1
0
mirror of git://git.gnupg.org/gnupg.git synced 2024-11-04 20:38:50 +01:00
gnupg/tests/gpgscm/lib.scm
Justus Winter ee715201ae
gpgscm: Emit JUnit-style XML reports.
* tests/gpgscm/Makefile.am (EXTRA_DIST): Add new file.
* tests/gpgscm/lib.scm (string-translate): New function.
* tests/gpgscm/main.c (main): Load new file.
* tests/gpgscm/tests.scm (dirname): New function.
(test-pool): Record execution times, emit XML report.
(test): Record execution times, record log file name, emit XML report.
(run-tests-parallel): Write XML report.
(run-tests-sequential): Likewise.
* tests/gpgscm/xml.scm: New file.
* tests/gpgme/Makefile.am (CLEANFILES): Add 'report.xml'.
* tests/gpgsm/Makefile.am: Likewise.
* tests/migrations/Makefile.am: Likewise.
* tests/openpgp/Makefile.am: Likewise.

Signed-off-by: Justus Winter <justus@g10code.com>
2017-04-24 14:28:57 +02:00

308 lines
9.1 KiB
Scheme

;; Additional library functions for TinySCHEME.
;;
;; Copyright (C) 2016 g10 Code GmbH
;;
;; This file is part of GnuPG.
;;
;; GnuPG is free software; you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation; either version 3 of the License, or
;; (at your option) any later version.
;;
;; GnuPG is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;;
;; You should have received a copy of the GNU General Public License
;; along with this program; if not, see <http://www.gnu.org/licenses/>.
(macro (assert form)
(let ((tag (get-tag form)))
`(if (not ,(cadr form))
(throw ,(if (and (pair? tag) (string? (car tag)) (number? (cdr tag)))
`(string-append ,(car tag) ":"
,(number->string (+ 1 (cdr tag)))
": Assertion failed: ")
"Assertion failed: ")
(quote ,(cadr form))))))
(assert #t)
(assert (not #f))
;; Trace displays and returns the given value. A debugging aid.
(define (trace x)
(display x)
(newline)
x)
;; Stringification.
(define (stringify expression)
(let ((p (open-output-string)))
(write expression p)
(get-output-string p)))
(define (filter pred lst)
(cond ((null? lst) '())
((pred (car lst))
(cons (car lst) (filter pred (cdr lst))))
(else (filter pred (cdr lst)))))
(define (any p l)
(cond ((null? l) #f)
((p (car l)) #t)
(else (any p (cdr l)))))
(define (all p l)
(cond ((null? l) #t)
((not (p (car l))) #f)
(else (all p (cdr l)))))
;; Return the first element of a list.
(define first car)
;; Return the last element of a list.
(define (last lst)
(if (null? (cdr lst))
(car lst)
(last (cdr lst))))
;; Compute the powerset of a list.
(define (powerset set)
(if (null? set)
'(())
(let ((rst (powerset (cdr set))))
(append (map (lambda (x) (cons (car set) x))
rst)
rst))))
;; Is PREFIX a prefix of S?
(define (string-prefix? s prefix)
(and (>= (string-length s) (string-length prefix))
(string=? prefix (substring s 0 (string-length prefix)))))
(assert (string-prefix? "Scheme" "Sch"))
;; Is SUFFIX a suffix of S?
(define (string-suffix? s suffix)
(and (>= (string-length s) (string-length suffix))
(string=? suffix (substring s (- (string-length s)
(string-length suffix))
(string-length s)))))
(assert (string-suffix? "Scheme" "eme"))
;; Locate the first occurrence of needle in haystack starting at offset.
(ffi-define (string-index haystack needle [offset]))
(assert (= 2 (string-index "Hallo" #\l)))
(assert (= 3 (string-index "Hallo" #\l 3)))
(assert (equal? #f (string-index "Hallo" #\.)))
;; Locate the last occurrence of needle in haystack starting at offset.
(ffi-define (string-rindex haystack needle [offset]))
(assert (= 3 (string-rindex "Hallo" #\l)))
(assert (equal? #f (string-rindex "Hallo" #\a 2)))
(assert (equal? #f (string-rindex "Hallo" #\.)))
;; Split HAYSTACK at each character that makes PREDICATE true at most
;; N times.
(define (string-split-pln haystack predicate lookahead n)
(let ((length (string-length haystack)))
(define (split acc offset n)
(if (>= offset length)
(reverse! acc)
(let ((i (lookahead haystack offset)))
(if (or (eq? i #f) (= 0 n))
(reverse! (cons (substring haystack offset length) acc))
(split (cons (substring haystack offset i) acc)
(+ i 1) (- n 1))))))
(split '() 0 n)))
(define (string-indexp haystack offset predicate)
(cond
((= (string-length haystack) offset)
#f)
((predicate (string-ref haystack offset))
offset)
(else
(string-indexp haystack (+ 1 offset) predicate))))
;; Split HAYSTACK at each character that makes PREDICATE true at most
;; N times.
(define (string-splitp haystack predicate n)
(string-split-pln haystack predicate
(lambda (haystack offset)
(string-indexp haystack offset predicate))
n))
(assert (equal? '("a" "b") (string-splitp "a b" char-whitespace? -1)))
(assert (equal? '("a" "b") (string-splitp "a\tb" char-whitespace? -1)))
(assert (equal? '("a" "" "b") (string-splitp "a \tb" char-whitespace? -1)))
;; Split haystack at delimiter at most n times.
(define (string-splitn haystack delimiter n)
(string-split-pln haystack
(lambda (c) (char=? c delimiter))
(lambda (haystack offset)
(string-index haystack delimiter offset))
n))
(assert (= 2 (length (string-splitn "foo:bar:baz" #\: 1))))
(assert (string=? "foo" (car (string-splitn "foo:bar:baz" #\: 1))))
(assert (string=? "bar:baz" (cadr (string-splitn "foo:bar:baz" #\: 1))))
;; Split haystack at delimiter.
(define (string-split haystack delimiter)
(string-splitn haystack delimiter -1))
(assert (= 3 (length (string-split "foo:bar:baz" #\:))))
(assert (string=? "foo" (car (string-split "foo:bar:baz" #\:))))
(assert (string=? "bar" (cadr (string-split "foo:bar:baz" #\:))))
(assert (string=? "baz" (caddr (string-split "foo:bar:baz" #\:))))
;; Split haystack at newlines.
(define (string-split-newlines haystack)
(if *win32*
(map (lambda (line) (if (string-suffix? line "\r")
(substring line 0 (- (string-length line) 1))
line))
(string-split haystack #\newline))
(string-split haystack #\newline)))
;; Trim the prefix of S containing only characters that make PREDICATE
;; true.
(define (string-ltrim predicate s)
(if (string=? s "")
""
(let loop ((s' (string->list s)))
(if (predicate (car s'))
(loop (cdr s'))
(list->string s')))))
(assert (string=? "" (string-ltrim char-whitespace? "")))
(assert (string=? "foo" (string-ltrim char-whitespace? " foo")))
;; Trim the suffix of S containing only characters that make PREDICATE
;; true.
(define (string-rtrim predicate s)
(if (string=? s "")
""
(let loop ((s' (reverse! (string->list s))))
(if (predicate (car s'))
(loop (cdr s'))
(list->string (reverse! s'))))))
(assert (string=? "" (string-rtrim char-whitespace? "")))
(assert (string=? "foo" (string-rtrim char-whitespace? "foo ")))
;; Trim both the prefix and suffix of S containing only characters
;; that make PREDICATE true.
(define (string-trim predicate s)
(string-ltrim predicate (string-rtrim predicate s)))
(assert (string=? "" (string-trim char-whitespace? "")))
(assert (string=? "foo" (string-trim char-whitespace? " foo ")))
;; Check if needle is contained in haystack.
(ffi-define (string-contains? haystack needle))
(assert (string-contains? "Hallo" "llo"))
(assert (not (string-contains? "Hallo" "olla")))
;; Translate characters.
(define (string-translate s from to)
(list->string (map (lambda (c)
(let ((i (string-index from c)))
(if i (string-ref to i) c))) (string->list s))))
(assert (equal? (string-translate "foo/bar" "/" ".") "foo.bar"))
;; Read a word from port P.
(define (read-word . p)
(list->string
(let f ()
(let ((c (apply peek-char p)))
(cond
((eof-object? c) '())
((char-alphabetic? c)
(apply read-char p)
(cons c (f)))
(else
(apply read-char p)
'()))))))
(define (list->string-reversed lst)
(let* ((len (length lst))
(str (make-string len)))
(let loop ((i (- len 1))
(l lst))
(if (< i 0)
(begin
(assert (null? l))
str)
(begin
(string-set! str i (car l))
(loop (- i 1) (cdr l)))))))
;; Read a line from port P.
(define (read-line . p)
(let loop ((acc '()))
(let ((c (apply peek-char p)))
(cond
((eof-object? c)
(if (null? acc)
c ;; #eof
(list->string-reversed acc)))
((char=? c #\newline)
(apply read-char p)
(list->string-reversed acc))
(else
(apply read-char p)
(loop (cons c acc)))))))
;; Read everything from port P.
(define (read-all . p)
(let loop ((acc (open-output-string)))
(let ((c (apply peek-char p)))
(cond
((eof-object? c) (get-output-string acc))
(else
(write-char (apply read-char p) acc)
(loop acc))))))
;;
;; Windows support.
;;
;; Like call-with-input-file but opens the file in 'binary' mode.
(define (call-with-binary-input-file filename proc)
(letfd ((fd (open filename (logior O_RDONLY O_BINARY))))
(proc (fdopen fd "rb"))))
;; Like call-with-output-file but opens the file in 'binary' mode.
(define (call-with-binary-output-file filename proc)
(letfd ((fd (open filename (logior O_WRONLY O_CREAT O_BINARY) #o600)))
(proc (fdopen fd "wb"))))
;;
;; Libc functions.
;;
;; Change the read/write offset.
(ffi-define (seek fd offset whence))
;; Constants for WHENCE.
(ffi-define SEEK_SET)
(ffi-define SEEK_CUR)
(ffi-define SEEK_END)
;; Get our process id.
(ffi-define (getpid))
;; Copy data from file descriptor SOURCE to every file descriptor in
;; SINKS.
(ffi-define (splice source . sinks))
;;
;; Random numbers.
;;
;; Seed the random number generator.
(ffi-define (srandom seed))
;; Get a pseudo-random number between 0 (inclusive) and SCALE
;; (exclusive).
(ffi-define (random scale))
;; Create a string of the given SIZE containing pseudo-random data.
(ffi-define (make-random-string size))