1
0
mirror of git://git.gnupg.org/gnupg.git synced 2024-10-31 20:08:43 +01:00
gnupg/mpi/mpih-mul.c
2002-06-29 14:15:02 +00:00

529 lines
15 KiB
C

/* mpihelp-mul.c - MPI helper functions
* Copyright (C) 1994, 1996, 1998, 1999,
* 2000 Free Software Foundation, Inc.
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*
* Note: This code is heavily based on the GNU MP Library.
* Actually it's the same code with only minor changes in the
* way the data is stored; this is to support the abstraction
* of an optional secure memory allocation which may be used
* to avoid revealing of sensitive data due to paging etc.
* The GNU MP Library itself is published under the LGPL;
* however I decided to publish this code under the plain GPL.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "mpi-internal.h"
#include "longlong.h"
#define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace) \
do { \
if( (size) < KARATSUBA_THRESHOLD ) \
mul_n_basecase (prodp, up, vp, size); \
else \
mul_n (prodp, up, vp, size, tspace); \
} while (0);
#define MPN_SQR_N_RECURSE(prodp, up, size, tspace) \
do { \
if ((size) < KARATSUBA_THRESHOLD) \
mpih_sqr_n_basecase (prodp, up, size); \
else \
mpih_sqr_n (prodp, up, size, tspace); \
} while (0);
/* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
* both with SIZE limbs, and store the result at PRODP. 2 * SIZE limbs are
* always stored. Return the most significant limb.
*
* Argument constraints:
* 1. PRODP != UP and PRODP != VP, i.e. the destination
* must be distinct from the multiplier and the multiplicand.
*
*
* Handle simple cases with traditional multiplication.
*
* This is the most critical code of multiplication. All multiplies rely
* on this, both small and huge. Small ones arrive here immediately. Huge
* ones arrive here as this is the base case for Karatsuba's recursive
* algorithm below.
*/
static mpi_limb_t
mul_n_basecase( mpi_ptr_t prodp, mpi_ptr_t up,
mpi_ptr_t vp, mpi_size_t size)
{
mpi_size_t i;
mpi_limb_t cy;
mpi_limb_t v_limb;
/* Multiply by the first limb in V separately, as the result can be
* stored (not added) to PROD. We also avoid a loop for zeroing. */
v_limb = vp[0];
if( v_limb <= 1 ) {
if( v_limb == 1 )
MPN_COPY( prodp, up, size );
else
MPN_ZERO( prodp, size );
cy = 0;
}
else
cy = mpihelp_mul_1( prodp, up, size, v_limb );
prodp[size] = cy;
prodp++;
/* For each iteration in the outer loop, multiply one limb from
* U with one limb from V, and add it to PROD. */
for( i = 1; i < size; i++ ) {
v_limb = vp[i];
if( v_limb <= 1 ) {
cy = 0;
if( v_limb == 1 )
cy = mpihelp_add_n(prodp, prodp, up, size);
}
else
cy = mpihelp_addmul_1(prodp, up, size, v_limb);
prodp[size] = cy;
prodp++;
}
return cy;
}
static void
mul_n( mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp,
mpi_size_t size, mpi_ptr_t tspace )
{
if( size & 1 ) {
/* The size is odd, and the code below doesn't handle that.
* Multiply the least significant (size - 1) limbs with a recursive
* call, and handle the most significant limb of S1 and S2
* separately.
* A slightly faster way to do this would be to make the Karatsuba
* code below behave as if the size were even, and let it check for
* odd size in the end. I.e., in essence move this code to the end.
* Doing so would save us a recursive call, and potentially make the
* stack grow a lot less.
*/
mpi_size_t esize = size - 1; /* even size */
mpi_limb_t cy_limb;
MPN_MUL_N_RECURSE( prodp, up, vp, esize, tspace );
cy_limb = mpihelp_addmul_1( prodp + esize, up, esize, vp[esize] );
prodp[esize + esize] = cy_limb;
cy_limb = mpihelp_addmul_1( prodp + esize, vp, size, up[esize] );
prodp[esize + size] = cy_limb;
}
else {
/* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
*
* Split U in two pieces, U1 and U0, such that
* U = U0 + U1*(B**n),
* and V in V1 and V0, such that
* V = V0 + V1*(B**n).
*
* UV is then computed recursively using the identity
*
* 2n n n n
* UV = (B + B )U V + B (U -U )(V -V ) + (B + 1)U V
* 1 1 1 0 0 1 0 0
*
* Where B = 2**BITS_PER_MP_LIMB.
*/
mpi_size_t hsize = size >> 1;
mpi_limb_t cy;
int negflg;
/* Product H. ________________ ________________
* |_____U1 x V1____||____U0 x V0_____|
* Put result in upper part of PROD and pass low part of TSPACE
* as new TSPACE.
*/
MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize, tspace);
/* Product M. ________________
* |_(U1-U0)(V0-V1)_|
*/
if( mpihelp_cmp(up + hsize, up, hsize) >= 0 ) {
mpihelp_sub_n(prodp, up + hsize, up, hsize);
negflg = 0;
}
else {
mpihelp_sub_n(prodp, up, up + hsize, hsize);
negflg = 1;
}
if( mpihelp_cmp(vp + hsize, vp, hsize) >= 0 ) {
mpihelp_sub_n(prodp + hsize, vp + hsize, vp, hsize);
negflg ^= 1;
}
else {
mpihelp_sub_n(prodp + hsize, vp, vp + hsize, hsize);
/* No change of NEGFLG. */
}
/* Read temporary operands from low part of PROD.
* Put result in low part of TSPACE using upper part of TSPACE
* as new TSPACE.
*/
MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize, tspace + size);
/* Add/copy product H. */
MPN_COPY (prodp + hsize, prodp + size, hsize);
cy = mpihelp_add_n( prodp + size, prodp + size,
prodp + size + hsize, hsize);
/* Add product M (if NEGFLG M is a negative number) */
if(negflg)
cy -= mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, size);
else
cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
/* Product L. ________________ ________________
* |________________||____U0 x V0_____|
* Read temporary operands from low part of PROD.
* Put result in low part of TSPACE using upper part of TSPACE
* as new TSPACE.
*/
MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size);
/* Add/copy Product L (twice) */
cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
if( cy )
mpihelp_add_1(prodp + hsize + size, prodp + hsize + size, hsize, cy);
MPN_COPY(prodp, tspace, hsize);
cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize, hsize);
if( cy )
mpihelp_add_1(prodp + size, prodp + size, size, 1);
}
}
void
mpih_sqr_n_basecase( mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size )
{
mpi_size_t i;
mpi_limb_t cy_limb;
mpi_limb_t v_limb;
/* Multiply by the first limb in V separately, as the result can be
* stored (not added) to PROD. We also avoid a loop for zeroing. */
v_limb = up[0];
if( v_limb <= 1 ) {
if( v_limb == 1 )
MPN_COPY( prodp, up, size );
else
MPN_ZERO(prodp, size);
cy_limb = 0;
}
else
cy_limb = mpihelp_mul_1( prodp, up, size, v_limb );
prodp[size] = cy_limb;
prodp++;
/* For each iteration in the outer loop, multiply one limb from
* U with one limb from V, and add it to PROD. */
for( i=1; i < size; i++) {
v_limb = up[i];
if( v_limb <= 1 ) {
cy_limb = 0;
if( v_limb == 1 )
cy_limb = mpihelp_add_n(prodp, prodp, up, size);
}
else
cy_limb = mpihelp_addmul_1(prodp, up, size, v_limb);
prodp[size] = cy_limb;
prodp++;
}
}
void
mpih_sqr_n( mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace)
{
if( size & 1 ) {
/* The size is odd, and the code below doesn't handle that.
* Multiply the least significant (size - 1) limbs with a recursive
* call, and handle the most significant limb of S1 and S2
* separately.
* A slightly faster way to do this would be to make the Karatsuba
* code below behave as if the size were even, and let it check for
* odd size in the end. I.e., in essence move this code to the end.
* Doing so would save us a recursive call, and potentially make the
* stack grow a lot less.
*/
mpi_size_t esize = size - 1; /* even size */
mpi_limb_t cy_limb;
MPN_SQR_N_RECURSE( prodp, up, esize, tspace );
cy_limb = mpihelp_addmul_1( prodp + esize, up, esize, up[esize] );
prodp[esize + esize] = cy_limb;
cy_limb = mpihelp_addmul_1( prodp + esize, up, size, up[esize] );
prodp[esize + size] = cy_limb;
}
else {
mpi_size_t hsize = size >> 1;
mpi_limb_t cy;
/* Product H. ________________ ________________
* |_____U1 x U1____||____U0 x U0_____|
* Put result in upper part of PROD and pass low part of TSPACE
* as new TSPACE.
*/
MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace);
/* Product M. ________________
* |_(U1-U0)(U0-U1)_|
*/
if( mpihelp_cmp( up + hsize, up, hsize) >= 0 )
mpihelp_sub_n( prodp, up + hsize, up, hsize);
else
mpihelp_sub_n (prodp, up, up + hsize, hsize);
/* Read temporary operands from low part of PROD.
* Put result in low part of TSPACE using upper part of TSPACE
* as new TSPACE. */
MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size);
/* Add/copy product H */
MPN_COPY(prodp + hsize, prodp + size, hsize);
cy = mpihelp_add_n(prodp + size, prodp + size,
prodp + size + hsize, hsize);
/* Add product M (if NEGFLG M is a negative number). */
cy -= mpihelp_sub_n (prodp + hsize, prodp + hsize, tspace, size);
/* Product L. ________________ ________________
* |________________||____U0 x U0_____|
* Read temporary operands from low part of PROD.
* Put result in low part of TSPACE using upper part of TSPACE
* as new TSPACE. */
MPN_SQR_N_RECURSE (tspace, up, hsize, tspace + size);
/* Add/copy Product L (twice). */
cy += mpihelp_add_n (prodp + hsize, prodp + hsize, tspace, size);
if( cy )
mpihelp_add_1(prodp + hsize + size, prodp + hsize + size,
hsize, cy);
MPN_COPY(prodp, tspace, hsize);
cy = mpihelp_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);
if( cy )
mpihelp_add_1 (prodp + size, prodp + size, size, 1);
}
}
/* This should be made into an inline function in gmp.h. */
void
mpihelp_mul_n( mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size)
{
int secure;
if( up == vp ) {
if( size < KARATSUBA_THRESHOLD )
mpih_sqr_n_basecase( prodp, up, size );
else {
mpi_ptr_t tspace;
secure = m_is_secure( up );
tspace = mpi_alloc_limb_space( 2 * size, secure );
mpih_sqr_n( prodp, up, size, tspace );
mpi_free_limb_space( tspace );
}
}
else {
if( size < KARATSUBA_THRESHOLD )
mul_n_basecase( prodp, up, vp, size );
else {
mpi_ptr_t tspace;
secure = m_is_secure( up ) || m_is_secure( vp );
tspace = mpi_alloc_limb_space( 2 * size, secure );
mul_n (prodp, up, vp, size, tspace);
mpi_free_limb_space( tspace );
}
}
}
void
mpihelp_mul_karatsuba_case( mpi_ptr_t prodp,
mpi_ptr_t up, mpi_size_t usize,
mpi_ptr_t vp, mpi_size_t vsize,
struct karatsuba_ctx *ctx )
{
mpi_limb_t cy;
if( !ctx->tspace || ctx->tspace_size < vsize ) {
if( ctx->tspace )
mpi_free_limb_space( ctx->tspace );
ctx->tspace = mpi_alloc_limb_space( 2 * vsize,
m_is_secure( up ) || m_is_secure( vp ) );
ctx->tspace_size = vsize;
}
MPN_MUL_N_RECURSE( prodp, up, vp, vsize, ctx->tspace );
prodp += vsize;
up += vsize;
usize -= vsize;
if( usize >= vsize ) {
if( !ctx->tp || ctx->tp_size < vsize ) {
if( ctx->tp )
mpi_free_limb_space( ctx->tp );
ctx->tp = mpi_alloc_limb_space( 2 * vsize, m_is_secure( up )
|| m_is_secure( vp ) );
ctx->tp_size = vsize;
}
do {
MPN_MUL_N_RECURSE( ctx->tp, up, vp, vsize, ctx->tspace );
cy = mpihelp_add_n( prodp, prodp, ctx->tp, vsize );
mpihelp_add_1( prodp + vsize, ctx->tp + vsize, vsize, cy );
prodp += vsize;
up += vsize;
usize -= vsize;
} while( usize >= vsize );
}
if( usize ) {
if( usize < KARATSUBA_THRESHOLD ) {
mpihelp_mul( ctx->tspace, vp, vsize, up, usize );
}
else {
if( !ctx->next ) {
ctx->next = m_alloc_clear( sizeof *ctx );
}
mpihelp_mul_karatsuba_case( ctx->tspace,
vp, vsize,
up, usize,
ctx->next );
}
cy = mpihelp_add_n( prodp, prodp, ctx->tspace, vsize);
mpihelp_add_1( prodp + vsize, ctx->tspace + vsize, usize, cy );
}
}
void
mpihelp_release_karatsuba_ctx( struct karatsuba_ctx *ctx )
{
struct karatsuba_ctx *ctx2;
if( ctx->tp )
mpi_free_limb_space( ctx->tp );
if( ctx->tspace )
mpi_free_limb_space( ctx->tspace );
for( ctx=ctx->next; ctx; ctx = ctx2 ) {
ctx2 = ctx->next;
if( ctx->tp )
mpi_free_limb_space( ctx->tp );
if( ctx->tspace )
mpi_free_limb_space( ctx->tspace );
m_free( ctx );
}
}
/* Multiply the natural numbers u (pointed to by UP, with USIZE limbs)
* and v (pointed to by VP, with VSIZE limbs), and store the result at
* PRODP. USIZE + VSIZE limbs are always stored, but if the input
* operands are normalized. Return the most significant limb of the
* result.
*
* NOTE: The space pointed to by PRODP is overwritten before finished
* with U and V, so overlap is an error.
*
* Argument constraints:
* 1. USIZE >= VSIZE.
* 2. PRODP != UP and PRODP != VP, i.e. the destination
* must be distinct from the multiplier and the multiplicand.
*/
mpi_limb_t
mpihelp_mul( mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize,
mpi_ptr_t vp, mpi_size_t vsize)
{
mpi_ptr_t prod_endp = prodp + usize + vsize - 1;
mpi_limb_t cy;
struct karatsuba_ctx ctx;
if( vsize < KARATSUBA_THRESHOLD ) {
mpi_size_t i;
mpi_limb_t v_limb;
if( !vsize )
return 0;
/* Multiply by the first limb in V separately, as the result can be
* stored (not added) to PROD. We also avoid a loop for zeroing. */
v_limb = vp[0];
if( v_limb <= 1 ) {
if( v_limb == 1 )
MPN_COPY( prodp, up, usize );
else
MPN_ZERO( prodp, usize );
cy = 0;
}
else
cy = mpihelp_mul_1( prodp, up, usize, v_limb );
prodp[usize] = cy;
prodp++;
/* For each iteration in the outer loop, multiply one limb from
* U with one limb from V, and add it to PROD. */
for( i = 1; i < vsize; i++ ) {
v_limb = vp[i];
if( v_limb <= 1 ) {
cy = 0;
if( v_limb == 1 )
cy = mpihelp_add_n(prodp, prodp, up, usize);
}
else
cy = mpihelp_addmul_1(prodp, up, usize, v_limb);
prodp[usize] = cy;
prodp++;
}
return cy;
}
memset( &ctx, 0, sizeof ctx );
mpihelp_mul_karatsuba_case( prodp, up, usize, vp, vsize, &ctx );
mpihelp_release_karatsuba_ctx( &ctx );
return *prod_endp;
}