1
0
mirror of git://git.gnupg.org/gnupg.git synced 2024-06-09 23:39:51 +02:00
gnupg/cipher/random.c
Werner Koch c6dbfe8990
random: Hash continuous areas in the csprng pool.
* cipher/random.c (mix_pool): Store the first hash at the end of the
pool.
--

This fixes a long standing bug (since 1998) in Libgcrypt and GnuPG.
An attacker who obtains 580 bytes of the random number from the
standard RNG can trivially predict the next 20 bytes of output.

This bug does not affect the default generation of
keys because running gpg for key creation creates at most 2 keys from
the pool: For a single 4096 bit RSA key 512 byte of random are
required and thus for the second key (encryption subkey), 20 bytes
could be predicted from the the first key.  However, the security of
an OpenPGP key depends on the primary key (which was generated first)
and thus the 20 predictable bytes should not be a problem.  For the
default key length of 2048 bit nothing will be predictable.

For the former default of DSA+Elgamal key it is complicate to give an
answer: For 2048 bit keys a pool of 30 non-secret candidate primes of
about 300 bits each are first created.  This reads at least 1140 bytes
from the pool and thus parts could be predicted.  At some point a 256
bit secret is read from the pool; which in the worst case might be
partly predictable.

The bug was found and reported by Felix Dörre and Vladimir Klebanov,
Karlsruhe Institute of Technology.  A paper describing the problem in
detail will shortly be published.

CVE-id: CVE-2016-6313
Signed-off-by: Werner Koch <wk@gnupg.org>
2016-08-17 11:15:50 +02:00

917 lines
22 KiB
C

/* random.c - random number generator
* Copyright (C) 1998, 1999, 2000, 2001, 2002,
* 2003, 2006 Free Software Foundation, Inc.
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/****************
* This random number generator is modelled after the one described
* in Peter Gutmann's Paper: "Software Generation of Practically
* Strong Random Numbers".
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <errno.h>
#include <string.h>
#include <time.h>
#ifndef _WIN32
#include <sys/time.h>
#endif
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#ifdef HAVE_GETHRTIME
#include <sys/times.h>
#endif
#ifdef HAVE_GETTIMEOFDAY
#include <sys/time.h>
#endif
#ifdef HAVE_TIMES
#include <sys/times.h>
#endif
#ifdef HAVE_GETRUSAGE
#include <sys/resource.h>
#endif
#ifdef _WIN32
#include <process.h>
#endif
#include "util.h"
#include "rmd.h"
#include "ttyio.h"
#include "i18n.h"
#include "random.h"
#include "rand-internal.h"
#include "algorithms.h"
#ifdef __VMS
# include <rmsdef.h>
# include "vms.h"
#endif /* def __VMS */
#ifndef RAND_MAX /* for SunOS */
#define RAND_MAX 32767
#endif
/* 2008-03-31 SMS.
* VMS C RTL before V8.3 lacks byte-range file locking, but by default,
* a file opened for write access is not shared, so mutual exclusion can
* most generally be handled at the open(). */
/* Check whether we can lock the seed file read write. */
#if defined(HAVE_FCNTL) && defined(HAVE_FTRUNCATE) \
&& !defined(HAVE_W32_SYSTEM) && !defined(__VMS)
#define LOCK_SEED_FILE 1
#else
#define LOCK_SEED_FILE 0
#endif
#if SIZEOF_UNSIGNED_LONG == 8
#define ADD_VALUE 0xa5a5a5a5a5a5a5a5
#elif SIZEOF_UNSIGNED_LONG == 4
#define ADD_VALUE 0xa5a5a5a5
#else
#error weird size for an unsigned long
#endif
#define BLOCKLEN 64 /* hash this amount of bytes */
#define DIGESTLEN 20 /* into a digest of this length (rmd160) */
/* poolblocks is the number of digests which make up the pool
* and poolsize must be a multiple of the digest length
* to make the AND operations faster, the size should also be
* a multiple of ulong
*/
#define POOLBLOCKS 30
#define POOLSIZE (POOLBLOCKS*DIGESTLEN)
#if (POOLSIZE % SIZEOF_UNSIGNED_LONG)
#error Please make sure that poolsize is a multiple of ulong
#endif
#define POOLWORDS (POOLSIZE / SIZEOF_UNSIGNED_LONG)
static int is_initialized;
#define MASK_LEVEL(a) do {if( a > 2 ) a = 2; else if( a < 0 ) a = 0; } while(0)
static char *rndpool; /* allocated size is POOLSIZE+BLOCKLEN */
static char *keypool; /* allocated size is POOLSIZE+BLOCKLEN */
static size_t pool_readpos;
static size_t pool_writepos;
static int pool_filled;
static int pool_balance;
static int just_mixed;
static int did_initial_extra_seeding;
static char *seed_file_name;
static int allow_seed_file_update;
static int no_seed_file_locking;
static int secure_alloc;
static int quick_test;
static int faked_rng;
static void read_pool( byte *buffer, size_t length, int level );
static void add_randomness( const void *buffer, size_t length, int source );
static void random_poll(void);
static void read_random_source( int requester, size_t length, int level);
static int gather_faked( void (*add)(const void*, size_t, int), int requester,
size_t length, int level );
static struct {
ulong mixrnd;
ulong mixkey;
ulong slowpolls;
ulong fastpolls;
ulong getbytes1;
ulong ngetbytes1;
ulong getbytes2;
ulong ngetbytes2;
ulong addbytes;
ulong naddbytes;
} rndstats;
static int (*
getfnc_gather_random (void))(void (*)(const void*, size_t, int), int,
size_t, int)
{
#ifdef USE_ALL_RANDOM_MODULES
static int (*fnc)(void (*)(const void*, size_t, int), int, size_t, int);
if (fnc)
return fnc;
# ifdef USE_RNDLINUX
if ( !access (NAME_OF_DEV_RANDOM, R_OK)
&& !access (NAME_OF_DEV_URANDOM, R_OK))
{
fnc = rndlinux_gather_random;
return fnc;
}
# endif
# ifdef USE_RNDEGD
if ( rndegd_connect_socket (1) != -1 )
{
fnc = rndegd_gather_random;
return fnc;
}
# endif
# ifdef USE_RNDUNIX
fnc = rndunix_gather_random;
return fnc;
# endif
log_fatal (_("no entropy gathering module detected\n"));
#else
# ifdef USE_RNDLINUX
return rndlinux_gather_random;
# endif
# ifdef USE_RNDUNIX
return rndunix_gather_random;
# endif
# ifdef USE_RNDVMS
return rndvms_gather_random;
# endif
# ifdef USE_RNDEGD
return rndegd_gather_random;
# endif
# ifdef USE_RNDW32
return rndw32_gather_random;
# endif
# ifdef USE_RNDRISCOS
return rndriscos_gather_random;
# endif
#endif
return NULL;
}
static int (*
getfnc_fast_random_poll (void))( void (*)(const void*, size_t, int), int)
{
#ifdef USE_RNDW32
return rndw32_gather_random_fast;
#endif
return NULL;
}
static void
initialize(void)
{
/* The data buffer is allocated somewhat larger, so that
* we can use this extra space (which is allocated in secure memory)
* as a temporary hash buffer */
rndpool = secure_alloc ? xmalloc_secure_clear(POOLSIZE+BLOCKLEN)
: xmalloc_clear(POOLSIZE+BLOCKLEN);
keypool = secure_alloc ? xmalloc_secure_clear(POOLSIZE+BLOCKLEN)
: xmalloc_clear(POOLSIZE+BLOCKLEN);
is_initialized = 1;
}
static void
burn_stack (int bytes)
{
char buf[128];
wipememory(buf,sizeof buf);
bytes -= sizeof buf;
if (bytes > 0)
burn_stack (bytes);
}
void
random_dump_stats()
{
fprintf(stderr,
"random usage: poolsize=%d mixed=%lu polls=%lu/%lu added=%lu/%lu\n"
" outmix=%lu getlvl1=%lu/%lu getlvl2=%lu/%lu\n",
POOLSIZE, rndstats.mixrnd, rndstats.slowpolls, rndstats.fastpolls,
rndstats.naddbytes, rndstats.addbytes,
rndstats.mixkey, rndstats.ngetbytes1, rndstats.getbytes1,
rndstats.ngetbytes2, rndstats.getbytes2 );
}
void
secure_randoxmalloc()
{
secure_alloc = 1;
}
int
quick_random_gen( int onoff )
{
int last;
read_random_source(0,0,0); /* init */
last = quick_test;
if( onoff != -1 )
quick_test = onoff;
return faked_rng? 1 : last;
}
/****************
* Fill the buffer with LENGTH bytes of cryptographically strong
* random bytes. level 0 is not very strong, 1 is strong enough
* for most usage, 2 is good for key generation stuff but may be very slow.
*/
void
randomize_buffer( byte *buffer, size_t length, int level )
{
char *p = get_random_bits( length*8, level, 1 );
memcpy( buffer, p, length );
xfree(p);
}
/* Randomize the MPI by setting it to NBITS of random of quality LEVEL. */
void
randomize_mpi (MPI mpi, size_t nbits, int level)
{
unsigned char *buffer;
buffer = get_random_bits (nbits, level, mpi_is_secure (mpi));
mpi_set_buffer (mpi, buffer, (nbits+7)/8, 0);
xfree (buffer);
}
int
random_is_faked()
{
if( !is_initialized )
initialize();
return faked_rng || quick_test;
}
/* Disable locking of seed files. */
void
random_disable_locking ()
{
no_seed_file_locking = 1;
}
/****************
* Return a pointer to a randomized buffer of level 0 and LENGTH bits
* caller must free the buffer.
* Note: The returned value is rounded up to bytes.
*/
byte *
get_random_bits( size_t nbits, int level, int secure )
{
byte *buf, *p;
size_t nbytes = (nbits+7)/8;
if( quick_test && level > 1 )
level = 1;
MASK_LEVEL(level);
if( level == 1 ) {
rndstats.getbytes1 += nbytes;
rndstats.ngetbytes1++;
}
else if( level >= 2 ) {
rndstats.getbytes2 += nbytes;
rndstats.ngetbytes2++;
}
buf = secure && secure_alloc ? xmalloc_secure( nbytes ) : xmalloc( nbytes );
for( p = buf; nbytes > 0; ) {
size_t n = nbytes > POOLSIZE? POOLSIZE : nbytes;
read_pool( p, n, level );
nbytes -= n;
p += n;
}
return buf;
}
/****************
* Mix the pool
*/
static void
mix_pool(byte *pool)
{
char *hashbuf = pool + POOLSIZE;
char *p, *pend;
int i, n;
RMD160_CONTEXT md;
rmd160_init( &md );
#if DIGESTLEN != 20
#error must have a digest length of 20 for ripe-md-160
#endif
/* pool -> pool' */
pend = pool + POOLSIZE;
memcpy(hashbuf, pend - DIGESTLEN, DIGESTLEN );
memcpy(hashbuf+DIGESTLEN, pool, BLOCKLEN-DIGESTLEN);
rmd160_mixblock( &md, hashbuf);
memcpy(pool, hashbuf, DIGESTLEN);
/* Loop for the remaining iterations. */
p = pool;
for( n=1; n < POOLBLOCKS; n++ ) {
if( p + BLOCKLEN < pend )
memcpy(hashbuf, p, BLOCKLEN);
else {
char *pp = p;
for(i=0; i < BLOCKLEN; i++ ) {
if( pp >= pend )
pp = pool;
hashbuf[i] = *pp++;
}
}
rmd160_mixblock( &md, hashbuf);
p += DIGESTLEN;
memcpy(p, hashbuf, DIGESTLEN);
}
burn_stack (384); /* for the rmd160_mixblock() */
}
void
set_random_seed_file( const char *name )
{
if( seed_file_name )
BUG();
seed_file_name = xstrdup( name );
}
/* Lock an open file identified by file descriptor FD and wait a
reasonable time to succeed. With FOR_WRITE set to true a Rite lock
will be taken. FNAME is used only for diagnostics. Returns 0 on
success or -1 on error. */
static int
lock_seed_file (int fd, const char *fname, int for_write)
{
#if LOCK_SEED_FILE
struct flock lck;
struct timeval tv;
int backoff=0;
if (no_seed_file_locking)
return 0;
/* We take a lock on the entire file. */
memset (&lck, 0, sizeof lck);
lck.l_type = for_write? F_WRLCK : F_RDLCK;
lck.l_whence = SEEK_SET;
while (fcntl (fd, F_SETLK, &lck) == -1)
{
if (errno != EAGAIN && errno != EACCES)
{
log_info (_("can't lock `%s': %s\n"), fname, strerror (errno));
return -1;
}
if (backoff > 2) /* Show the first message after ~3.75 seconds. */
log_info( _("waiting for lock on `%s'...\n"), fname);
tv.tv_sec = backoff;
tv.tv_usec = 250000;
select (0, NULL, NULL, NULL, &tv);
if (backoff < 10)
backoff++ ;
}
#endif /*LOCK_SEED_FILE*/
return 0;
}
/****************
* Read in a seed form the random_seed file
* and return true if this was successful
*/
static int
read_seed_file(void)
{
int fd;
struct stat sb;
unsigned char buffer[POOLSIZE];
int n;
if( !seed_file_name )
return 0;
#if defined(HAVE_DOSISH_SYSTEM) || defined(__CYGWIN__)
fd = open( seed_file_name, O_RDONLY | O_BINARY );
#elif defined( __VMS)
/* We're only reading, so allow others to do anything. */
fd = open( seed_file_name, O_RDONLY, 0777, "shr=get,put,upd" );
#else
fd = open( seed_file_name, O_RDONLY );
#endif
if( fd == -1 && errno == ENOENT) {
allow_seed_file_update = 1;
return 0;
}
if( fd == -1 ) {
log_info(_("can't open `%s': %s\n"), seed_file_name, strerror(errno) );
return 0;
}
if (lock_seed_file (fd, seed_file_name, 0))
{
close (fd);
return 0;
}
if( fstat( fd, &sb ) ) {
log_info(_("can't stat `%s': %s\n"), seed_file_name, strerror(errno) );
close(fd);
return 0;
}
if( !S_ISREG(sb.st_mode) ) {
log_info(_("`%s' is not a regular file - ignored\n"), seed_file_name );
close(fd);
return 0;
}
if( !sb.st_size ) {
log_info(_("note: random_seed file is empty\n") );
close(fd);
allow_seed_file_update = 1;
return 0;
}
if( sb.st_size != POOLSIZE ) {
log_info(_("WARNING: invalid size of random_seed file - not used\n") );
close(fd);
return 0;
}
do {
n = read( fd, buffer, POOLSIZE );
} while( n == -1 && errno == EINTR );
/* The N==0, ENOENT, and N!=POOLSIZE cases may happen if another
process is updating the file. For consistency we use the same
recovery strategy as with the pre-read checks. */
if (!n) {
log_info(_("note: random_seed file is empty\n") );
allow_seed_file_update = 1;
close(fd);
return 0;
}
else if( n == -1 && errno == ENOENT) {
/* On a Unix system that should never happen. However, I can
imagine this error code on non-inode based systems. */
log_info(_("can't read `%s': %s\n"), seed_file_name, strerror(errno));
allow_seed_file_update = 1;
close(fd);
return 0;
}
else if( n == -1 ) {
/* A real read error. */
log_fatal(_("can't read `%s': %s\n"), seed_file_name,strerror(errno) );
close(fd);
return 0;
}
else if ( n != POOLSIZE ) {
log_info(_("WARNING: invalid size of random_seed file - not used\n") );
close(fd);
return 0;
}
close(fd);
add_randomness( buffer, POOLSIZE, 0 );
/* add some minor entropy to the pool now (this will also force a mixing) */
{ pid_t x = getpid();
add_randomness( &x, sizeof(x), 0 );
}
{ time_t x = time(NULL);
add_randomness( &x, sizeof(x), 0 );
}
{ clock_t x = clock();
add_randomness( &x, sizeof(x), 0 );
}
/* And read a few bytes from our entropy source. By using
* a level of 0 this will not block and might not return anything
* with some entropy drivers, however the rndlinux driver will use
* /dev/urandom and return some stuff - Do not read too much as we
* want to be friendly to the scarce system entropy resource. */
read_random_source( 0, 16, 0 );
allow_seed_file_update = 1;
return 1;
}
void
update_random_seed_file()
{
ulong *sp, *dp;
int fd, i;
if( !seed_file_name || !is_initialized || !pool_filled )
return;
if( !allow_seed_file_update ) {
log_info(_("note: random_seed file not updated\n"));
return;
}
/* copy the entropy pool to a scratch pool and mix both of them */
for(i=0,dp=(ulong*)keypool, sp=(ulong*)rndpool;
i < POOLWORDS; i++, dp++, sp++ ) {
*dp = *sp + ADD_VALUE;
}
mix_pool(rndpool); rndstats.mixrnd++;
mix_pool(keypool); rndstats.mixkey++;
#if defined(HAVE_DOSISH_SYSTEM) || defined(__CYGWIN__)
fd = open( seed_file_name, O_WRONLY|O_CREAT|O_TRUNC|O_BINARY,
S_IRUSR|S_IWUSR );
#else
# if LOCK_SEED_FILE
fd = open( seed_file_name, O_WRONLY|O_CREAT, S_IRUSR|S_IWUSR );
# else
# ifdef __VMS
/* Open the seed file for exclusive write access, but allow other
* readers. Loop until success. Complain after a few failures. */
{
int backoff = 0;
while ((fd = open( seed_file_name,
O_WRONLY|O_CREAT,
S_IRUSR|S_IWUSR,
"shr=get")) == -1 )
{
if ((errno != EVMSERR) || (vaxc$errno != RMS$_FLK))
{
/* Some unexpected open failure. */
log_info (_("can't lock `%s': %s\n"),
seed_file_name, strerror (errno));
return;
}
if (backoff > 2) /* Show the first message after ~3.75 seconds. */
log_info( _("waiting for lock on `%s'...\n"), seed_file_name);
wait_vms( backoff+ 0.25);
if (backoff < 10)
backoff++ ;
}
}
# else /* !def __VMS */
fd = open( seed_file_name, O_WRONLY|O_CREAT|O_TRUNC, S_IRUSR|S_IWUSR );
# endif /* !def __VMS */
# endif
#endif
if( fd == -1 ) {
log_info(_("can't create `%s': %s\n"), seed_file_name, strerror(errno));
return;
}
if (lock_seed_file (fd, seed_file_name, 1))
{
close (fd);
return;
}
#if LOCK_SEED_FILE
if (ftruncate (fd, 0))
{
log_info(_("can't write `%s': %s\n"), seed_file_name, strerror(errno));
close (fd);
return;
}
#endif /*LOCK_SEED_FILE*/
do {
i = write( fd, keypool, POOLSIZE );
} while( i == -1 && errno == EINTR );
if( i != POOLSIZE ) {
log_info(_("can't write `%s': %s\n"), seed_file_name, strerror(errno) );
}
if( close(fd) )
log_info(_("can't close `%s': %s\n"), seed_file_name, strerror(errno) );
}
static void
read_pool( byte *buffer, size_t length, int level )
{
int i;
ulong *sp, *dp;
if( length > POOLSIZE ) {
log_bug("too many random bits requested\n");
}
if( !pool_filled ) {
if( read_seed_file() )
pool_filled = 1;
}
/* For level 2 quality (key generation) we alwas make
* sure that the pool has been seeded enough initially */
if( level == 2 && !did_initial_extra_seeding ) {
size_t needed;
pool_balance = 0;
needed = length - pool_balance;
if( needed < POOLSIZE/2 )
needed = POOLSIZE/2;
else if( needed > POOLSIZE )
BUG();
read_random_source( 3, needed, 2 );
pool_balance += needed;
did_initial_extra_seeding=1;
}
/* for level 2 make sure that there is enough random in the pool */
if( level == 2 && pool_balance < length ) {
size_t needed;
if( pool_balance < 0 )
pool_balance = 0;
needed = length - pool_balance;
if( needed > POOLSIZE )
BUG();
read_random_source( 3, needed, 2 );
pool_balance += needed;
}
/* make sure the pool is filled */
while( !pool_filled )
random_poll();
/* do always a fast random poll */
fast_random_poll();
if( !level ) { /* no need for cryptographic strong random */
/* create a new pool */
for(i=0,dp=(ulong*)keypool, sp=(ulong*)rndpool;
i < POOLWORDS; i++, dp++, sp++ )
*dp = *sp + ADD_VALUE;
/* must mix both pools */
mix_pool(rndpool); rndstats.mixrnd++;
mix_pool(keypool); rndstats.mixkey++;
memcpy( buffer, keypool, length );
}
else {
/* mix the pool (if add_randomness() didn't it) */
if( !just_mixed ) {
mix_pool(rndpool);
rndstats.mixrnd++;
}
/* create a new pool */
for(i=0,dp=(ulong*)keypool, sp=(ulong*)rndpool;
i < POOLWORDS; i++, dp++, sp++ )
*dp = *sp + ADD_VALUE;
/* and mix both pools */
mix_pool(rndpool); rndstats.mixrnd++;
mix_pool(keypool); rndstats.mixkey++;
/* read the required data
* we use a readpoiter to read from a different postion each
* time */
while( length-- ) {
*buffer++ = keypool[pool_readpos++];
if( pool_readpos >= POOLSIZE )
pool_readpos = 0;
pool_balance--;
}
if( pool_balance < 0 )
pool_balance = 0;
/* and clear the keypool */
wipememory(keypool, POOLSIZE);
}
}
/****************
* Add LENGTH bytes of randomness from buffer to the pool.
* source may be used to specify the randomness source.
* Source is:
* 0 - used ony for initialization
* 1 - fast random poll function
* 2 - normal poll function
* 3 - used when level 2 random quality has been requested
* to do an extra pool seed.
*/
static void
add_randomness( const void *buffer, size_t length, int source )
{
const byte *p = buffer;
if( !is_initialized )
initialize();
rndstats.addbytes += length;
rndstats.naddbytes++;
while( length-- ) {
rndpool[pool_writepos++] ^= *p++;
if( pool_writepos >= POOLSIZE ) {
if( source > 1 )
pool_filled = 1;
pool_writepos = 0;
mix_pool(rndpool); rndstats.mixrnd++;
just_mixed = !length;
}
}
}
static void
random_poll()
{
rndstats.slowpolls++;
read_random_source( 2, POOLSIZE/5, 1 );
}
void
fast_random_poll()
{
static int (*fnc)( void (*)(const void*, size_t, int), int) = NULL;
static int initialized = 0;
rndstats.fastpolls++;
if( !initialized ) {
if( !is_initialized )
initialize();
initialized = 1;
fnc = getfnc_fast_random_poll();
}
if( fnc ) {
(*fnc)( add_randomness, 1 );
return;
}
/* fall back to the generic function */
#if defined(HAVE_GETHRTIME) && !defined(HAVE_BROKEN_GETHRTIME)
{ hrtime_t tv;
/* On some Solaris and HPUX system gethrtime raises an SIGILL, but we
* checked this with configure */
tv = gethrtime();
add_randomness( &tv, sizeof(tv), 1 );
}
#elif defined (HAVE_GETTIMEOFDAY)
{ struct timeval tv;
if( gettimeofday( &tv, NULL ) )
BUG();
add_randomness( &tv.tv_sec, sizeof(tv.tv_sec), 1 );
add_randomness( &tv.tv_usec, sizeof(tv.tv_usec), 1 );
}
#elif defined (HAVE_CLOCK_GETTIME)
{ struct timespec tv;
if( clock_gettime( CLOCK_REALTIME, &tv ) == -1 )
BUG();
add_randomness( &tv.tv_sec, sizeof(tv.tv_sec), 1 );
add_randomness( &tv.tv_nsec, sizeof(tv.tv_nsec), 1 );
}
#elif defined (HAVE_TIMES)
{ struct tms buf;
if( times( &buf ) == -1 )
BUG();
add_randomness( &buf, sizeof buf, 1 );
}
#endif
#ifdef HAVE_GETRUSAGE
#ifndef RUSAGE_SELF
#ifdef __GCC__
#warning There is no RUSAGE_SELF on this system
#endif
#else
{ struct rusage buf;
/* QNX/Neutrino does return ENOSYS - so we just ignore it and
* add whatever is in buf. In a chroot environment it might not
* work at all (i.e. because /proc/ is not accessible), so we better
* ignore all error codes and hope for the best
*/
getrusage( RUSAGE_SELF, &buf );
add_randomness( &buf, sizeof buf, 1 );
wipememory( &buf, sizeof buf );
}
#endif
#endif
/* time and clock are available on all systems - so
* we better do it just in case one of the above functions
* didn't work */
{ time_t x = time(NULL);
add_randomness( &x, sizeof(x), 1 );
}
{ clock_t x = clock();
add_randomness( &x, sizeof(x), 1 );
}
}
static void
read_random_source( int requester, size_t length, int level )
{
static int (*fnc)(void (*)(const void*, size_t, int), int,
size_t, int) = NULL;
if( !fnc ) {
if( !is_initialized )
initialize();
fnc = getfnc_gather_random();
if( !fnc ) {
faked_rng = 1;
fnc = gather_faked;
}
if( !requester && !length && !level )
return; /* init only */
}
if( (*fnc)( add_randomness, requester, length, level ) < 0 )
log_fatal("No way to gather entropy for the RNG\n");
}
static int
gather_faked( void (*add)(const void*, size_t, int), int requester,
size_t length, int level )
{
static int initialized=0;
size_t n;
char *buffer, *p;
if( !initialized ) {
log_info(_("WARNING: using insecure random number generator!!\n"));
tty_printf(_("The random number generator is only a kludge to let\n"
"it run - it is in no way a strong RNG!\n\n"
"DON'T USE ANY DATA GENERATED BY THIS PROGRAM!!\n\n"));
initialized=1;
#ifdef HAVE_RAND
srand(make_timestamp()*getpid());
#else
srandom(make_timestamp()*getpid());
#endif
}
p = buffer = xmalloc( length );
n = length;
#ifdef HAVE_RAND
while( n-- )
*p++ = ((unsigned)(1 + (int) (256.0*rand()/(RAND_MAX+1.0)))-1);
#else
while( n-- )
*p++ = ((unsigned)(1 + (int) (256.0*random()/(RAND_MAX+1.0)))-1);
#endif
add_randomness( buffer, length, requester );
xfree(buffer);
return 0; /* okay */
}