1
0
mirror of git://git.gnupg.org/gnupg.git synced 2025-01-11 13:14:25 +01:00
2002-08-03 10:50:53 +00:00

560 lines
15 KiB
C

/* pubkey.c - pubkey dispatcher
* Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include "util.h"
#include "errors.h"
#include "mpi.h"
#include "cipher.h"
#include "elgamal.h"
#include "dsa.h"
#include "rsa.h"
#define TABLE_SIZE 10
struct pubkey_table_s {
const char *name;
int algo;
int npkey;
int nskey;
int nenc;
int nsig;
int use;
int (*generate)( int algo, unsigned nbits, MPI *skey, MPI **retfactors );
int (*check_secret_key)( int algo, MPI *skey );
int (*encrypt)( int algo, MPI *resarr, MPI data, MPI *pkey );
int (*decrypt)( int algo, MPI *result, MPI *data, MPI *skey );
int (*sign)( int algo, MPI *resarr, MPI data, MPI *skey );
int (*verify)( int algo, MPI hash, MPI *data, MPI *pkey,
int (*cmp)(void *, MPI), void *opaquev );
unsigned (*get_nbits)( int algo, MPI *pkey );
};
static struct pubkey_table_s pubkey_table[TABLE_SIZE];
static int disabled_algos[TABLE_SIZE];
#if 0
static int
dummy_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors )
{ log_bug("no generate() for %d\n", algo ); return G10ERR_PUBKEY_ALGO; }
static int
dummy_check_secret_key( int algo, MPI *skey )
{ log_bug("no check_secret_key() for %d\n", algo ); return G10ERR_PUBKEY_ALGO; }
#endif
static int
dummy_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey )
{ log_bug("no encrypt() for %d\n", algo ); return G10ERR_PUBKEY_ALGO; }
static int
dummy_decrypt( int algo, MPI *result, MPI *data, MPI *skey )
{ log_bug("no decrypt() for %d\n", algo ); return G10ERR_PUBKEY_ALGO; }
static int
dummy_sign( int algo, MPI *resarr, MPI data, MPI *skey )
{ log_bug("no sign() for %d\n", algo ); return G10ERR_PUBKEY_ALGO; }
static int
dummy_verify( int algo, MPI hash, MPI *data, MPI *pkey,
int (*cmp)(void *, MPI), void *opaquev )
{ log_bug("no verify() for %d\n", algo ); return G10ERR_PUBKEY_ALGO; }
#if 0
static unsigned
dummy_get_nbits( int algo, MPI *pkey )
{ log_bug("no get_nbits() for %d\n", algo ); return 0; }
#endif
/****************
* Put the static entries into the table.
* This is out constructor function which fill the table
* of algorithms with the one we have statically linked.
*/
static void
setup_pubkey_table(void)
{
int i;
i = 0;
pubkey_table[i].algo = PUBKEY_ALGO_ELGAMAL;
pubkey_table[i].name = elg_get_info( pubkey_table[i].algo,
&pubkey_table[i].npkey,
&pubkey_table[i].nskey,
&pubkey_table[i].nenc,
&pubkey_table[i].nsig,
&pubkey_table[i].use );
pubkey_table[i].generate = elg_generate;
pubkey_table[i].check_secret_key = elg_check_secret_key;
pubkey_table[i].encrypt = elg_encrypt;
pubkey_table[i].decrypt = elg_decrypt;
pubkey_table[i].sign = elg_sign;
pubkey_table[i].verify = elg_verify;
pubkey_table[i].get_nbits = elg_get_nbits;
if( !pubkey_table[i].name )
BUG();
i++;
pubkey_table[i].algo = PUBKEY_ALGO_ELGAMAL_E;
pubkey_table[i].name = elg_get_info( pubkey_table[i].algo,
&pubkey_table[i].npkey,
&pubkey_table[i].nskey,
&pubkey_table[i].nenc,
&pubkey_table[i].nsig,
&pubkey_table[i].use );
pubkey_table[i].generate = elg_generate;
pubkey_table[i].check_secret_key = elg_check_secret_key;
pubkey_table[i].encrypt = elg_encrypt;
pubkey_table[i].decrypt = elg_decrypt;
pubkey_table[i].sign = elg_sign;
pubkey_table[i].verify = elg_verify;
pubkey_table[i].get_nbits = elg_get_nbits;
if( !pubkey_table[i].name )
BUG();
i++;
pubkey_table[i].algo = PUBKEY_ALGO_DSA;
pubkey_table[i].name = dsa_get_info( pubkey_table[i].algo,
&pubkey_table[i].npkey,
&pubkey_table[i].nskey,
&pubkey_table[i].nenc,
&pubkey_table[i].nsig,
&pubkey_table[i].use );
pubkey_table[i].generate = dsa_generate;
pubkey_table[i].check_secret_key = dsa_check_secret_key;
pubkey_table[i].encrypt = dummy_encrypt;
pubkey_table[i].decrypt = dummy_decrypt;
pubkey_table[i].sign = dsa_sign;
pubkey_table[i].verify = dsa_verify;
pubkey_table[i].get_nbits = dsa_get_nbits;
if( !pubkey_table[i].name )
BUG();
i++;
pubkey_table[i].algo = PUBKEY_ALGO_RSA;
pubkey_table[i].name = rsa_get_info( pubkey_table[i].algo,
&pubkey_table[i].npkey,
&pubkey_table[i].nskey,
&pubkey_table[i].nenc,
&pubkey_table[i].nsig,
&pubkey_table[i].use );
pubkey_table[i].generate = rsa_generate;
pubkey_table[i].check_secret_key = rsa_check_secret_key;
pubkey_table[i].encrypt = rsa_encrypt;
pubkey_table[i].decrypt = rsa_decrypt;
pubkey_table[i].sign = rsa_sign;
pubkey_table[i].verify = rsa_verify;
pubkey_table[i].get_nbits = rsa_get_nbits;
if( !pubkey_table[i].name )
BUG();
i++;
pubkey_table[i].algo = PUBKEY_ALGO_RSA_E;
pubkey_table[i].name = rsa_get_info( pubkey_table[i].algo,
&pubkey_table[i].npkey,
&pubkey_table[i].nskey,
&pubkey_table[i].nenc,
&pubkey_table[i].nsig,
&pubkey_table[i].use );
pubkey_table[i].generate = rsa_generate;
pubkey_table[i].check_secret_key = rsa_check_secret_key;
pubkey_table[i].encrypt = rsa_encrypt;
pubkey_table[i].decrypt = rsa_decrypt;
pubkey_table[i].sign = dummy_sign;
pubkey_table[i].verify = dummy_verify;
pubkey_table[i].get_nbits = rsa_get_nbits;
if( !pubkey_table[i].name )
BUG();
i++;
pubkey_table[i].algo = PUBKEY_ALGO_RSA_S;
pubkey_table[i].name = rsa_get_info( pubkey_table[i].algo,
&pubkey_table[i].npkey,
&pubkey_table[i].nskey,
&pubkey_table[i].nenc,
&pubkey_table[i].nsig,
&pubkey_table[i].use );
pubkey_table[i].generate = rsa_generate;
pubkey_table[i].check_secret_key = rsa_check_secret_key;
pubkey_table[i].encrypt = dummy_encrypt;
pubkey_table[i].decrypt = dummy_decrypt;
pubkey_table[i].sign = rsa_sign;
pubkey_table[i].verify = rsa_verify;
pubkey_table[i].get_nbits = rsa_get_nbits;
if( !pubkey_table[i].name )
BUG();
i++;
for( ; i < TABLE_SIZE; i++ )
pubkey_table[i].name = NULL;
}
/****************
* Try to load all modules and return true if new modules are available
*/
static int
load_pubkey_modules(void)
{
static int initialized = 0;
if( !initialized ) {
setup_pubkey_table();
initialized = 1;
return 1;
}
return 0;
}
/****************
* Map a string to the pubkey algo
*/
int
string_to_pubkey_algo( const char *string )
{
int i;
const char *s;
do {
for(i=0; (s=pubkey_table[i].name); i++ )
if( !ascii_strcasecmp( s, string ) )
return pubkey_table[i].algo;
} while( load_pubkey_modules() );
return 0;
}
/****************
* Map a pubkey algo to a string
*/
const char *
pubkey_algo_to_string( int algo )
{
int i;
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo )
return pubkey_table[i].name;
} while( load_pubkey_modules() );
return NULL;
}
void
disable_pubkey_algo( int algo )
{
int i;
for(i=0; i < DIM(disabled_algos); i++ ) {
if( !disabled_algos[i] || disabled_algos[i] == algo ) {
disabled_algos[i] = algo;
return;
}
}
log_fatal("can't disable pubkey algo %d: table full\n", algo );
}
int
check_pubkey_algo( int algo )
{
return check_pubkey_algo2( algo, 0 );
}
/****************
* a use of 0 means: don't care
*/
int
check_pubkey_algo2( int algo, unsigned use )
{
int i;
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo ) {
if( (use & PUBKEY_USAGE_SIG)
&& !(pubkey_table[i].use & PUBKEY_USAGE_SIG) )
return G10ERR_WR_PUBKEY_ALGO;
if( (use & PUBKEY_USAGE_ENC)
&& !(pubkey_table[i].use & PUBKEY_USAGE_ENC) )
return G10ERR_WR_PUBKEY_ALGO;
for(i=0; i < DIM(disabled_algos); i++ ) {
if( disabled_algos[i] == algo )
return G10ERR_PUBKEY_ALGO;
}
return 0; /* okay */
}
} while( load_pubkey_modules() );
return G10ERR_PUBKEY_ALGO;
}
/****************
* Return the number of public key material numbers
*/
int
pubkey_get_npkey( int algo )
{
int i;
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo )
return pubkey_table[i].npkey;
} while( load_pubkey_modules() );
return 0;
}
/****************
* Return the number of secret key material numbers
*/
int
pubkey_get_nskey( int algo )
{
int i;
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo )
return pubkey_table[i].nskey;
} while( load_pubkey_modules() );
if( is_RSA(algo) ) /* special hack, so that we are able to */
return 6; /* see the RSA keyids */
return 0;
}
/****************
* Return the number of signature material numbers
*/
int
pubkey_get_nsig( int algo )
{
int i;
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo )
return pubkey_table[i].nsig;
} while( load_pubkey_modules() );
if( is_RSA(algo) ) /* special hack, so that we are able to */
return 1; /* see the RSA keyids */
return 0;
}
/****************
* Return the number of encryption material numbers
*/
int
pubkey_get_nenc( int algo )
{
int i;
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo )
return pubkey_table[i].nenc;
} while( load_pubkey_modules() );
if( is_RSA(algo) ) /* special hack, so that we are able to */
return 1; /* see the RSA keyids */
return 0;
}
/****************
* Get the number of nbits from the public key
*/
unsigned
pubkey_nbits( int algo, MPI *pkey )
{
int i;
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo )
return (*pubkey_table[i].get_nbits)( algo, pkey );
} while( load_pubkey_modules() );
if( is_RSA(algo) ) /* we always wanna see the length of a key :-) */
return mpi_get_nbits( pkey[0] );
return 0;
}
int
pubkey_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors )
{
int i;
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo )
return (*pubkey_table[i].generate)( algo, nbits,
skey, retfactors );
} while( load_pubkey_modules() );
return G10ERR_PUBKEY_ALGO;
}
int
pubkey_check_secret_key( int algo, MPI *skey )
{
int i;
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo )
return (*pubkey_table[i].check_secret_key)( algo, skey );
} while( load_pubkey_modules() );
return G10ERR_PUBKEY_ALGO;
}
/****************
* This is the interface to the public key encryption.
* Encrypt DATA with PKEY and put it into RESARR which
* should be an array of MPIs of size PUBKEY_MAX_NENC (or less if the
* algorithm allows this - check with pubkey_get_nenc() )
*/
int
pubkey_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey )
{
int i, rc;
if( DBG_CIPHER ) {
log_debug("pubkey_encrypt: algo=%d\n", algo );
for(i=0; i < pubkey_get_npkey(algo); i++ )
log_mpidump(" pkey:", pkey[i] );
log_mpidump(" data:", data );
}
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo ) {
rc = (*pubkey_table[i].encrypt)( algo, resarr, data, pkey );
goto ready;
}
} while( load_pubkey_modules() );
rc = G10ERR_PUBKEY_ALGO;
ready:
if( !rc && DBG_CIPHER ) {
for(i=0; i < pubkey_get_nenc(algo); i++ )
log_mpidump(" encr:", resarr[i] );
}
return rc;
}
/****************
* This is the interface to the public key decryption.
* ALGO gives the algorithm to use and this implicitly determines
* the size of the arrays.
* result is a pointer to a mpi variable which will receive a
* newly allocated mpi or NULL in case of an error.
*/
int
pubkey_decrypt( int algo, MPI *result, MPI *data, MPI *skey )
{
int i, rc;
*result = NULL; /* so the caller can always do an mpi_free */
if( DBG_CIPHER ) {
log_debug("pubkey_decrypt: algo=%d\n", algo );
for(i=0; i < pubkey_get_nskey(algo); i++ )
log_mpidump(" skey:", skey[i] );
for(i=0; i < pubkey_get_nenc(algo); i++ )
log_mpidump(" data:", data[i] );
}
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo ) {
rc = (*pubkey_table[i].decrypt)( algo, result, data, skey );
goto ready;
}
} while( load_pubkey_modules() );
rc = G10ERR_PUBKEY_ALGO;
ready:
if( !rc && DBG_CIPHER ) {
log_mpidump(" plain:", *result );
}
return rc;
}
/****************
* This is the interface to the public key signing.
* Sign data with skey and put the result into resarr which
* should be an array of MPIs of size PUBKEY_MAX_NSIG (or less if the
* algorithm allows this - check with pubkey_get_nsig() )
*/
int
pubkey_sign( int algo, MPI *resarr, MPI data, MPI *skey )
{
int i, rc;
if( DBG_CIPHER ) {
log_debug("pubkey_sign: algo=%d\n", algo );
for(i=0; i < pubkey_get_nskey(algo); i++ )
log_mpidump(" skey:", skey[i] );
log_mpidump(" data:", data );
}
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo ) {
rc = (*pubkey_table[i].sign)( algo, resarr, data, skey );
goto ready;
}
} while( load_pubkey_modules() );
rc = G10ERR_PUBKEY_ALGO;
ready:
if( !rc && DBG_CIPHER ) {
for(i=0; i < pubkey_get_nsig(algo); i++ )
log_mpidump(" sig:", resarr[i] );
}
return rc;
}
/****************
* Verify a public key signature.
* Return 0 if the signature is good
*/
int
pubkey_verify( int algo, MPI hash, MPI *data, MPI *pkey,
int (*cmp)(void *, MPI), void *opaquev )
{
int i, rc;
do {
for(i=0; pubkey_table[i].name; i++ )
if( pubkey_table[i].algo == algo ) {
rc = (*pubkey_table[i].verify)( algo, hash, data, pkey,
cmp, opaquev );
goto ready;
}
} while( load_pubkey_modules() );
rc = G10ERR_PUBKEY_ALGO;
ready:
return rc;
}