mirror of
git://git.gnupg.org/gnupg.git
synced 2024-12-22 10:19:57 +01:00
ff53cf06e9
* cipher/elgamal.c (USE_BLINDING): New. (decrypt): Rewrite to use ciphertext blinding. -- CVE-id: CVE-2014-3591 As a countermeasure to a new side-channel attacks on sliding windows exponentiation we blind the ciphertext for Elgamal decryption. This is similar to what we are doing with RSA. Unfortunately, the performance impact of Elgamal blinding is quite noticeable: For a 3072 bit Elgamal key the decryption used to take 13ms; with the blinding it takes 24ms. This has been measured using time(1), calling gpg with a 100 byte message, and having gpg modified to run the pubkey_decrypt function 100 times and finally scale the result (using an i5-2410M CPU @ 2.30GHz TP 220).
547 lines
14 KiB
C
547 lines
14 KiB
C
/* elgamal.c - elgamal Public Key encryption
|
|
* Copyright (C) 1998, 2000, 2001, 2003,
|
|
* 2004 Free Software Foundation, Inc.
|
|
*
|
|
* For a description of the algorithm, see:
|
|
* Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996.
|
|
* ISBN 0-471-11709-9. Pages 476 ff.
|
|
*
|
|
* This file is part of GnuPG.
|
|
*
|
|
* GnuPG is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* GnuPG is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "util.h"
|
|
#include "mpi.h"
|
|
#include "cipher.h"
|
|
#include "elgamal.h"
|
|
|
|
/* Blinding is used to mitigate side-channel attacks. You may undef
|
|
this to speed up the operation in case the system is secured
|
|
against physical and network mounted side-channel attacks. */
|
|
#define USE_BLINDING 1
|
|
|
|
typedef struct {
|
|
MPI p; /* prime */
|
|
MPI g; /* group generator */
|
|
MPI y; /* g^x mod p */
|
|
} ELG_public_key;
|
|
|
|
|
|
typedef struct {
|
|
MPI p; /* prime */
|
|
MPI g; /* group generator */
|
|
MPI y; /* g^x mod p */
|
|
MPI x; /* secret exponent */
|
|
} ELG_secret_key;
|
|
|
|
|
|
static void test_keys( ELG_secret_key *sk, unsigned nbits );
|
|
static MPI gen_k( MPI p, int small_k );
|
|
static void generate( ELG_secret_key *sk, unsigned nbits, MPI **factors );
|
|
static int check_secret_key( ELG_secret_key *sk );
|
|
static void do_encrypt(MPI a, MPI b, MPI input, ELG_public_key *pkey );
|
|
static void decrypt(MPI output, MPI a, MPI b, ELG_secret_key *skey );
|
|
|
|
|
|
static void (*progress_cb) ( void *, int );
|
|
static void *progress_cb_data;
|
|
|
|
void
|
|
register_pk_elg_progress ( void (*cb)( void *, int), void *cb_data )
|
|
{
|
|
progress_cb = cb;
|
|
progress_cb_data = cb_data;
|
|
}
|
|
|
|
|
|
static void
|
|
progress( int c )
|
|
{
|
|
if ( progress_cb )
|
|
progress_cb ( progress_cb_data, c );
|
|
else
|
|
fputc( c, stderr );
|
|
}
|
|
|
|
|
|
/****************
|
|
* Michael Wiener's table about subgroup sizes to match field sizes
|
|
* (floating around somewhere - Fixme: need a reference)
|
|
*/
|
|
static unsigned int
|
|
wiener_map( unsigned int n )
|
|
{
|
|
static struct { unsigned int p_n, q_n; } t[] =
|
|
{ /* p q attack cost */
|
|
{ 512, 119 }, /* 9 x 10^17 */
|
|
{ 768, 145 }, /* 6 x 10^21 */
|
|
{ 1024, 165 }, /* 7 x 10^24 */
|
|
{ 1280, 183 }, /* 3 x 10^27 */
|
|
{ 1536, 198 }, /* 7 x 10^29 */
|
|
{ 1792, 212 }, /* 9 x 10^31 */
|
|
{ 2048, 225 }, /* 8 x 10^33 */
|
|
{ 2304, 237 }, /* 5 x 10^35 */
|
|
{ 2560, 249 }, /* 3 x 10^37 */
|
|
{ 2816, 259 }, /* 1 x 10^39 */
|
|
{ 3072, 269 }, /* 3 x 10^40 */
|
|
{ 3328, 279 }, /* 8 x 10^41 */
|
|
{ 3584, 288 }, /* 2 x 10^43 */
|
|
{ 3840, 296 }, /* 4 x 10^44 */
|
|
{ 4096, 305 }, /* 7 x 10^45 */
|
|
{ 4352, 313 }, /* 1 x 10^47 */
|
|
{ 4608, 320 }, /* 2 x 10^48 */
|
|
{ 4864, 328 }, /* 2 x 10^49 */
|
|
{ 5120, 335 }, /* 3 x 10^50 */
|
|
{ 0, 0 }
|
|
};
|
|
int i;
|
|
|
|
for(i=0; t[i].p_n; i++ ) {
|
|
if( n <= t[i].p_n )
|
|
return t[i].q_n;
|
|
}
|
|
/* not in table - use some arbitrary high number ;-) */
|
|
return n / 8 + 200;
|
|
}
|
|
|
|
static void
|
|
test_keys( ELG_secret_key *sk, unsigned int nbits )
|
|
{
|
|
ELG_public_key pk;
|
|
MPI test = mpi_alloc( 0 );
|
|
MPI out1_a = mpi_alloc ( mpi_nlimb_hint_from_nbits (nbits) );
|
|
MPI out1_b = mpi_alloc ( mpi_nlimb_hint_from_nbits (nbits) );
|
|
MPI out2 = mpi_alloc ( mpi_nlimb_hint_from_nbits (nbits) );
|
|
|
|
pk.p = sk->p;
|
|
pk.g = sk->g;
|
|
pk.y = sk->y;
|
|
|
|
/*mpi_set_bytes( test, nbits, get_random_byte, 0 );*/
|
|
{ char *p = get_random_bits( nbits, 0, 0 );
|
|
mpi_set_buffer( test, p, (nbits+7)/8, 0 );
|
|
xfree(p);
|
|
}
|
|
|
|
do_encrypt( out1_a, out1_b, test, &pk );
|
|
decrypt( out2, out1_a, out1_b, sk );
|
|
if( mpi_cmp( test, out2 ) )
|
|
log_fatal("Elgamal operation: encrypt, decrypt failed\n");
|
|
|
|
mpi_free( test );
|
|
mpi_free( out1_a );
|
|
mpi_free( out1_b );
|
|
mpi_free( out2 );
|
|
}
|
|
|
|
|
|
/****************
|
|
* Generate a random secret exponent k from prime p, so that k is
|
|
* relatively prime to p-1. With SMALL_K set, k will be selected for
|
|
* better encryption performance - this must never bee used signing!
|
|
*/
|
|
static MPI
|
|
gen_k( MPI p, int small_k )
|
|
{
|
|
MPI k = mpi_alloc_secure( 0 );
|
|
MPI temp = mpi_alloc( mpi_get_nlimbs(p) );
|
|
MPI p_1 = mpi_copy(p);
|
|
unsigned int orig_nbits = mpi_get_nbits(p);
|
|
unsigned int nbits;
|
|
unsigned int nbytes;
|
|
char *rndbuf = NULL;
|
|
|
|
if (small_k)
|
|
{
|
|
/* Using a k much lesser than p is sufficient for encryption and
|
|
* it greatly improves the encryption performance. We use
|
|
* Wiener's table and add a large safety margin.
|
|
*/
|
|
nbits = wiener_map( orig_nbits ) * 3 / 2;
|
|
if( nbits >= orig_nbits )
|
|
BUG();
|
|
}
|
|
else
|
|
nbits = orig_nbits;
|
|
|
|
nbytes = (nbits+7)/8;
|
|
if( DBG_CIPHER )
|
|
log_debug("choosing a random k of %u bits", nbits);
|
|
mpi_sub_ui( p_1, p, 1);
|
|
for(;;) {
|
|
if( !rndbuf || nbits < 32 ) {
|
|
xfree(rndbuf);
|
|
rndbuf = get_random_bits( nbits, 1, 1 );
|
|
}
|
|
else { /* Change only some of the higher bits. */
|
|
/* We could impprove this by directly requesting more memory
|
|
* at the first call to get_random_bits() and use this the here
|
|
* maybe it is easier to do this directly in random.c
|
|
* Anyway, it is highly inlikely that we will ever reach this code
|
|
*/
|
|
char *pp = get_random_bits( 32, 1, 1 );
|
|
memcpy( rndbuf,pp, 4 );
|
|
xfree(pp);
|
|
}
|
|
mpi_set_buffer( k, rndbuf, nbytes, 0 );
|
|
|
|
for(;;) {
|
|
if( !(mpi_cmp( k, p_1 ) < 0) ) { /* check: k < (p-1) */
|
|
if( DBG_CIPHER )
|
|
progress('+');
|
|
break; /* no */
|
|
}
|
|
if( !(mpi_cmp_ui( k, 0 ) > 0) ) { /* check: k > 0 */
|
|
if( DBG_CIPHER )
|
|
progress('-');
|
|
break; /* no */
|
|
}
|
|
if( mpi_gcd( temp, k, p_1 ) )
|
|
goto found; /* okay, k is relatively prime to (p-1) */
|
|
mpi_add_ui( k, k, 1 );
|
|
if( DBG_CIPHER )
|
|
progress('.');
|
|
}
|
|
}
|
|
found:
|
|
xfree(rndbuf);
|
|
if( DBG_CIPHER )
|
|
progress('\n');
|
|
mpi_free(p_1);
|
|
mpi_free(temp);
|
|
|
|
return k;
|
|
}
|
|
|
|
/****************
|
|
* Generate a key pair with a key of size NBITS
|
|
* Returns: 2 structures filles with all needed values
|
|
* and an array with n-1 factors of (p-1)
|
|
*/
|
|
static void
|
|
generate( ELG_secret_key *sk, unsigned int nbits, MPI **ret_factors )
|
|
{
|
|
MPI p; /* the prime */
|
|
MPI p_min1;
|
|
MPI g;
|
|
MPI x; /* the secret exponent */
|
|
MPI y;
|
|
MPI temp;
|
|
unsigned int qbits;
|
|
unsigned int xbits;
|
|
byte *rndbuf;
|
|
|
|
p_min1 = mpi_alloc ( mpi_nlimb_hint_from_nbits (nbits) );
|
|
temp = mpi_alloc ( mpi_nlimb_hint_from_nbits (nbits) );
|
|
qbits = wiener_map ( nbits );
|
|
if( qbits & 1 ) /* better have a even one */
|
|
qbits++;
|
|
g = mpi_alloc(1);
|
|
p = generate_elg_prime( 0, nbits, qbits, g, ret_factors );
|
|
mpi_sub_ui(p_min1, p, 1);
|
|
|
|
|
|
/* select a random number which has these properties:
|
|
* 0 < x < p-1
|
|
* This must be a very good random number because this is the
|
|
* secret part. The prime is public and may be shared anyway,
|
|
* so a random generator level of 1 is used for the prime.
|
|
*
|
|
* I don't see a reason to have a x of about the same size as the
|
|
* p. It should be sufficient to have one about the size of q or
|
|
* the later used k plus a large safety margin. Decryption will be
|
|
* much faster with such an x. Note that this is not optimal for
|
|
* signing keys becuase it makes an attack using accidential small
|
|
* K values even easier. Well, one should not use ElGamal signing
|
|
* anyway.
|
|
*/
|
|
xbits = qbits * 3 / 2;
|
|
if( xbits >= nbits )
|
|
BUG();
|
|
x = mpi_alloc_secure ( mpi_nlimb_hint_from_nbits (xbits) );
|
|
if( DBG_CIPHER )
|
|
log_debug("choosing a random x of size %u", xbits );
|
|
rndbuf = NULL;
|
|
do {
|
|
if( DBG_CIPHER )
|
|
progress('.');
|
|
if( rndbuf ) { /* change only some of the higher bits */
|
|
if( xbits < 16 ) {/* should never happen ... */
|
|
xfree(rndbuf);
|
|
rndbuf = get_random_bits( xbits, 2, 1 );
|
|
}
|
|
else {
|
|
char *r = get_random_bits( 16, 2, 1 );
|
|
memcpy(rndbuf, r, 16/8 );
|
|
xfree(r);
|
|
}
|
|
}
|
|
else
|
|
rndbuf = get_random_bits( xbits, 2, 1 );
|
|
mpi_set_buffer( x, rndbuf, (xbits+7)/8, 0 );
|
|
mpi_clear_highbit( x, xbits+1 );
|
|
} while( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, p_min1 )<0 ) );
|
|
xfree(rndbuf);
|
|
|
|
y = mpi_alloc ( mpi_nlimb_hint_from_nbits (nbits) );
|
|
mpi_powm( y, g, x, p );
|
|
|
|
if( DBG_CIPHER ) {
|
|
progress('\n');
|
|
log_mpidump("elg p= ", p );
|
|
log_mpidump("elg g= ", g );
|
|
log_mpidump("elg y= ", y );
|
|
log_mpidump("elg x= ", x );
|
|
}
|
|
|
|
/* copy the stuff to the key structures */
|
|
sk->p = p;
|
|
sk->g = g;
|
|
sk->y = y;
|
|
sk->x = x;
|
|
|
|
/* now we can test our keys (this should never fail!) */
|
|
test_keys( sk, nbits - 64 );
|
|
|
|
mpi_free( p_min1 );
|
|
mpi_free( temp );
|
|
}
|
|
|
|
|
|
/****************
|
|
* Test whether the secret key is valid.
|
|
* Returns: if this is a valid key.
|
|
*/
|
|
static int
|
|
check_secret_key( ELG_secret_key *sk )
|
|
{
|
|
int rc;
|
|
MPI y = mpi_alloc( mpi_get_nlimbs(sk->y) );
|
|
|
|
mpi_powm( y, sk->g, sk->x, sk->p );
|
|
rc = !mpi_cmp( y, sk->y );
|
|
mpi_free( y );
|
|
return rc;
|
|
}
|
|
|
|
|
|
static void
|
|
do_encrypt(MPI a, MPI b, MPI input, ELG_public_key *pkey )
|
|
{
|
|
MPI k;
|
|
|
|
/* Note: maybe we should change the interface, so that it
|
|
* is possible to check that input is < p and return an
|
|
* error code.
|
|
*/
|
|
|
|
k = gen_k( pkey->p, 1 );
|
|
mpi_powm( a, pkey->g, k, pkey->p );
|
|
/* b = (y^k * input) mod p
|
|
* = ((y^k mod p) * (input mod p)) mod p
|
|
* and because input is < p
|
|
* = ((y^k mod p) * input) mod p
|
|
*/
|
|
mpi_powm( b, pkey->y, k, pkey->p );
|
|
mpi_mulm( b, b, input, pkey->p );
|
|
#if 0
|
|
if( DBG_CIPHER ) {
|
|
log_mpidump("elg encrypted y= ", pkey->y);
|
|
log_mpidump("elg encrypted p= ", pkey->p);
|
|
log_mpidump("elg encrypted k= ", k);
|
|
log_mpidump("elg encrypted M= ", input);
|
|
log_mpidump("elg encrypted a= ", a);
|
|
log_mpidump("elg encrypted b= ", b);
|
|
}
|
|
#endif
|
|
mpi_free(k);
|
|
}
|
|
|
|
|
|
static void
|
|
decrypt(MPI output, MPI a, MPI b, ELG_secret_key *skey )
|
|
{
|
|
MPI t1, t2, r;
|
|
unsigned int nbits = mpi_get_nbits (skey->p);
|
|
|
|
mpi_normalize (a);
|
|
mpi_normalize (b);
|
|
|
|
t1 = mpi_alloc_secure (mpi_nlimb_hint_from_nbits (nbits));
|
|
#ifdef USE_BLINDING
|
|
|
|
t2 = mpi_alloc_secure (mpi_nlimb_hint_from_nbits (nbits));
|
|
r = mpi_alloc (mpi_nlimb_hint_from_nbits (nbits));
|
|
|
|
/* We need a random number of about the prime size. The random
|
|
number merely needs to be unpredictable; thus we use level 0. */
|
|
randomize_mpi (r, nbits, 0);
|
|
|
|
/* t1 = r^x mod p */
|
|
mpi_powm (t1, r, skey->x, skey->p);
|
|
/* t2 = (a * r)^-x mod p */
|
|
mpi_mulm (t2, a, r, skey->p);
|
|
mpi_powm (t2, t2, skey->x, skey->p);
|
|
mpi_invm (t2, t2, skey->p);
|
|
/* t1 = (t1 * t2) mod p*/
|
|
mpi_mulm (t1, t1, t2, skey->p);
|
|
|
|
mpi_free (r);
|
|
mpi_free (t2);
|
|
|
|
#else /*!USE_BLINDING*/
|
|
|
|
/* output = b/(a^x) mod p */
|
|
mpi_powm (t1, a, skey->x, skey->p);
|
|
mpi_invm (t1, t1, skey->p);
|
|
|
|
#endif /*!USE_BLINDING*/
|
|
|
|
mpi_mulm (output, b, t1, skey->p);
|
|
|
|
#if 0
|
|
if (DBG_CIPHER)
|
|
{
|
|
log_mpidump("elg decrypted x= ", skey->x);
|
|
log_mpidump("elg decrypted p= ", skey->p);
|
|
log_mpidump("elg decrypted a= ", a);
|
|
log_mpidump("elg decrypted b= ", b);
|
|
log_mpidump("elg decrypted M= ", output);
|
|
}
|
|
#endif
|
|
mpi_free (t1);
|
|
}
|
|
|
|
|
|
/*********************************************
|
|
************** interface ******************
|
|
*********************************************/
|
|
|
|
int
|
|
elg_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors )
|
|
{
|
|
ELG_secret_key sk;
|
|
|
|
if( !is_ELGAMAL(algo) )
|
|
return G10ERR_PUBKEY_ALGO;
|
|
|
|
generate( &sk, nbits, retfactors );
|
|
skey[0] = sk.p;
|
|
skey[1] = sk.g;
|
|
skey[2] = sk.y;
|
|
skey[3] = sk.x;
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
elg_check_secret_key( int algo, MPI *skey )
|
|
{
|
|
ELG_secret_key sk;
|
|
|
|
if( !is_ELGAMAL(algo) )
|
|
return G10ERR_PUBKEY_ALGO;
|
|
if( !skey[0] || !skey[1] || !skey[2] || !skey[3] )
|
|
return G10ERR_BAD_MPI;
|
|
|
|
sk.p = skey[0];
|
|
sk.g = skey[1];
|
|
sk.y = skey[2];
|
|
sk.x = skey[3];
|
|
if( !check_secret_key( &sk ) )
|
|
return G10ERR_BAD_SECKEY;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
elg_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey )
|
|
{
|
|
ELG_public_key pk;
|
|
|
|
if( !is_ELGAMAL(algo) )
|
|
return G10ERR_PUBKEY_ALGO;
|
|
if( !data || !pkey[0] || !pkey[1] || !pkey[2] )
|
|
return G10ERR_BAD_MPI;
|
|
|
|
pk.p = pkey[0];
|
|
pk.g = pkey[1];
|
|
pk.y = pkey[2];
|
|
resarr[0] = mpi_alloc( mpi_get_nlimbs( pk.p ) );
|
|
resarr[1] = mpi_alloc( mpi_get_nlimbs( pk.p ) );
|
|
do_encrypt( resarr[0], resarr[1], data, &pk );
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
elg_decrypt( int algo, MPI *result, MPI *data, MPI *skey )
|
|
{
|
|
ELG_secret_key sk;
|
|
|
|
if( !is_ELGAMAL(algo) )
|
|
return G10ERR_PUBKEY_ALGO;
|
|
if( !data[0] || !data[1]
|
|
|| !skey[0] || !skey[1] || !skey[2] || !skey[3] )
|
|
return G10ERR_BAD_MPI;
|
|
|
|
sk.p = skey[0];
|
|
sk.g = skey[1];
|
|
sk.y = skey[2];
|
|
sk.x = skey[3];
|
|
*result = mpi_alloc_secure( mpi_get_nlimbs( sk.p ) );
|
|
decrypt( *result, data[0], data[1], &sk );
|
|
return 0;
|
|
}
|
|
|
|
|
|
unsigned int
|
|
elg_get_nbits( int algo, MPI *pkey )
|
|
{
|
|
if( !is_ELGAMAL(algo) )
|
|
return 0;
|
|
return mpi_get_nbits( pkey[0] );
|
|
}
|
|
|
|
|
|
/****************
|
|
* Return some information about the algorithm. We need algo here to
|
|
* distinguish different flavors of the algorithm.
|
|
* Returns: A pointer to string describing the algorithm or NULL if
|
|
* the ALGO is invalid.
|
|
* Usage: Bit 0 set : allows signing
|
|
* 1 set : allows encryption
|
|
*/
|
|
const char *
|
|
elg_get_info( int algo, int *npkey, int *nskey, int *nenc, int *nsig,
|
|
int *use )
|
|
{
|
|
*npkey = 3;
|
|
*nskey = 4;
|
|
*nenc = 2;
|
|
*nsig = 2;
|
|
|
|
switch( algo ) {
|
|
case PUBKEY_ALGO_ELGAMAL_E:
|
|
*use = PUBKEY_USAGE_ENC;
|
|
return "ELG-E";
|
|
default: *use = 0; return NULL;
|
|
}
|
|
}
|