, 0xA1ECA1D7, 0xE476E4DF,
|
||
0x812A8194, 0x91499101, 0x0F810FFB, 0xEE88EEAA, 0x16EE1661, 0xD721D773,
|
||
0x97C497F5, 0xA51AA5A8, 0xFEEBFE3F, 0x6DD96DB5, 0x78C578AE, 0xC539C56D,
|
||
0x1D991DE5, 0x76CD76A4, 0x3EAD3EDC, 0xCB31CB67, 0xB68BB647, 0xEF01EF5B,
|
||
0x1218121E, 0x602360C5, 0x6ADD6AB0, 0x4D1F4DF6, 0xCE4ECEE9, 0xDE2DDE7C,
|
||
0x55F9559D, 0x7E487E5A, 0x214F21B2, 0x03F2037A, 0xA065A026, 0x5E8E5E19,
|
||
0x5A785A66, 0x655C654B, 0x6258624E, 0xFD19FD45, 0x068D06F4, 0x40E54086,
|
||
0xF298F2BE, 0x335733AC, 0x17671790, 0x057F058E, 0xE805E85E, 0x4F644F7D,
|
||
0x89AF896A, 0x10631095, 0x74B6742F, 0x0AFE0A75, 0x5CF55C92, 0x9BB79B74,
|
||
0x2D3C2D33, 0x30A530D6, 0x2ECE2E49, 0x49E94989, 0x46684672, 0x77447755,
|
||
0xA8E0A8D8, 0x964D9604, 0x284328BD, 0xA969A929, 0xD929D979, 0x862E8691,
|
||
0xD1ACD187, 0xF415F44A, 0x8D598D15, 0xD6A8D682, 0xB90AB9BC, 0x429E420D,
|
||
0xF66EF6C1, 0x2F472FB8, 0xDDDFDD06, 0x23342339, 0xCC35CC62, 0xF16AF1C4,
|
||
0xC1CFC112, 0x85DC85EB, 0x8F228F9E, 0x71C971A1, 0x90C090F0, 0xAA9BAA53,
|
||
0x018901F1, 0x8BD48BE1, 0x4EED4E8C, 0x8EAB8E6F, 0xAB12ABA2, 0x6FA26F3E,
|
||
0xE60DE654, 0xDB52DBF2, 0x92BB927B, 0xB702B7B6, 0x692F69CA, 0x39A939D9,
|
||
0xD3D7D30C, 0xA761A723, 0xA21EA2AD, 0xC3B4C399, 0x6C506C44, 0x07040705,
|
||
0x04F6047F, 0x27C22746, 0xAC16ACA7, 0xD025D076, 0x50865013, 0xDC56DCF7,
|
||
0x8455841A, 0xE109E151, 0x7ABE7A25, 0x139113EF},
|
||
|
||
{0xD939A9D9, 0x90176790, 0x719CB371, 0xD2A6E8D2, 0x05070405, 0x9852FD98,
|
||
0x6580A365, 0xDFE476DF, 0x08459A08, 0x024B9202, 0xA0E080A0, 0x665A7866,
|
||
0xDDAFE4DD, 0xB06ADDB0, 0xBF63D1BF, 0x362A3836, 0x54E60D54, 0x4320C643,
|
||
0x62CC3562, 0xBEF298BE, 0x1E12181E, 0x24EBF724, 0xD7A1ECD7, 0x77416C77,
|
||
0xBD2843BD, 0x32BC7532, 0xD47B37D4, 0x9B88269B, 0x700DFA70, 0xF94413F9,
|
||
0xB1FB94B1, 0x5A7E485A, 0x7A03F27A, 0xE48CD0E4, 0x47B68B47, 0x3C24303C,
|
||
0xA5E784A5, 0x416B5441, 0x06DDDF06, 0xC56023C5, 0x45FD1945, 0xA33A5BA3,
|
||
0x68C23D68, 0x158D5915, 0x21ECF321, 0x3166AE31, 0x3E6FA23E, 0x16578216,
|
||
0x95106395, 0x5BEF015B, 0x4DB8834D, 0x91862E91, 0xB56DD9B5, 0x1F83511F,
|
||
0x53AA9B53, 0x635D7C63, 0x3B68A63B, 0x3FFEEB3F, 0xD630A5D6, 0x257ABE25,
|
||
0xA7AC16A7, 0x0F090C0F, 0x35F0E335, 0x23A76123, 0xF090C0F0, 0xAFE98CAF,
|
||
0x809D3A80, 0x925CF592, 0x810C7381, 0x27312C27, 0x76D02576, 0xE7560BE7,
|
||
0x7B92BB7B, 0xE9CE4EE9, 0xF10189F1, 0x9F1E6B9F, 0xA93453A9, 0xC4F16AC4,
|
||
0x99C3B499, 0x975BF197, 0x8347E183, 0x6B18E66B, 0xC822BDC8, 0x0E98450E,
|
||
0x6E1FE26E, 0xC9B3F4C9, 0x2F74B62F, 0xCBF866CB, 0xFF99CCFF, 0xEA1495EA,
|
||
0xED5803ED, 0xF7DC56F7, 0xE18BD4E1, 0x1B151C1B, 0xADA21EAD, 0x0CD3D70C,
|
||
0x2BE2FB2B, 0x1DC8C31D, 0x195E8E19, 0xC22CB5C2, 0x8949E989, 0x12C1CF12,
|
||
0x7E95BF7E, 0x207DBA20, 0x6411EA64, 0x840B7784, 0x6DC5396D, 0x6A89AF6A,
|
||
0xD17C33D1, 0xA171C9A1, 0xCEFF62CE, 0x37BB7137, 0xFB0F81FB, 0x3DB5793D,
|
||
0x51E10951, 0xDC3EADDC, 0x2D3F242D, 0xA476CDA4, 0x9D55F99D, 0xEE82D8EE,
|
||
0x8640E586, 0xAE78C5AE, 0xCD25B9CD, 0x04964D04, 0x55774455, 0x0A0E080A,
|
||
0x13508613, 0x30F7E730, 0xD337A1D3, 0x40FA1D40, 0x3461AA34, 0x8C4EED8C,
|
||
0xB3B006B3, 0x6C54706C, 0x2A73B22A, 0x523BD252, 0x0B9F410B, 0x8B027B8B,
|
||
0x88D8A088, 0x4FF3114F, 0x67CB3167, 0x4627C246, 0xC06727C0, 0xB4FC90B4,
|
||
0x28382028, 0x7F04F67F, 0x78486078, 0x2EE5FF2E, 0x074C9607, 0x4B655C4B,
|
||
0xC72BB1C7, 0x6F8EAB6F, 0x0D429E0D, 0xBBF59CBB, 0xF2DB52F2, 0xF34A1BF3,
|
||
0xA63D5FA6, 0x59A49359, 0xBCB90ABC, 0x3AF9EF3A, 0xEF1391EF, 0xFE0885FE,
|
||
0x01914901, 0x6116EE61, 0x7CDE2D7C, 0xB2214FB2, 0x42B18F42, 0xDB723BDB,
|
||
0xB82F47B8, 0x48BF8748, 0x2CAE6D2C, 0xE3C046E3, 0x573CD657, 0x859A3E85,
|
||
0x29A96929, 0x7D4F647D, 0x94812A94, 0x492ECE49, 0x17C6CB17, 0xCA692FCA,
|
||
0xC3BDFCC3, 0x5CA3975C, 0x5EE8055E, 0xD0ED7AD0, 0x87D1AC87, 0x8E057F8E,
|
||
0xBA64D5BA, 0xA8A51AA8, 0xB7264BB7, 0xB9BE0EB9, 0x6087A760, 0xF8D55AF8,
|
||
0x22362822, 0x111B1411, 0xDE753FDE, 0x79D92979, 0xAAEE88AA, 0x332D3C33,
|
||
0x5F794C5F, 0xB6B702B6, 0x96CAB896, 0x5835DA58, 0x9CC4B09C, 0xFC4317FC,
|
||
0x1A84551A, 0xF64D1FF6, 0x1C598A1C, 0x38B27D38, 0xAC3357AC, 0x18CFC718,
|
||
0xF4068DF4, 0x69537469, 0x749BB774, 0xF597C4F5, 0x56AD9F56, 0xDAE372DA,
|
||
0xD5EA7ED5, 0x4AF4154A, 0x9E8F229E, 0xA2AB12A2, 0x4E62584E, 0xE85F07E8,
|
||
0xE51D99E5, 0x39233439, 0xC1F66EC1, 0x446C5044, 0x5D32DE5D, 0x72466872,
|
||
0x26A06526, 0x93CDBC93, 0x03DADB03, 0xC6BAF8C6, 0xFA9EC8FA, 0x82D6A882,
|
||
0xCF6E2BCF, 0x50704050, 0xEB85DCEB, 0x750AFE75, 0x8A93328A, 0x8DDFA48D,
|
||
0x4C29CA4C, 0x141C1014, 0x73D72173, 0xCCB4F0CC, 0x09D4D309, 0x108A5D10,
|
||
0xE2510FE2, 0x00000000, 0x9A196F9A, 0xE01A9DE0, 0x8F94368F, 0xE6C742E6,
|
||
0xECC94AEC, 0xFDD25EFD, 0xAB7FC1AB, 0xD8A8E0D8}
|
||
};
|
||
|
||
/* The exp_to_poly and poly_to_exp tables are used to perform efficient
|
||
* operations in GF(2^8) represented as GF(2)[x]/w(x) where
|
||
* w(x)=x^8+x^6+x^3+x^2+1. We care about doing that because it's part of the
|
||
* definition of the RS matrix in the key schedule. Elements of that field
|
||
* are polynomials of degree not greater than 7 and all coefficients 0 or 1,
|
||
* which can be represented naturally by bytes (just substitute x=2). In that
|
||
* form, GF(2^8) addition is the same as bitwise XOR, but GF(2^8)
|
||
* multiplication is inefficient without hardware support. To multiply
|
||
* faster, I make use of the fact x is a generator for the nonzero elements,
|
||
* so that every element p of GF(2)[x]/w(x) is either 0 or equal to (x)^n for
|
||
* some n in 0..254. Note that that caret is exponentiation in GF(2^8),
|
||
* *not* polynomial notation. So if I want to compute pq where p and q are
|
||
* in GF(2^8), I can just say:
|
||
* 1. if p=0 or q=0 then pq=0
|
||
* 2. otherwise, find m and n such that p=x^m and q=x^n
|
||
* 3. pq=(x^m)(x^n)=x^(m+n), so add m and n and find pq
|
||
* The translations in steps 2 and 3 are looked up in the tables
|
||
* poly_to_exp (for step 2) and exp_to_poly (for step 3). To see this
|
||
* in action, look at the CALC_S macro. As additional wrinkles, note that
|
||
* one of my operands is always a constant, so the poly_to_exp lookup on it
|
||
* is done in advance; I included the original values in the comments so
|
||
* readers can have some chance of recognizing that this *is* the RS matrix
|
||
* from the Twofish paper. I've only included the table entries I actually
|
||
* need; I never do a lookup on a variable input of zero and the biggest
|
||
* exponents I'll ever see are 254 (variable) and 237 (constant), so they'll
|
||
* never sum to more than 491. I'm repeating part of the exp_to_poly table
|
||
* so that I don't have to do mod-255 reduction in the exponent arithmetic.
|
||
* Since I know my constant operands are never zero, I only have to worry
|
||
* about zero values in the variable operand, and I do it with a simple
|
||
* conditional branch. I know conditionals are expensive, but I couldn't
|
||
* see a non-horrible way of avoiding them, and I did manage to group the
|
||
* statements so that each if covers four group multiplications. */
|
||
|
||
static const byte poly_to_exp[255] = {
|
||
0x00, 0x01, 0x17, 0x02, 0x2E, 0x18, 0x53, 0x03, 0x6A, 0x2F, 0x93, 0x19,
|
||
0x34, 0x54, 0x45, 0x04, 0x5C, 0x6B, 0xB6, 0x30, 0xA6, 0x94, 0x4B, 0x1A,
|
||
0x8C, 0x35, 0x81, 0x55, 0xAA, 0x46, 0x0D, 0x05, 0x24, 0x5D, 0x87, 0x6C,
|
||
0x9B, 0xB7, 0xC1, 0x31, 0x2B, 0xA7, 0xA3, 0x95, 0x98, 0x4C, 0xCA, 0x1B,
|
||
0xE6, 0x8D, 0x73, 0x36, 0xCD, 0x82, 0x12, 0x56, 0x62, 0xAB, 0xF0, 0x47,
|
||
0x4F, 0x0E, 0xBD, 0x06, 0xD4, 0x25, 0xD2, 0x5E, 0x27, 0x88, 0x66, 0x6D,
|
||
0xD6, 0x9C, 0x79, 0xB8, 0x08, 0xC2, 0xDF, 0x32, 0x68, 0x2C, 0xFD, 0xA8,
|
||
0x8A, 0xA4, 0x5A, 0x96, 0x29, 0x99, 0x22, 0x4D, 0x60, 0xCB, 0xE4, 0x1C,
|
||
0x7B, 0xE7, 0x3B, 0x8E, 0x9E, 0x74, 0xF4, 0x37, 0xD8, 0xCE, 0xF9, 0x83,
|
||
0x6F, 0x13, 0xB2, 0x57, 0xE1, 0x63, 0xDC, 0xAC, 0xC4, 0xF1, 0xAF, 0x48,
|
||
0x0A, 0x50, 0x42, 0x0F, 0xBA, 0xBE, 0xC7, 0x07, 0xDE, 0xD5, 0x78, 0x26,
|
||
0x65, 0xD3, 0xD1, 0x5F, 0xE3, 0x28, 0x21, 0x89, 0x59, 0x67, 0xFC, 0x6E,
|
||
0xB1, 0xD7, 0xF8, 0x9D, 0xF3, 0x7A, 0x3A, 0xB9, 0xC6, 0x09, 0x41, 0xC3,
|
||
0xAE, 0xE0, 0xDB, 0x33, 0x44, 0x69, 0x92, 0x2D, 0x52, 0xFE, 0x16, 0xA9,
|
||
0x0C, 0x8B, 0x80, 0xA5, 0x4A, 0x5B, 0xB5, 0x97, 0xC9, 0x2A, 0xA2, 0x9A,
|
||
0xC0, 0x23, 0x86, 0x4E, 0xBC, 0x61, 0xEF, 0xCC, 0x11, 0xE5, 0x72, 0x1D,
|
||
0x3D, 0x7C, 0xEB, 0xE8, 0xE9, 0x3C, 0xEA, 0x8F, 0x7D, 0x9F, 0xEC, 0x75,
|
||
0x1E, 0xF5, 0x3E, 0x38, 0xF6, 0xD9, 0x3F, 0xCF, 0x76, 0xFA, 0x1F, 0x84,
|
||
0xA0, 0x70, 0xED, 0x14, 0x90, 0xB3, 0x7E, 0x58, 0xFB, 0xE2, 0x20, 0x64,
|
||
0xD0, 0xDD, 0x77, 0xAD, 0xDA, 0xC5, 0x40, 0xF2, 0x39, 0xB0, 0xF7, 0x49,
|
||
0xB4, 0x0B, 0x7F, 0x51, 0x15, 0x43, 0x91, 0x10, 0x71, 0xBB, 0xEE, 0xBF,
|
||
0x85, 0xC8, 0xA1
|
||
};
|
||
|
||
static const byte exp_to_poly[492] = {
|
||
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D, 0x9A, 0x79, 0xF2,
|
||
0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC, 0xF5, 0xA7, 0x03,
|
||
0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3, 0x8B, 0x5B, 0xB6,
|
||
0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52, 0xA4, 0x05, 0x0A,
|
||
0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0, 0xED, 0x97, 0x63,
|
||
0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1, 0x0F, 0x1E, 0x3C,
|
||
0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A, 0xF4, 0xA5, 0x07,
|
||
0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11, 0x22, 0x44, 0x88,
|
||
0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51, 0xA2, 0x09, 0x12,
|
||
0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66, 0xCC, 0xD5, 0xE7,
|
||
0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB, 0x1B, 0x36, 0x6C,
|
||
0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19, 0x32, 0x64, 0xC8,
|
||
0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D, 0x5A, 0xB4, 0x25,
|
||
0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56, 0xAC, 0x15, 0x2A,
|
||
0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE, 0x91, 0x6F, 0xDE,
|
||
0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9, 0x3F, 0x7E, 0xFC,
|
||
0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE, 0xB1, 0x2F, 0x5E,
|
||
0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41, 0x82, 0x49, 0x92,
|
||
0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E, 0x71, 0xE2, 0x89,
|
||
0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB, 0xDB, 0xFB, 0xBB,
|
||
0x3B, 0x76, 0xEC, 0x95, 0x67, 0xCE, 0xD1, 0xEF, 0x93, 0x6B, 0xD6, 0xE1,
|
||
0x8F, 0x53, 0xA6, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x4D,
|
||
0x9A, 0x79, 0xF2, 0xA9, 0x1F, 0x3E, 0x7C, 0xF8, 0xBD, 0x37, 0x6E, 0xDC,
|
||
0xF5, 0xA7, 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0xC0, 0xCD, 0xD7, 0xE3,
|
||
0x8B, 0x5B, 0xB6, 0x21, 0x42, 0x84, 0x45, 0x8A, 0x59, 0xB2, 0x29, 0x52,
|
||
0xA4, 0x05, 0x0A, 0x14, 0x28, 0x50, 0xA0, 0x0D, 0x1A, 0x34, 0x68, 0xD0,
|
||
0xED, 0x97, 0x63, 0xC6, 0xC1, 0xCF, 0xD3, 0xEB, 0x9B, 0x7B, 0xF6, 0xA1,
|
||
0x0F, 0x1E, 0x3C, 0x78, 0xF0, 0xAD, 0x17, 0x2E, 0x5C, 0xB8, 0x3D, 0x7A,
|
||
0xF4, 0xA5, 0x07, 0x0E, 0x1C, 0x38, 0x70, 0xE0, 0x8D, 0x57, 0xAE, 0x11,
|
||
0x22, 0x44, 0x88, 0x5D, 0xBA, 0x39, 0x72, 0xE4, 0x85, 0x47, 0x8E, 0x51,
|
||
0xA2, 0x09, 0x12, 0x24, 0x48, 0x90, 0x6D, 0xDA, 0xF9, 0xBF, 0x33, 0x66,
|
||
0xCC, 0xD5, 0xE7, 0x83, 0x4B, 0x96, 0x61, 0xC2, 0xC9, 0xDF, 0xF3, 0xAB,
|
||
0x1B, 0x36, 0x6C, 0xD8, 0xFD, 0xB7, 0x23, 0x46, 0x8C, 0x55, 0xAA, 0x19,
|
||
0x32, 0x64, 0xC8, 0xDD, 0xF7, 0xA3, 0x0B, 0x16, 0x2C, 0x58, 0xB0, 0x2D,
|
||
0x5A, 0xB4, 0x25, 0x4A, 0x94, 0x65, 0xCA, 0xD9, 0xFF, 0xB3, 0x2B, 0x56,
|
||
0xAC, 0x15, 0x2A, 0x54, 0xA8, 0x1D, 0x3A, 0x74, 0xE8, 0x9D, 0x77, 0xEE,
|
||
0x91, 0x6F, 0xDE, 0xF1, 0xAF, 0x13, 0x26, 0x4C, 0x98, 0x7D, 0xFA, 0xB9,
|
||
0x3F, 0x7E, 0xFC, 0xB5, 0x27, 0x4E, 0x9C, 0x75, 0xEA, 0x99, 0x7F, 0xFE,
|
||
0xB1, 0x2F, 0x5E, 0xBC, 0x35, 0x6A, 0xD4, 0xE5, 0x87, 0x43, 0x86, 0x41,
|
||
0x82, 0x49, 0x92, 0x69, 0xD2, 0xE9, 0x9F, 0x73, 0xE6, 0x81, 0x4F, 0x9E,
|
||
0x71, 0xE2, 0x89, 0x5F, 0xBE, 0x31, 0x62, 0xC4, 0xC5, 0xC7, 0xC3, 0xCB
|
||
};
|
||
|
||
|
||
/* The table constants are indices of
|
||
* S-box entries, preprocessed through q0 and q1. */
|
||
static byte calc_sb_tbl[512] = {
|
||
0xA9, 0x75, 0x67, 0xF3, 0xB3, 0xC6, 0xE8, 0xF4,
|
||
0x04, 0xDB, 0xFD, 0x7B, 0xA3, 0xFB, 0x76, 0xC8,
|
||
0x9A, 0x4A, 0x92, 0xD3, 0x80, 0xE6, 0x78, 0x6B,
|
||
0xE4, 0x45, 0xDD, 0x7D, 0xD1, 0xE8, 0x38, 0x4B,
|
||
0x0D, 0xD6, 0xC6, 0x32, 0x35, 0xD8, 0x98, 0xFD,
|
||
0x18, 0x37, 0xF7, 0x71, 0xEC, 0xF1, 0x6C, 0xE1,
|
||
0x43, 0x30, 0x75, 0x0F, 0x37, 0xF8, 0x26, 0x1B,
|
||
0xFA, 0x87, 0x13, 0xFA, 0x94, 0x06, 0x48, 0x3F,
|
||
0xF2, 0x5E, 0xD0, 0xBA, 0x8B, 0xAE, 0x30, 0x5B,
|
||
0x84, 0x8A, 0x54, 0x00, 0xDF, 0xBC, 0x23, 0x9D,
|
||
0x19, 0x6D, 0x5B, 0xC1, 0x3D, 0xB1, 0x59, 0x0E,
|
||
0xF3, 0x80, 0xAE, 0x5D, 0xA2, 0xD2, 0x82, 0xD5,
|
||
0x63, 0xA0, 0x01, 0x84, 0x83, 0x07, 0x2E, 0x14,
|
||
0xD9, 0xB5, 0x51, 0x90, 0x9B, 0x2C, 0x7C, 0xA3,
|
||
0xA6, 0xB2, 0xEB, 0x73, 0xA5, 0x4C, 0xBE, 0x54,
|
||
0x16, 0x92, 0x0C, 0x74, 0xE3, 0x36, 0x61, 0x51,
|
||
0xC0, 0x38, 0x8C, 0xB0, 0x3A, 0xBD, 0xF5, 0x5A,
|
||
0x73, 0xFC, 0x2C, 0x60, 0x25, 0x62, 0x0B, 0x96,
|
||
0xBB, 0x6C, 0x4E, 0x42, 0x89, 0xF7, 0x6B, 0x10,
|
||
0x53, 0x7C, 0x6A, 0x28, 0xB4, 0x27, 0xF1, 0x8C,
|
||
0xE1, 0x13, 0xE6, 0x95, 0xBD, 0x9C, 0x45, 0xC7,
|
||
0xE2, 0x24, 0xF4, 0x46, 0xB6, 0x3B, 0x66, 0x70,
|
||
0xCC, 0xCA, 0x95, 0xE3, 0x03, 0x85, 0x56, 0xCB,
|
||
0xD4, 0x11, 0x1C, 0xD0, 0x1E, 0x93, 0xD7, 0xB8,
|
||
0xFB, 0xA6, 0xC3, 0x83, 0x8E, 0x20, 0xB5, 0xFF,
|
||
0xE9, 0x9F, 0xCF, 0x77, 0xBF, 0xC3, 0xBA, 0xCC,
|
||
0xEA, 0x03, 0x77, 0x6F, 0x39, 0x08, 0xAF, 0xBF,
|
||
0x33, 0x40, 0xC9, 0xE7, 0x62, 0x2B, 0x71, 0xE2,
|
||
0x81, 0x79, 0x79, 0x0C, 0x09, 0xAA, 0xAD, 0x82,
|
||
0x24, 0x41, 0xCD, 0x3A, 0xF9, 0xEA, 0xD8, 0xB9,
|
||
0xE5, 0xE4, 0xC5, 0x9A, 0xB9, 0xA4, 0x4D, 0x97,
|
||
0x44, 0x7E, 0x08, 0xDA, 0x86, 0x7A, 0xE7, 0x17,
|
||
0xA1, 0x66, 0x1D, 0x94, 0xAA, 0xA1, 0xED, 0x1D,
|
||
0x06, 0x3D, 0x70, 0xF0, 0xB2, 0xDE, 0xD2, 0xB3,
|
||
0x41, 0x0B, 0x7B, 0x72, 0xA0, 0xA7, 0x11, 0x1C,
|
||
0x31, 0xEF, 0xC2, 0xD1, 0x27, 0x53, 0x90, 0x3E,
|
||
0x20, 0x8F, 0xF6, 0x33, 0x60, 0x26, 0xFF, 0x5F,
|
||
0x96, 0xEC, 0x5C, 0x76, 0xB1, 0x2A, 0xAB, 0x49,
|
||
0x9E, 0x81, 0x9C, 0x88, 0x52, 0xEE, 0x1B, 0x21,
|
||
0x5F, 0xC4, 0x93, 0x1A, 0x0A, 0xEB, 0xEF, 0xD9,
|
||
0x91, 0xC5, 0x85, 0x39, 0x49, 0x99, 0xEE, 0xCD,
|
||
0x2D, 0xAD, 0x4F, 0x31, 0x8F, 0x8B, 0x3B, 0x01,
|
||
0x47, 0x18, 0x87, 0x23, 0x6D, 0xDD, 0x46, 0x1F,
|
||
0xD6, 0x4E, 0x3E, 0x2D, 0x69, 0xF9, 0x64, 0x48,
|
||
0x2A, 0x4F, 0xCE, 0xF2, 0xCB, 0x65, 0x2F, 0x8E,
|
||
0xFC, 0x78, 0x97, 0x5C, 0x05, 0x58, 0x7A, 0x19,
|
||
0xAC, 0x8D, 0x7F, 0xE5, 0xD5, 0x98, 0x1A, 0x57,
|
||
0x4B, 0x67, 0x0E, 0x7F, 0xA7, 0x05, 0x5A, 0x64,
|
||
0x28, 0xAF, 0x14, 0x63, 0x3F, 0xB6, 0x29, 0xFE,
|
||
0x88, 0xF5, 0x3C, 0xB7, 0x4C, 0x3C, 0x02, 0xA5,
|
||
0xB8, 0xCE, 0xDA, 0xE9, 0xB0, 0x68, 0x17, 0x44,
|
||
0x55, 0xE0, 0x1F, 0x4D, 0x8A, 0x43, 0x7D, 0x69,
|
||
0x57, 0x29, 0xC7, 0x2E, 0x8D, 0xAC, 0x74, 0x15,
|
||
0xB7, 0x59, 0xC4, 0xA8, 0x9F, 0x0A, 0x72, 0x9E,
|
||
0x7E, 0x6E, 0x15, 0x47, 0x22, 0xDF, 0x12, 0x34,
|
||
0x58, 0x35, 0x07, 0x6A, 0x99, 0xCF, 0x34, 0xDC,
|
||
0x6E, 0x22, 0x50, 0xC9, 0xDE, 0xC0, 0x68, 0x9B,
|
||
0x65, 0x89, 0xBC, 0xD4, 0xDB, 0xED, 0xF8, 0xAB,
|
||
0xC8, 0x12, 0xA8, 0xA2, 0x2B, 0x0D, 0x40, 0x52,
|
||
0xDC, 0xBB, 0xFE, 0x02, 0x32, 0x2F, 0xA4, 0xA9,
|
||
0xCA, 0xD7, 0x10, 0x61, 0x21, 0x1E, 0xF0, 0xB4,
|
||
0xD3, 0x50, 0x5D, 0x04, 0x0F, 0xF6, 0x00, 0xC2,
|
||
0x6F, 0x16, 0x9D, 0x25, 0x36, 0x86, 0x42, 0x56,
|
||
0x4A, 0x55, 0x5E, 0x09, 0xC1, 0xBE, 0xE0, 0x91
|
||
};
|
||
/* Macro to perform one column of the RS matrix multiplication. The
|
||
* parameters a, b, c, and d are the four bytes of output; i is the index
|
||
* of the key bytes, and w, x, y, and z, are the column of constants from
|
||
* the RS matrix, preprocessed through the poly_to_exp table. */
|
||
|
||
#define CALC_S(a, b, c, d, i, w, x, y, z) \
|
||
if (key[i]) { \
|
||
tmp = poly_to_exp[key[i] - 1]; \
|
||
(a) ^= exp_to_poly[tmp + (w)]; \
|
||
(b) ^= exp_to_poly[tmp + (x)]; \
|
||
(c) ^= exp_to_poly[tmp + (y)]; \
|
||
(d) ^= exp_to_poly[tmp + (z)]; \
|
||
}
|
||
|
||
/* Macros to calculate the key-dependent S-boxes for a 128-bit key using
|
||
* the S vector from CALC_S. CALC_SB_2 computes a single entry in all
|
||
* four S-boxes, where i is the index of the entry to compute, and a and b
|
||
* are the index numbers preprocessed through the q0 and q1 tables
|
||
* respectively. CALC_SB is simply a convenience to make the code shorter;
|
||
* it calls CALC_SB_2 four times with consecutive indices from i to i+3,
|
||
* using the remaining parameters two by two. */
|
||
|
||
#define CALC_SB_2(i, a, b) \
|
||
ctx->s[0][i] = mds[0][q0[(a) ^ sa] ^ se]; \
|
||
ctx->s[1][i] = mds[1][q0[(b) ^ sb] ^ sf]; \
|
||
ctx->s[2][i] = mds[2][q1[(a) ^ sc] ^ sg]; \
|
||
ctx->s[3][i] = mds[3][q1[(b) ^ sd] ^ sh]
|
||
|
||
#define CALC_SB(i, a, b, c, d, e, f, g, h) \
|
||
CALC_SB_2 (i, a, b); CALC_SB_2 ((i)+1, c, d); \
|
||
CALC_SB_2 ((i)+2, e, f); CALC_SB_2 ((i)+3, g, h)
|
||
|
||
/* Macros exactly like CALC_SB and CALC_SB_2, but for 256-bit keys. */
|
||
|
||
#define CALC_SB256_2(i, a, b) \
|
||
ctx->s[0][i] = mds[0][q0[q0[q1[(b) ^ sa] ^ se] ^ si] ^ sm]; \
|
||
ctx->s[1][i] = mds[1][q0[q1[q1[(a) ^ sb] ^ sf] ^ sj] ^ sn]; \
|
||
ctx->s[2][i] = mds[2][q1[q0[q0[(a) ^ sc] ^ sg] ^ sk] ^ so]; \
|
||
ctx->s[3][i] = mds[3][q1[q1[q0[(b) ^ sd] ^ sh] ^ sl] ^ sp];
|
||
|
||
#define CALC_SB256(i, a, b, c, d, e, f, g, h) \
|
||
CALC_SB256_2 (i, a, b); CALC_SB256_2 ((i)+1, c, d); \
|
||
CALC_SB256_2 ((i)+2, e, f); CALC_SB256_2 ((i)+3, g, h)
|
||
|
||
/* Macros to calculate the whitening and round subkeys. CALC_K_2 computes the
|
||
* last two stages of the h() function for a given index (either 2i or 2i+1).
|
||
* a, b, c, and d are the four bytes going into the last two stages. For
|
||
* 128-bit keys, this is the entire h() function and a and c are the index
|
||
* preprocessed through q0 and q1 respectively; for longer keys they are the
|
||
* output of previous stages. j is the index of the first key byte to use.
|
||
* CALC_K computes a pair of subkeys for 128-bit Twofish, by calling CALC_K_2
|
||
* twice, doing the Psuedo-Hadamard Transform, and doing the necessary
|
||
* rotations. Its parameters are: a, the array to write the results into,
|
||
* j, the index of the first output entry, k and l, the preprocessed indices
|
||
* for index 2i, and m and n, the preprocessed indices for index 2i+1.
|
||
* CALC_K256_2 expands CALC_K_2 to handle 256-bit keys, by doing two
|
||
* additional lookup-and-XOR stages. The parameters a and b are the index
|
||
* preprocessed through q0 and q1 respectively; j is the index of the first
|
||
* key byte to use. CALC_K256 is identical to CALC_K but for using the
|
||
* CALC_K256_2 macro instead of CALC_K_2. */
|
||
|
||
#define CALC_K_2(a, b, c, d, j) \
|
||
mds[0][q0[a ^ key[(j) + 8]] ^ key[j]] \
|
||
^ mds[1][q0[b ^ key[(j) + 9]] ^ key[(j) + 1]] \
|
||
^ mds[2][q1[c ^ key[(j) + 10]] ^ key[(j) + 2]] \
|
||
^ mds[3][q1[d ^ key[(j) + 11]] ^ key[(j) + 3]]
|
||
|
||
#define CALC_K(a, j, k, l, m, n) \
|
||
x = CALC_K_2 (k, l, k, l, 0); \
|
||
y = CALC_K_2 (m, n, m, n, 4); \
|
||
y = (y << 8) + (y >> 24); \
|
||
x += y; y += x; ctx->a[j] = x; \
|
||
ctx->a[(j) + 1] = (y << 9) + (y >> 23)
|
||
|
||
#define CALC_K256_2(a, b, j) \
|
||
CALC_K_2 (q0[q1[b ^ key[(j) + 24]] ^ key[(j) + 16]], \
|
||
q1[q1[a ^ key[(j) + 25]] ^ key[(j) + 17]], \
|
||
q0[q0[a ^ key[(j) + 26]] ^ key[(j) + 18]], \
|
||
q1[q0[b ^ key[(j) + 27]] ^ key[(j) + 19]], j)
|
||
|
||
#define CALC_K256(a, j, k, l, m, n) \
|
||
x = CALC_K256_2 (k, l, 0); \
|
||
y = CALC_K256_2 (m, n, 4); \
|
||
y = (y << 8) + (y >> 24); \
|
||
x += y; y += x; ctx->a[j] = x; \
|
||
ctx->a[(j) + 1] = (y << 9) + (y >> 23)
|
||
|
||
/* Perform the key setup. Note that this works only with 128- and 256-bit
|
||
* keys, despite the API that looks like it might support other sizes. */
|
||
|
||
static int
|
||
twofish_setkey (TWOFISH_context *ctx, const byte *key, const unsigned keylen)
|
||
{
|
||
int i, j, k;
|
||
|
||
/* Temporaries for CALC_K. */
|
||
u32 x, y;
|
||
|
||
/* The S vector used to key the S-boxes, split up into individual bytes.
|
||
* 128-bit keys use only sa through sh; 256-bit use all of them. */
|
||
byte sa = 0, sb = 0, sc = 0, sd = 0, se = 0, sf = 0, sg = 0, sh = 0;
|
||
byte si = 0, sj = 0, sk = 0, sl = 0, sm = 0, sn = 0, so = 0, sp = 0;
|
||
|
||
/* Temporary for CALC_S. */
|
||
byte tmp;
|
||
|
||
/* Flags for self-test. */
|
||
static int initialized = 0;
|
||
static const char *selftest_failed=0;
|
||
|
||
/* Check key length. */
|
||
if( ( ( keylen - 16 ) | 16 ) != 16 )
|
||
return GCRYERR_INV_KEYLEN;
|
||
|
||
/* Do self-test if necessary. */
|
||
if (!initialized) {
|
||
initialized = 1;
|
||
selftest_failed = selftest ();
|
||
if( selftest_failed )
|
||
fprintf(stderr, "%s\n", selftest_failed );
|
||
}
|
||
if( selftest_failed )
|
||
return GCRYERR_SELFTEST;
|
||
|
||
/* Compute the first two words of the S vector. The magic numbers are
|
||
* the entries of the RS matrix, preprocessed through poly_to_exp. The
|
||
* numbers in the comments are the original (polynomial form) matrix
|
||
* entries. */
|
||
CALC_S (sa, sb, sc, sd, 0, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
|
||
CALC_S (sa, sb, sc, sd, 1, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
|
||
CALC_S (sa, sb, sc, sd, 2, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
|
||
CALC_S (sa, sb, sc, sd, 3, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
|
||
CALC_S (sa, sb, sc, sd, 4, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
|
||
CALC_S (sa, sb, sc, sd, 5, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
|
||
CALC_S (sa, sb, sc, sd, 6, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
|
||
CALC_S (sa, sb, sc, sd, 7, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
|
||
CALC_S (se, sf, sg, sh, 8, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
|
||
CALC_S (se, sf, sg, sh, 9, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
|
||
CALC_S (se, sf, sg, sh, 10, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
|
||
CALC_S (se, sf, sg, sh, 11, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
|
||
CALC_S (se, sf, sg, sh, 12, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
|
||
CALC_S (se, sf, sg, sh, 13, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
|
||
CALC_S (se, sf, sg, sh, 14, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
|
||
CALC_S (se, sf, sg, sh, 15, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
|
||
|
||
if (keylen == 32) { /* 256-bit key */
|
||
/* Calculate the remaining two words of the S vector */
|
||
CALC_S (si, sj, sk, sl, 16, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
|
||
CALC_S (si, sj, sk, sl, 17, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
|
||
CALC_S (si, sj, sk, sl, 18, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
|
||
CALC_S (si, sj, sk, sl, 19, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
|
||
CALC_S (si, sj, sk, sl, 20, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
|
||
CALC_S (si, sj, sk, sl, 21, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
|
||
CALC_S (si, sj, sk, sl, 22, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
|
||
CALC_S (si, sj, sk, sl, 23, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
|
||
CALC_S (sm, sn, so, sp, 24, 0x00, 0x2D, 0x01, 0x2D); /* 01 A4 02 A4 */
|
||
CALC_S (sm, sn, so, sp, 25, 0x2D, 0xA4, 0x44, 0x8A); /* A4 56 A1 55 */
|
||
CALC_S (sm, sn, so, sp, 26, 0x8A, 0xD5, 0xBF, 0xD1); /* 55 82 FC 87 */
|
||
CALC_S (sm, sn, so, sp, 27, 0xD1, 0x7F, 0x3D, 0x99); /* 87 F3 C1 5A */
|
||
CALC_S (sm, sn, so, sp, 28, 0x99, 0x46, 0x66, 0x96); /* 5A 1E 47 58 */
|
||
CALC_S (sm, sn, so, sp, 29, 0x96, 0x3C, 0x5B, 0xED); /* 58 C6 AE DB */
|
||
CALC_S (sm, sn, so, sp, 30, 0xED, 0x37, 0x4F, 0xE0); /* DB 68 3D 9E */
|
||
CALC_S (sm, sn, so, sp, 31, 0xE0, 0xD0, 0x8C, 0x17); /* 9E E5 19 03 */
|
||
|
||
/* Compute the S-boxes. */
|
||
for(i=j=0,k=1; i < 256; i++, j += 2, k += 2 ) {
|
||
CALC_SB256_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
|
||
}
|
||
|
||
/* Calculate whitening and round subkeys. The constants are
|
||
* indices of subkeys, preprocessed through q0 and q1. */
|
||
CALC_K256 (w, 0, 0xA9, 0x75, 0x67, 0xF3);
|
||
CALC_K256 (w, 2, 0xB3, 0xC6, 0xE8, 0xF4);
|
||
CALC_K256 (w, 4, 0x04, 0xDB, 0xFD, 0x7B);
|
||
CALC_K256 (w, 6, 0xA3, 0xFB, 0x76, 0xC8);
|
||
CALC_K256 (k, 0, 0x9A, 0x4A, 0x92, 0xD3);
|
||
CALC_K256 (k, 2, 0x80, 0xE6, 0x78, 0x6B);
|
||
CALC_K256 (k, 4, 0xE4, 0x45, 0xDD, 0x7D);
|
||
CALC_K256 (k, 6, 0xD1, 0xE8, 0x38, 0x4B);
|
||
CALC_K256 (k, 8, 0x0D, 0xD6, 0xC6, 0x32);
|
||
CALC_K256 (k, 10, 0x35, 0xD8, 0x98, 0xFD);
|
||
CALC_K256 (k, 12, 0x18, 0x37, 0xF7, 0x71);
|
||
CALC_K256 (k, 14, 0xEC, 0xF1, 0x6C, 0xE1);
|
||
CALC_K256 (k, 16, 0x43, 0x30, 0x75, 0x0F);
|
||
CALC_K256 (k, 18, 0x37, 0xF8, 0x26, 0x1B);
|
||
CALC_K256 (k, 20, 0xFA, 0x87, 0x13, 0xFA);
|
||
CALC_K256 (k, 22, 0x94, 0x06, 0x48, 0x3F);
|
||
CALC_K256 (k, 24, 0xF2, 0x5E, 0xD0, 0xBA);
|
||
CALC_K256 (k, 26, 0x8B, 0xAE, 0x30, 0x5B);
|
||
CALC_K256 (k, 28, 0x84, 0x8A, 0x54, 0x00);
|
||
CALC_K256 (k, 30, 0xDF, 0xBC, 0x23, 0x9D);
|
||
}
|
||
else {
|
||
/* Compute the S-boxes. */
|
||
for(i=j=0,k=1; i < 256; i++, j += 2, k += 2 ) {
|
||
CALC_SB_2( i, calc_sb_tbl[j], calc_sb_tbl[k] );
|
||
}
|
||
|
||
/* Calculate whitening and round subkeys. The constants are
|
||
* indices of subkeys, preprocessed through q0 and q1. */
|
||
CALC_K (w, 0, 0xA9, 0x75, 0x67, 0xF3);
|
||
CALC_K (w, 2, 0xB3, 0xC6, 0xE8, 0xF4);
|
||
CALC_K (w, 4, 0x04, 0xDB, 0xFD, 0x7B);
|
||
CALC_K (w, 6, 0xA3, 0xFB, 0x76, 0xC8);
|
||
CALC_K (k, 0, 0x9A, 0x4A, 0x92, 0xD3);
|
||
CALC_K (k, 2, 0x80, 0xE6, 0x78, 0x6B);
|
||
CALC_K (k, 4, 0xE4, 0x45, 0xDD, 0x7D);
|
||
CALC_K (k, 6, 0xD1, 0xE8, 0x38, 0x4B);
|
||
CALC_K (k, 8, 0x0D, 0xD6, 0xC6, 0x32);
|
||
CALC_K (k, 10, 0x35, 0xD8, 0x98, 0xFD);
|
||
CALC_K (k, 12, 0x18, 0x37, 0xF7, 0x71);
|
||
CALC_K (k, 14, 0xEC, 0xF1, 0x6C, 0xE1);
|
||
CALC_K (k, 16, 0x43, 0x30, 0x75, 0x0F);
|
||
CALC_K (k, 18, 0x37, 0xF8, 0x26, 0x1B);
|
||
CALC_K (k, 20, 0xFA, 0x87, 0x13, 0xFA);
|
||
CALC_K (k, 22, 0x94, 0x06, 0x48, 0x3F);
|
||
CALC_K (k, 24, 0xF2, 0x5E, 0xD0, 0xBA);
|
||
CALC_K (k, 26, 0x8B, 0xAE, 0x30, 0x5B);
|
||
CALC_K (k, 28, 0x84, 0x8A, 0x54, 0x00);
|
||
CALC_K (k, 30, 0xDF, 0xBC, 0x23, 0x9D);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Macros to compute the g() function in the encryption and decryption
|
||
* rounds. G1 is the straight g() function; G2 includes the 8-bit
|
||
* rotation for the high 32-bit word. */
|
||
|
||
#define G1(a) \
|
||
(ctx->s[0][(a) & 0xFF]) ^ (ctx->s[1][((a) >> 8) & 0xFF]) \
|
||
^ (ctx->s[2][((a) >> 16) & 0xFF]) ^ (ctx->s[3][(a) >> 24])
|
||
|
||
#define G2(b) \
|
||
(ctx->s[1][(b) & 0xFF]) ^ (ctx->s[2][((b) >> 8) & 0xFF]) \
|
||
^ (ctx->s[3][((b) >> 16) & 0xFF]) ^ (ctx->s[0][(b) >> 24])
|
||
|
||
/* Encryption and decryption Feistel rounds. Each one calls the two g()
|
||
* macros, does the PHT, and performs the XOR and the appropriate bit
|
||
* rotations. The parameters are the round number (used to select subkeys),
|
||
* and the four 32-bit chunks of the text. */
|
||
|
||
#define ENCROUND(n, a, b, c, d) \
|
||
x = G1 (a); y = G2 (b); \
|
||
x += y; y += x + ctx->k[2 * (n) + 1]; \
|
||
(c) ^= x + ctx->k[2 * (n)]; \
|
||
(c) = ((c) >> 1) + ((c) << 31); \
|
||
(d) = (((d) << 1)+((d) >> 31)) ^ y
|
||
|
||
#define DECROUND(n, a, b, c, d) \
|
||
x = G1 (a); y = G2 (b); \
|
||
x += y; y += x; \
|
||
(d) ^= y + ctx->k[2 * (n) + 1]; \
|
||
(d) = ((d) >> 1) + ((d) << 31); \
|
||
(c) = (((c) << 1)+((c) >> 31)); \
|
||
(c) ^= (x + ctx->k[2 * (n)])
|
||
|
||
/* Encryption and decryption cycles; each one is simply two Feistel rounds
|
||
* with the 32-bit chunks re-ordered to simulate the "swap" */
|
||
|
||
#define ENCCYCLE(n) \
|
||
ENCROUND (2 * (n), a, b, c, d); \
|
||
ENCROUND (2 * (n) + 1, c, d, a, b)
|
||
|
||
#define DECCYCLE(n) \
|
||
DECROUND (2 * (n) + 1, c, d, a, b); \
|
||
DECROUND (2 * (n), a, b, c, d)
|
||
|
||
/* Macros to convert the input and output bytes into 32-bit words,
|
||
* and simultaneously perform the whitening step. INPACK packs word
|
||
* number n into the variable named by x, using whitening subkey number m.
|
||
* OUTUNPACK unpacks word number n from the variable named by x, using
|
||
* whitening subkey number m. */
|
||
|
||
#define INPACK(n, x, m) \
|
||
x = in[4 * (n)] ^ (in[4 * (n) + 1] << 8) \
|
||
^ (in[4 * (n) + 2] << 16) ^ (in[4 * (n) + 3] << 24) ^ ctx->w[m]
|
||
|
||
#define OUTUNPACK(n, x, m) \
|
||
x ^= ctx->w[m]; \
|
||
out[4 * (n)] = x; out[4 * (n) + 1] = x >> 8; \
|
||
out[4 * (n) + 2] = x >> 16; out[4 * (n) + 3] = x >> 24
|
||
|
||
/* Encrypt one block. in and out may be the same. */
|
||
|
||
static void
|
||
twofish_encrypt (const TWOFISH_context *ctx, byte *out, const byte *in)
|
||
{
|
||
/* The four 32-bit chunks of the text. */
|
||
u32 a, b, c, d;
|
||
|
||
/* Temporaries used by the round function. */
|
||
u32 x, y;
|
||
|
||
/* Input whitening and packing. */
|
||
INPACK (0, a, 0);
|
||
INPACK (1, b, 1);
|
||
INPACK (2, c, 2);
|
||
INPACK (3, d, 3);
|
||
|
||
/* Encryption Feistel cycles. */
|
||
ENCCYCLE (0);
|
||
ENCCYCLE (1);
|
||
ENCCYCLE (2);
|
||
ENCCYCLE (3);
|
||
ENCCYCLE (4);
|
||
ENCCYCLE (5);
|
||
ENCCYCLE (6);
|
||
ENCCYCLE (7);
|
||
|
||
/* Output whitening and unpacking. */
|
||
OUTUNPACK (0, c, 4);
|
||
OUTUNPACK (1, d, 5);
|
||
OUTUNPACK (2, a, 6);
|
||
OUTUNPACK (3, b, 7);
|
||
}
|
||
|
||
/* Decrypt one block. in and out may be the same. */
|
||
|
||
static void
|
||
twofish_decrypt (const TWOFISH_context *ctx, byte *out, const byte *in)
|
||
{
|
||
/* The four 32-bit chunks of the text. */
|
||
u32 a, b, c, d;
|
||
|
||
/* Temporaries used by the round function. */
|
||
u32 x, y;
|
||
|
||
/* Input whitening and packing. */
|
||
INPACK (0, c, 4);
|
||
INPACK (1, d, 5);
|
||
INPACK (2, a, 6);
|
||
INPACK (3, b, 7);
|
||
|
||
/* Encryption Feistel cycles. */
|
||
DECCYCLE (7);
|
||
DECCYCLE (6);
|
||
DECCYCLE (5);
|
||
DECCYCLE (4);
|
||
DECCYCLE (3);
|
||
DECCYCLE (2);
|
||
DECCYCLE (1);
|
||
DECCYCLE (0);
|
||
|
||
/* Output whitening and unpacking. */
|
||
OUTUNPACK (0, a, 0);
|
||
OUTUNPACK (1, b, 1);
|
||
OUTUNPACK (2, c, 2);
|
||
OUTUNPACK (3, d, 3);
|
||
}
|
||
|
||
/* Test a single encryption and decryption with each key size. */
|
||
|
||
static const char*
|
||
selftest (void)
|
||
{
|
||
TWOFISH_context ctx; /* Expanded key. */
|
||
byte scratch[16]; /* Encryption/decryption result buffer. */
|
||
|
||
/* Test vectors for single encryption/decryption. Note that I am using
|
||
* the vectors from the Twofish paper's "known answer test", I=3 for
|
||
* 128-bit and I=4 for 256-bit, instead of the all-0 vectors from the
|
||
* "intermediate value test", because an all-0 key would trigger all the
|
||
* special cases in the RS matrix multiply, leaving the math untested. */
|
||
static const byte plaintext[16] = {
|
||
0xD4, 0x91, 0xDB, 0x16, 0xE7, 0xB1, 0xC3, 0x9E,
|
||
0x86, 0xCB, 0x08, 0x6B, 0x78, 0x9F, 0x54, 0x19
|
||
};
|
||
static const byte key[16] = {
|
||
0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32,
|
||
0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A
|
||
};
|
||
static const byte ciphertext[16] = {
|
||
0x01, 0x9F, 0x98, 0x09, 0xDE, 0x17, 0x11, 0x85,
|
||
0x8F, 0xAA, 0xC3, 0xA3, 0xBA, 0x20, 0xFB, 0xC3
|
||
};
|
||
static const byte plaintext_256[16] = {
|
||
0x90, 0xAF, 0xE9, 0x1B, 0xB2, 0x88, 0x54, 0x4F,
|
||
0x2C, 0x32, 0xDC, 0x23, 0x9B, 0x26, 0x35, 0xE6
|
||
};
|
||
static const byte key_256[32] = {
|
||
0xD4, 0x3B, 0xB7, 0x55, 0x6E, 0xA3, 0x2E, 0x46,
|
||
0xF2, 0xA2, 0x82, 0xB7, 0xD4, 0x5B, 0x4E, 0x0D,
|
||
0x57, 0xFF, 0x73, 0x9D, 0x4D, 0xC9, 0x2C, 0x1B,
|
||
0xD7, 0xFC, 0x01, 0x70, 0x0C, 0xC8, 0x21, 0x6F
|
||
};
|
||
static const byte ciphertext_256[16] = {
|
||
0x6C, 0xB4, 0x56, 0x1C, 0x40, 0xBF, 0x0A, 0x97,
|
||
0x05, 0x93, 0x1C, 0xB6, 0xD4, 0x08, 0xE7, 0xFA
|
||
};
|
||
|
||
twofish_setkey (&ctx, key, sizeof(key));
|
||
twofish_encrypt (&ctx, scratch, plaintext);
|
||
if (memcmp (scratch, ciphertext, sizeof (ciphertext)))
|
||
return "Twofish-128 test encryption failed.";
|
||
twofish_decrypt (&ctx, scratch, scratch);
|
||
if (memcmp (scratch, plaintext, sizeof (plaintext)))
|
||
return "Twofish-128 test decryption failed.";
|
||
|
||
twofish_setkey (&ctx, key_256, sizeof(key_256));
|
||
twofish_encrypt (&ctx, scratch, plaintext_256);
|
||
if (memcmp (scratch, ciphertext_256, sizeof (ciphertext_256)))
|
||
return "Twofish-256 test encryption failed.";
|
||
twofish_decrypt (&ctx, scratch, scratch);
|
||
if (memcmp (scratch, plaintext_256, sizeof (plaintext_256)))
|
||
return "Twofish-256 test decryption failed.";
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* More complete test program. This does 1000 encryptions and decryptions
|
||
* with each of 250 128-bit keys and 2000 encryptions and decryptions with
|
||
* each of 125 256-bit keys, using a feedback scheme similar to a Feistel
|
||
* cipher, so as to be sure of testing all the table entries pretty
|
||
* thoroughly. We keep changing the keys so as to get a more meaningful
|
||
* performance number, since the key setup is non-trivial for Twofish. */
|
||
|
||
#ifdef TEST
|
||
|
||
#include <stdio.h>
|
||
#include <string.h>
|
||
#include <time.h>
|
||
|
||
int
|
||
main()
|
||
{
|
||
TWOFISH_context ctx; /* Expanded key. */
|
||
int i, j; /* Loop counters. */
|
||
|
||
const char *encrypt_msg; /* Message to print regarding encryption test;
|
||
* the printf is done outside the loop to avoid
|
||
* stuffing up the timing. */
|
||
clock_t timer; /* For computing elapsed time. */
|
||
|
||
/* Test buffer. */
|
||
byte buffer[4][16] = {
|
||
{0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
|
||
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF},
|
||
{0x0F, 0x1E, 0x2D, 0x3C, 0x4B, 0x5A, 0x69, 0x78,
|
||
0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2 ,0xE1, 0xF0},
|
||
{0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF,
|
||
0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54 ,0x32, 0x10},
|
||
{0x01, 0x23, 0x45, 0x67, 0x76, 0x54 ,0x32, 0x10,
|
||
0x89, 0xAB, 0xCD, 0xEF, 0xFE, 0xDC, 0xBA, 0x98}
|
||
};
|
||
|
||
/* Expected outputs for the million-operation test */
|
||
static const byte test_encrypt[4][16] = {
|
||
{0xC8, 0x23, 0xB8, 0xB7, 0x6B, 0xFE, 0x91, 0x13,
|
||
0x2F, 0xA7, 0x5E, 0xE6, 0x94, 0x77, 0x6F, 0x6B},
|
||
{0x90, 0x36, 0xD8, 0x29, 0xD5, 0x96, 0xC2, 0x8E,
|
||
0xE4, 0xFF, 0x76, 0xBC, 0xE5, 0x77, 0x88, 0x27},
|
||
{0xB8, 0x78, 0x69, 0xAF, 0x42, 0x8B, 0x48, 0x64,
|
||
0xF7, 0xE9, 0xF3, 0x9C, 0x42, 0x18, 0x7B, 0x73},
|
||
{0x7A, 0x88, 0xFB, 0xEB, 0x90, 0xA4, 0xB4, 0xA8,
|
||
0x43, 0xA3, 0x1D, 0xF1, 0x26, 0xC4, 0x53, 0x57}
|
||
};
|
||
static const byte test_decrypt[4][16] = {
|
||
{0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
|
||
0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF},
|
||
{0x0F, 0x1E, 0x2D, 0x3C, 0x4B, 0x5A, 0x69, 0x78,
|
||
0x87, 0x96, 0xA5, 0xB4, 0xC3, 0xD2 ,0xE1, 0xF0},
|
||
{0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF,
|
||
0xFE, 0xDC, 0xBA, 0x98, 0x76, 0x54 ,0x32, 0x10},
|
||
{0x01, 0x23, 0x45, 0x67, 0x76, 0x54 ,0x32, 0x10,
|
||
0x89, 0xAB, 0xCD, 0xEF, 0xFE, 0xDC, 0xBA, 0x98}
|
||
};
|
||
|
||
/* Start the timer ticking. */
|
||
timer = clock ();
|
||
|
||
/* Encryption test. */
|
||
for (i = 0; i < 125; i++) {
|
||
twofish_setkey (&ctx, buffer[0], sizeof (buffer[0]));
|
||
for (j = 0; j < 1000; j++)
|
||
twofish_encrypt (&ctx, buffer[2], buffer[2]);
|
||
twofish_setkey (&ctx, buffer[1], sizeof (buffer[1]));
|
||
for (j = 0; j < 1000; j++)
|
||
twofish_encrypt (&ctx, buffer[3], buffer[3]);
|
||
twofish_setkey (&ctx, buffer[2], sizeof (buffer[2])*2);
|
||
for (j = 0; j < 1000; j++) {
|
||
twofish_encrypt (&ctx, buffer[0], buffer[0]);
|
||
twofish_encrypt (&ctx, buffer[1], buffer[1]);
|
||
}
|
||
}
|
||
encrypt_msg = memcmp (buffer, test_encrypt, sizeof (test_encrypt)) ?
|
||
"encryption failure!\n" : "encryption OK!\n";
|
||
|
||
/* Decryption test. */
|
||
for (i = 0; i < 125; i++) {
|
||
twofish_setkey (&ctx, buffer[2], sizeof (buffer[2])*2);
|
||
for (j = 0; j < 1000; j++) {
|
||
twofish_decrypt (&ctx, buffer[0], buffer[0]);
|
||
twofish_decrypt (&ctx, buffer[1], buffer[1]);
|
||
}
|
||
twofish_setkey (&ctx, buffer[1], sizeof (buffer[1]));
|
||
for (j = 0; j < 1000; j++)
|
||
twofish_decrypt (&ctx, buffer[3], buffer[3]);
|
||
twofish_setkey (&ctx, buffer[0], sizeof (buffer[0]));
|
||
for (j = 0; j < 1000; j++)
|
||
twofish_decrypt (&ctx, buffer[2], buffer[2]);
|
||
}
|
||
|
||
/* Stop the timer, and print results. */
|
||
timer = clock () - timer;
|
||
printf (encrypt_msg);
|
||
printf (memcmp (buffer, test_decrypt, sizeof (test_decrypt)) ?
|
||
"decryption failure!\n" : "decryption OK!\n");
|
||
printf ("elapsed time: %.1f s.\n", (float) timer / CLOCKS_PER_SEC);
|
||
|
||
return 0;
|
||
}
|
||
|
||
#endif /* TEST */
|
||
|
||
#ifdef IS_MODULE
|
||
static
|
||
#endif
|
||
const char *
|
||
twofish_get_info (int algo, size_t *keylen,
|
||
size_t *blocksize, size_t *contextsize,
|
||
int (**r_setkey) (void *c, byte *key, unsigned keylen),
|
||
void (**r_encrypt) (void *c, byte *outbuf, byte *inbuf),
|
||
void (**r_decrypt) (void *c, byte *outbuf, byte *inbuf)
|
||
)
|
||
{
|
||
*keylen = algo==10? 256 : 128;
|
||
*blocksize = 16;
|
||
*contextsize = sizeof (TWOFISH_context);
|
||
*r_setkey = FNCCAST_SETKEY (twofish_setkey);
|
||
*r_encrypt= FNCCAST_CRYPT (twofish_encrypt);
|
||
*r_decrypt= FNCCAST_CRYPT (twofish_decrypt);
|
||
|
||
if( algo == 10 )
|
||
return "TWOFISH";
|
||
if (algo == 102) /* This algorithm number is assigned for
|
||
* experiments, so we can use it */
|
||
return "TWOFISH128";
|
||
return NULL;
|
||
}
|
||
|
||
|
||
const char * const gnupgext_version = "TWOFISH ($Revision$)";
|
||
|
||
static struct {
|
||
int class;
|
||
int version;
|
||
int value;
|
||
void (*func)(void);
|
||
} func_table[] = {
|
||
{ 20, 1, 0, (void(*)(void))twofish_get_info },
|
||
{ 21, 1, 10 },
|
||
{ 21, 1, 102 },
|
||
};
|
||
|
||
|
||
|
||
/****************
|
||
* Enumerate the names of the functions together with information about
|
||
* this function. Set sequence to an integer with a initial value of 0 and
|
||
* do not change it.
|
||
* If what is 0 all kind of functions are returned.
|
||
* Return values: class := class of function:
|
||
* 10 = message digest algorithm info function
|
||
* 11 = integer with available md algorithms
|
||
* 20 = cipher algorithm info function
|
||
* 21 = integer with available cipher algorithms
|
||
* 30 = public key algorithm info function
|
||
* 31 = integer with available pubkey algorithms
|
||
* version = interface version of the function/pointer
|
||
* (currently this is 1 for all functions)
|
||
*/
|
||
void *
|
||
gnupgext_enum_func ( int what, int *sequence, int *class, int *vers )
|
||
{
|
||
void *ret;
|
||
int i = *sequence;
|
||
|
||
do {
|
||
if ( i >= DIM(func_table) || i < 0 ) {
|
||
return NULL;
|
||
}
|
||
*class = func_table[i].class;
|
||
*vers = func_table[i].version;
|
||
switch( *class ) {
|
||
case 11:
|
||
case 21:
|
||
case 31:
|
||
ret = &func_table[i].value;
|
||
break;
|
||
default:
|
||
ret = func_table[i].func;
|
||
break;
|
||
}
|
||
i++;
|
||
} while ( what && what != *class );
|
||
|
||
*sequence = i;
|
||
return ret;
|
||
}
|
||
|