mirror of
git://git.gnupg.org/gnupg.git
synced 2025-01-22 14:57:02 +01:00
9a2a818887
Updated gettext.
528 lines
15 KiB
C
528 lines
15 KiB
C
/* mpihelp-mul.c - MPI helper functions
|
|
* Copyright (C) 1994, 1996, 1998, 1999,
|
|
* 2000 Free Software Foundation, Inc.
|
|
*
|
|
* This file is part of GnuPG.
|
|
*
|
|
* GnuPG is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* GnuPG is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Note: This code is heavily based on the GNU MP Library.
|
|
* Actually it's the same code with only minor changes in the
|
|
* way the data is stored; this is to support the abstraction
|
|
* of an optional secure memory allocation which may be used
|
|
* to avoid revealing of sensitive data due to paging etc.
|
|
* The GNU MP Library itself is published under the LGPL;
|
|
* however I decided to publish this code under the plain GPL.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "mpi-internal.h"
|
|
#include "longlong.h"
|
|
|
|
|
|
|
|
#define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace) \
|
|
do { \
|
|
if( (size) < KARATSUBA_THRESHOLD ) \
|
|
mul_n_basecase (prodp, up, vp, size); \
|
|
else \
|
|
mul_n (prodp, up, vp, size, tspace); \
|
|
} while (0);
|
|
|
|
#define MPN_SQR_N_RECURSE(prodp, up, size, tspace) \
|
|
do { \
|
|
if ((size) < KARATSUBA_THRESHOLD) \
|
|
mpih_sqr_n_basecase (prodp, up, size); \
|
|
else \
|
|
mpih_sqr_n (prodp, up, size, tspace); \
|
|
} while (0);
|
|
|
|
|
|
|
|
|
|
/* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
|
|
* both with SIZE limbs, and store the result at PRODP. 2 * SIZE limbs are
|
|
* always stored. Return the most significant limb.
|
|
*
|
|
* Argument constraints:
|
|
* 1. PRODP != UP and PRODP != VP, i.e. the destination
|
|
* must be distinct from the multiplier and the multiplicand.
|
|
*
|
|
*
|
|
* Handle simple cases with traditional multiplication.
|
|
*
|
|
* This is the most critical code of multiplication. All multiplies rely
|
|
* on this, both small and huge. Small ones arrive here immediately. Huge
|
|
* ones arrive here as this is the base case for Karatsuba's recursive
|
|
* algorithm below.
|
|
*/
|
|
|
|
static mpi_limb_t
|
|
mul_n_basecase( mpi_ptr_t prodp, mpi_ptr_t up,
|
|
mpi_ptr_t vp, mpi_size_t size)
|
|
{
|
|
mpi_size_t i;
|
|
mpi_limb_t cy;
|
|
mpi_limb_t v_limb;
|
|
|
|
/* Multiply by the first limb in V separately, as the result can be
|
|
* stored (not added) to PROD. We also avoid a loop for zeroing. */
|
|
v_limb = vp[0];
|
|
if( v_limb <= 1 ) {
|
|
if( v_limb == 1 )
|
|
MPN_COPY( prodp, up, size );
|
|
else
|
|
MPN_ZERO( prodp, size );
|
|
cy = 0;
|
|
}
|
|
else
|
|
cy = mpihelp_mul_1( prodp, up, size, v_limb );
|
|
|
|
prodp[size] = cy;
|
|
prodp++;
|
|
|
|
/* For each iteration in the outer loop, multiply one limb from
|
|
* U with one limb from V, and add it to PROD. */
|
|
for( i = 1; i < size; i++ ) {
|
|
v_limb = vp[i];
|
|
if( v_limb <= 1 ) {
|
|
cy = 0;
|
|
if( v_limb == 1 )
|
|
cy = mpihelp_add_n(prodp, prodp, up, size);
|
|
}
|
|
else
|
|
cy = mpihelp_addmul_1(prodp, up, size, v_limb);
|
|
|
|
prodp[size] = cy;
|
|
prodp++;
|
|
}
|
|
|
|
return cy;
|
|
}
|
|
|
|
|
|
static void
|
|
mul_n( mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp,
|
|
mpi_size_t size, mpi_ptr_t tspace )
|
|
{
|
|
if( size & 1 ) {
|
|
/* The size is odd, and the code below doesn't handle that.
|
|
* Multiply the least significant (size - 1) limbs with a recursive
|
|
* call, and handle the most significant limb of S1 and S2
|
|
* separately.
|
|
* A slightly faster way to do this would be to make the Karatsuba
|
|
* code below behave as if the size were even, and let it check for
|
|
* odd size in the end. I.e., in essence move this code to the end.
|
|
* Doing so would save us a recursive call, and potentially make the
|
|
* stack grow a lot less.
|
|
*/
|
|
mpi_size_t esize = size - 1; /* even size */
|
|
mpi_limb_t cy_limb;
|
|
|
|
MPN_MUL_N_RECURSE( prodp, up, vp, esize, tspace );
|
|
cy_limb = mpihelp_addmul_1( prodp + esize, up, esize, vp[esize] );
|
|
prodp[esize + esize] = cy_limb;
|
|
cy_limb = mpihelp_addmul_1( prodp + esize, vp, size, up[esize] );
|
|
prodp[esize + size] = cy_limb;
|
|
}
|
|
else {
|
|
/* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
|
|
*
|
|
* Split U in two pieces, U1 and U0, such that
|
|
* U = U0 + U1*(B**n),
|
|
* and V in V1 and V0, such that
|
|
* V = V0 + V1*(B**n).
|
|
*
|
|
* UV is then computed recursively using the identity
|
|
*
|
|
* 2n n n n
|
|
* UV = (B + B )U V + B (U -U )(V -V ) + (B + 1)U V
|
|
* 1 1 1 0 0 1 0 0
|
|
*
|
|
* Where B = 2**BITS_PER_MP_LIMB.
|
|
*/
|
|
mpi_size_t hsize = size >> 1;
|
|
mpi_limb_t cy;
|
|
int negflg;
|
|
|
|
/* Product H. ________________ ________________
|
|
* |_____U1 x V1____||____U0 x V0_____|
|
|
* Put result in upper part of PROD and pass low part of TSPACE
|
|
* as new TSPACE.
|
|
*/
|
|
MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize, tspace);
|
|
|
|
/* Product M. ________________
|
|
* |_(U1-U0)(V0-V1)_|
|
|
*/
|
|
if( mpihelp_cmp(up + hsize, up, hsize) >= 0 ) {
|
|
mpihelp_sub_n(prodp, up + hsize, up, hsize);
|
|
negflg = 0;
|
|
}
|
|
else {
|
|
mpihelp_sub_n(prodp, up, up + hsize, hsize);
|
|
negflg = 1;
|
|
}
|
|
if( mpihelp_cmp(vp + hsize, vp, hsize) >= 0 ) {
|
|
mpihelp_sub_n(prodp + hsize, vp + hsize, vp, hsize);
|
|
negflg ^= 1;
|
|
}
|
|
else {
|
|
mpihelp_sub_n(prodp + hsize, vp, vp + hsize, hsize);
|
|
/* No change of NEGFLG. */
|
|
}
|
|
/* Read temporary operands from low part of PROD.
|
|
* Put result in low part of TSPACE using upper part of TSPACE
|
|
* as new TSPACE.
|
|
*/
|
|
MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize, tspace + size);
|
|
|
|
/* Add/copy product H. */
|
|
MPN_COPY (prodp + hsize, prodp + size, hsize);
|
|
cy = mpihelp_add_n( prodp + size, prodp + size,
|
|
prodp + size + hsize, hsize);
|
|
|
|
/* Add product M (if NEGFLG M is a negative number) */
|
|
if(negflg)
|
|
cy -= mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, size);
|
|
else
|
|
cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
|
|
|
|
/* Product L. ________________ ________________
|
|
* |________________||____U0 x V0_____|
|
|
* Read temporary operands from low part of PROD.
|
|
* Put result in low part of TSPACE using upper part of TSPACE
|
|
* as new TSPACE.
|
|
*/
|
|
MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size);
|
|
|
|
/* Add/copy Product L (twice) */
|
|
|
|
cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size);
|
|
if( cy )
|
|
mpihelp_add_1(prodp + hsize + size, prodp + hsize + size, hsize, cy);
|
|
|
|
MPN_COPY(prodp, tspace, hsize);
|
|
cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize, hsize);
|
|
if( cy )
|
|
mpihelp_add_1(prodp + size, prodp + size, size, 1);
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
mpih_sqr_n_basecase( mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size )
|
|
{
|
|
mpi_size_t i;
|
|
mpi_limb_t cy_limb;
|
|
mpi_limb_t v_limb;
|
|
|
|
/* Multiply by the first limb in V separately, as the result can be
|
|
* stored (not added) to PROD. We also avoid a loop for zeroing. */
|
|
v_limb = up[0];
|
|
if( v_limb <= 1 ) {
|
|
if( v_limb == 1 )
|
|
MPN_COPY( prodp, up, size );
|
|
else
|
|
MPN_ZERO(prodp, size);
|
|
cy_limb = 0;
|
|
}
|
|
else
|
|
cy_limb = mpihelp_mul_1( prodp, up, size, v_limb );
|
|
|
|
prodp[size] = cy_limb;
|
|
prodp++;
|
|
|
|
/* For each iteration in the outer loop, multiply one limb from
|
|
* U with one limb from V, and add it to PROD. */
|
|
for( i=1; i < size; i++) {
|
|
v_limb = up[i];
|
|
if( v_limb <= 1 ) {
|
|
cy_limb = 0;
|
|
if( v_limb == 1 )
|
|
cy_limb = mpihelp_add_n(prodp, prodp, up, size);
|
|
}
|
|
else
|
|
cy_limb = mpihelp_addmul_1(prodp, up, size, v_limb);
|
|
|
|
prodp[size] = cy_limb;
|
|
prodp++;
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
mpih_sqr_n( mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace)
|
|
{
|
|
if( size & 1 ) {
|
|
/* The size is odd, and the code below doesn't handle that.
|
|
* Multiply the least significant (size - 1) limbs with a recursive
|
|
* call, and handle the most significant limb of S1 and S2
|
|
* separately.
|
|
* A slightly faster way to do this would be to make the Karatsuba
|
|
* code below behave as if the size were even, and let it check for
|
|
* odd size in the end. I.e., in essence move this code to the end.
|
|
* Doing so would save us a recursive call, and potentially make the
|
|
* stack grow a lot less.
|
|
*/
|
|
mpi_size_t esize = size - 1; /* even size */
|
|
mpi_limb_t cy_limb;
|
|
|
|
MPN_SQR_N_RECURSE( prodp, up, esize, tspace );
|
|
cy_limb = mpihelp_addmul_1( prodp + esize, up, esize, up[esize] );
|
|
prodp[esize + esize] = cy_limb;
|
|
cy_limb = mpihelp_addmul_1( prodp + esize, up, size, up[esize] );
|
|
|
|
prodp[esize + size] = cy_limb;
|
|
}
|
|
else {
|
|
mpi_size_t hsize = size >> 1;
|
|
mpi_limb_t cy;
|
|
|
|
/* Product H. ________________ ________________
|
|
* |_____U1 x U1____||____U0 x U0_____|
|
|
* Put result in upper part of PROD and pass low part of TSPACE
|
|
* as new TSPACE.
|
|
*/
|
|
MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace);
|
|
|
|
/* Product M. ________________
|
|
* |_(U1-U0)(U0-U1)_|
|
|
*/
|
|
if( mpihelp_cmp( up + hsize, up, hsize) >= 0 )
|
|
mpihelp_sub_n( prodp, up + hsize, up, hsize);
|
|
else
|
|
mpihelp_sub_n (prodp, up, up + hsize, hsize);
|
|
|
|
/* Read temporary operands from low part of PROD.
|
|
* Put result in low part of TSPACE using upper part of TSPACE
|
|
* as new TSPACE. */
|
|
MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size);
|
|
|
|
/* Add/copy product H */
|
|
MPN_COPY(prodp + hsize, prodp + size, hsize);
|
|
cy = mpihelp_add_n(prodp + size, prodp + size,
|
|
prodp + size + hsize, hsize);
|
|
|
|
/* Add product M (if NEGFLG M is a negative number). */
|
|
cy -= mpihelp_sub_n (prodp + hsize, prodp + hsize, tspace, size);
|
|
|
|
/* Product L. ________________ ________________
|
|
* |________________||____U0 x U0_____|
|
|
* Read temporary operands from low part of PROD.
|
|
* Put result in low part of TSPACE using upper part of TSPACE
|
|
* as new TSPACE. */
|
|
MPN_SQR_N_RECURSE (tspace, up, hsize, tspace + size);
|
|
|
|
/* Add/copy Product L (twice). */
|
|
cy += mpihelp_add_n (prodp + hsize, prodp + hsize, tspace, size);
|
|
if( cy )
|
|
mpihelp_add_1(prodp + hsize + size, prodp + hsize + size,
|
|
hsize, cy);
|
|
|
|
MPN_COPY(prodp, tspace, hsize);
|
|
cy = mpihelp_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);
|
|
if( cy )
|
|
mpihelp_add_1 (prodp + size, prodp + size, size, 1);
|
|
}
|
|
}
|
|
|
|
|
|
/* This should be made into an inline function in gmp.h. */
|
|
void
|
|
mpihelp_mul_n( mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size)
|
|
{
|
|
int secure;
|
|
|
|
if( up == vp ) {
|
|
if( size < KARATSUBA_THRESHOLD )
|
|
mpih_sqr_n_basecase( prodp, up, size );
|
|
else {
|
|
mpi_ptr_t tspace;
|
|
secure = m_is_secure( up );
|
|
tspace = mpi_alloc_limb_space( 2 * size, secure );
|
|
mpih_sqr_n( prodp, up, size, tspace );
|
|
mpi_free_limb_space( tspace );
|
|
}
|
|
}
|
|
else {
|
|
if( size < KARATSUBA_THRESHOLD )
|
|
mul_n_basecase( prodp, up, vp, size );
|
|
else {
|
|
mpi_ptr_t tspace;
|
|
secure = m_is_secure( up ) || m_is_secure( vp );
|
|
tspace = mpi_alloc_limb_space( 2 * size, secure );
|
|
mul_n (prodp, up, vp, size, tspace);
|
|
mpi_free_limb_space( tspace );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void
|
|
mpihelp_mul_karatsuba_case( mpi_ptr_t prodp,
|
|
mpi_ptr_t up, mpi_size_t usize,
|
|
mpi_ptr_t vp, mpi_size_t vsize,
|
|
struct karatsuba_ctx *ctx )
|
|
{
|
|
mpi_limb_t cy;
|
|
|
|
if( !ctx->tspace || ctx->tspace_size < vsize ) {
|
|
if( ctx->tspace )
|
|
mpi_free_limb_space( ctx->tspace );
|
|
ctx->tspace = mpi_alloc_limb_space( 2 * vsize,
|
|
m_is_secure( up ) || m_is_secure( vp ) );
|
|
ctx->tspace_size = vsize;
|
|
}
|
|
|
|
MPN_MUL_N_RECURSE( prodp, up, vp, vsize, ctx->tspace );
|
|
|
|
prodp += vsize;
|
|
up += vsize;
|
|
usize -= vsize;
|
|
if( usize >= vsize ) {
|
|
if( !ctx->tp || ctx->tp_size < vsize ) {
|
|
if( ctx->tp )
|
|
mpi_free_limb_space( ctx->tp );
|
|
ctx->tp = mpi_alloc_limb_space( 2 * vsize, m_is_secure( up )
|
|
|| m_is_secure( vp ) );
|
|
ctx->tp_size = vsize;
|
|
}
|
|
|
|
do {
|
|
MPN_MUL_N_RECURSE( ctx->tp, up, vp, vsize, ctx->tspace );
|
|
cy = mpihelp_add_n( prodp, prodp, ctx->tp, vsize );
|
|
mpihelp_add_1( prodp + vsize, ctx->tp + vsize, vsize, cy );
|
|
prodp += vsize;
|
|
up += vsize;
|
|
usize -= vsize;
|
|
} while( usize >= vsize );
|
|
}
|
|
|
|
if( usize ) {
|
|
if( usize < KARATSUBA_THRESHOLD ) {
|
|
mpihelp_mul( ctx->tspace, vp, vsize, up, usize );
|
|
}
|
|
else {
|
|
if( !ctx->next ) {
|
|
ctx->next = xmalloc_clear( sizeof *ctx );
|
|
}
|
|
mpihelp_mul_karatsuba_case( ctx->tspace,
|
|
vp, vsize,
|
|
up, usize,
|
|
ctx->next );
|
|
}
|
|
|
|
cy = mpihelp_add_n( prodp, prodp, ctx->tspace, vsize);
|
|
mpihelp_add_1( prodp + vsize, ctx->tspace + vsize, usize, cy );
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
mpihelp_release_karatsuba_ctx( struct karatsuba_ctx *ctx )
|
|
{
|
|
struct karatsuba_ctx *ctx2;
|
|
|
|
if( ctx->tp )
|
|
mpi_free_limb_space( ctx->tp );
|
|
if( ctx->tspace )
|
|
mpi_free_limb_space( ctx->tspace );
|
|
for( ctx=ctx->next; ctx; ctx = ctx2 ) {
|
|
ctx2 = ctx->next;
|
|
if( ctx->tp )
|
|
mpi_free_limb_space( ctx->tp );
|
|
if( ctx->tspace )
|
|
mpi_free_limb_space( ctx->tspace );
|
|
xfree( ctx );
|
|
}
|
|
}
|
|
|
|
/* Multiply the natural numbers u (pointed to by UP, with USIZE limbs)
|
|
* and v (pointed to by VP, with VSIZE limbs), and store the result at
|
|
* PRODP. USIZE + VSIZE limbs are always stored, but if the input
|
|
* operands are normalized. Return the most significant limb of the
|
|
* result.
|
|
*
|
|
* NOTE: The space pointed to by PRODP is overwritten before finished
|
|
* with U and V, so overlap is an error.
|
|
*
|
|
* Argument constraints:
|
|
* 1. USIZE >= VSIZE.
|
|
* 2. PRODP != UP and PRODP != VP, i.e. the destination
|
|
* must be distinct from the multiplier and the multiplicand.
|
|
*/
|
|
|
|
mpi_limb_t
|
|
mpihelp_mul( mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize,
|
|
mpi_ptr_t vp, mpi_size_t vsize)
|
|
{
|
|
mpi_ptr_t prod_endp = prodp + usize + vsize - 1;
|
|
mpi_limb_t cy;
|
|
struct karatsuba_ctx ctx;
|
|
|
|
if( vsize < KARATSUBA_THRESHOLD ) {
|
|
mpi_size_t i;
|
|
mpi_limb_t v_limb;
|
|
|
|
if( !vsize )
|
|
return 0;
|
|
|
|
/* Multiply by the first limb in V separately, as the result can be
|
|
* stored (not added) to PROD. We also avoid a loop for zeroing. */
|
|
v_limb = vp[0];
|
|
if( v_limb <= 1 ) {
|
|
if( v_limb == 1 )
|
|
MPN_COPY( prodp, up, usize );
|
|
else
|
|
MPN_ZERO( prodp, usize );
|
|
cy = 0;
|
|
}
|
|
else
|
|
cy = mpihelp_mul_1( prodp, up, usize, v_limb );
|
|
|
|
prodp[usize] = cy;
|
|
prodp++;
|
|
|
|
/* For each iteration in the outer loop, multiply one limb from
|
|
* U with one limb from V, and add it to PROD. */
|
|
for( i = 1; i < vsize; i++ ) {
|
|
v_limb = vp[i];
|
|
if( v_limb <= 1 ) {
|
|
cy = 0;
|
|
if( v_limb == 1 )
|
|
cy = mpihelp_add_n(prodp, prodp, up, usize);
|
|
}
|
|
else
|
|
cy = mpihelp_addmul_1(prodp, up, usize, v_limb);
|
|
|
|
prodp[usize] = cy;
|
|
prodp++;
|
|
}
|
|
|
|
return cy;
|
|
}
|
|
|
|
memset( &ctx, 0, sizeof ctx );
|
|
mpihelp_mul_karatsuba_case( prodp, up, usize, vp, vsize, &ctx );
|
|
mpihelp_release_karatsuba_ctx( &ctx );
|
|
return *prod_endp;
|
|
}
|
|
|
|
|