g@c Copyright (C) 2002 Free Software Foundation, Inc. @c This is part of the GnuPG manual. @c For copying conditions, see the file gnupg.texi. @node Invoking SCDAEMON @chapter Invoking the SCDAEMON @cindex SCDAEMON command options @cindex command options @cindex options, SCDAEMON command @c man begin DESCRIPTION The @command{scdaemon} is a daemon to manage smartcards. It is usually invoked by gpg-agent and in general not used directly. @c man end @xref{Option Index}, for an index to GPG-AGENTS's commands and options. @menu * Scdaemon Commands:: List of all commands. * Scdaemon Options:: List of all options. * Card applications:: Description of card applications. * Scdaemon Examples:: Some usage examples. * Scdaemon Protocol:: The protocol the daemon uses. @end menu @c man begin COMMANDS @node Scdaemon Commands @section Commands Commands are not distinguished from options execpt for the fact that only one one command is allowed. @table @gnupgtabopt @item --version @opindex version Print the program version and licensing information. Not that you can abbreviate this command. @item --help, -h @opindex help Print a usage message summarizing the most usefule command-line options. Not that you can abbreviate this command. @item --dump-options @opindex dump-options Print a list of all available options and commands. Not that you can abbreviate this command. @item --server @opindex server Run in server mode and wait for commands on the @code{stdin}. This is default mode is to create a socket and listen for commands there. @item --multi-server @opindex multi-server Run in server mode and wait for commands on the @code{stdin} as well as on an additional Unix Domain socket. The server command @code{GETINFO} may be used to get the name of that extra socket. @item --daemon @opindex daemon Run the program in the background. This option is required to prevent it from being accidently running in the background. @item --print-atr @opindex print-atr This is mainly a debugging command, used to print the ATR (Answer-To-Reset) of a card and exit immediately. @end table @c man begin OPTIONS @node Scdaemon Options @section Option Summary @table @gnupgtabopt @item --options @var{file} @opindex options Reads configuration from @var{file} instead of from the default per-user configuration file. The default configuration file is named @file{scdaemon.conf} and expected in the @file{.gnupg} directory directly below the home directory of the user. @item --homedir @var{dir} @opindex homedir Set the name of the home directory to @var{dir}. If his option is not used, the home directory defaults to @file{~/.gnupg}. It is only recognized when given on the command line. It also overrides any home directory stated through the environment variable @env{GNUPGHOME} or (on W32 systems) by means on the Registry entry @var{HKCU\Software\GNU\GnuPG:HomeDir}. @item -v @item --verbose @opindex v @opindex verbose Outputs additional information while running. You can increase the verbosity by giving several verbose commands to @command{gpgsm}, such as @samp{-vv}. @item --debug-level @var{level} @opindex debug-level Select the debug level for investigating problems. @var{level} may be one of: @table @code @item none no debugging at all. @item basic some basic debug messages @item advanced more verbose debug messages @item expert even more detailed messages @item guru all of the debug messages you can get @end table How these messages are mapped to the actual debugging flags is not specified and may change with newer releaes of this program. They are however carefully selected to best aid in debugging. @quotation Note All debugging options are subject to change and thus should not be used by any application program. As the name says, they are only used as helpers to debug problems. @end quotation @item --debug @var{flags} @opindex debug This option is only useful for debugging and the behaviour may change at any time without notice. FLAGS are bit encoded and may be given in usual C-Syntax. The currently defined bits are: @table @code @item 0 (1) command I/O @item 1 (2) values of big number integers @item 2 (4) low level crypto operations @item 5 (32) memory allocation @item 6 (64) caching @item 7 (128) show memory statistics. @item 9 (512) write hashed data to files named @code{dbgmd-000*} @item 10 (1024) trace Assuan protocol @item 11 (2048) trace APDU I/O to the card. This may reveal sensitive data. @end table @item --debug-all @opindex debug-all Same as @code{--debug=0xffffffff} @item --debug-wait @var{n} @opindex debug-wait When running in server mode, wait @var{n} seconds before entering the actual processing loop and print the pid. This gives time to attach a debugger. @item --debug-ccid-driver @opindex debug-wait Enable debug output from the included CCID driver for smartcards. Using this option twice will also enable some tracing of the T=1 protocol. Note that this option may reveal sensitive data. @item --debug-disable-ticker @opindex debug-disable-ticker This option disables all ticker functions like checking for card insertions. @item --debug-allow-core-dump @opindex debug-allow-core-dump For security reasons we won't create a core dump when the process aborts. For debugging purposes it is sometimes better to allow core dump. This options enables it and also changes the working directory to @file{/tmp} when running in @option{--server} mode. @item --no-detach @opindex no-detach Don't detach the process from the console. This is manly usefule for debugging. @item --log-file @var{file} @opindex log-file Append all logging output to @var{file}. This is very helpful in seeing what the agent actually does. @item --pcsc-driver @var{library} @opindex pcsc-driver Use @var{library} to access the smartcard reader. The current default is @file{libpcsclite.so}. Instead of using this option you might also want to install a symbolic link to the default file name (e.g. from @file{libpcsclite.so.1}). @item --ctapi-driver @var{library} @opindex ctapi-driver Use @var{library} to access the smartcard reader. The current default is @file{libtowitoko.so}. Note that the use of this interface is deprecated; it may be removed in future releases. @item --disable-ccid @opindex disable-ccid Disable the integrated support for CCID compliant readers. This allows to fall back to one of the other drivers even if the internal CCID driver can handle the reader. Note, that CCID support is only available if libusb was available at build time. @item --reader-port @var{number_or_string} @opindex reader-port This option may be used to specify the port of the card terminal. A value of 0 refers to the first serial device; add 32768 to access USB devices. The default is 32768 (first USB device). PC/SC or CCID readers might need a string here; run the program in verbose mode to get a list of available readers. The default is then the first reader found. @item --disable-keypad @opindex disable-keypad Even if a card reader features a keypad, do not try to use it. @item --allow-admin @itemx --deny-admin @opindex allow-admin @opindex deny-admin This enables the use of Admin class commands for card applications where this is supported. Currently we support it for the OpenPGP card. Deny is the default. This commands is useful to inhibit accidental access to admin class command which could ultimately lock the card through worng PIN numbers. @item --disable-application @var{name} @opindex disable-application This option disables the use of the card application named @var{name}. This is mainly useful for debugging or if a application with lower priority should be used by default. @end table All the long options may also be given in the configuration file after stripping off the two leading dashes. @c man begin CARD APPLICATIONS @node Card applications @section Description of card applications @command{scdaemon} supports the card applications as described below. @menu * OpenPGP Card:: The OpenPGP card application * NKS Card:: The Telesec NetKey card application * DINSIG Card:: The DINSIG card application * PKCS#15 Card:: The PKCS#15 card application @end menu @node OpenPGP Card @subsection The OpenPGP card application ``openpgp'' This application is currently only used by @command{gpg} but may in future also be useful with @command{gpgsm}. The specification for such a card is available at @uref{http://g10code.com/docs/openpgp-card-1.0.pdf}. @node NKS Card @subsection The Telesec NetKey card ``nks'' This is the main application of the Telesec cards as available in Germany. It is a superset of the German DINSIG card. The card is used by @command{gpgsm}. @node DINSIG Card @subsection The DINSIG card application ``dinsig'' This is an application as described in the German draft standard @emph{DIN V 66291-1}. It is intended to be used by cards supporteing the German signature law and its bylaws (SigG and SigV). @node PKCS#15 Card @subsection The PKCS#15 card application ``p15'' This is common fraqmework for smart card applications. It is used by @command{gpgsm}. @c @c Examples @c @node Scdaemon Examples @section Examples @c man begin EXAMPLES @example $ scdaemon --server -v @end example @c man end @c @c Assuan Protocol @c @node Scdaemon Protocol @section Scdaemon's Assuan Protocol The SC-Daemon should be started by the system to provide access to external tokens. Using Smartcards on a multi-user system does not make much sense expcet for system services, but in this case no regular user accounts are hosted on the machine. A client connects to the SC-Daemon by connecting to the socket named @file{/var/run/scdaemon/socket}, configuration information is read from @var{/etc/scdaemon.conf} Each connection acts as one session, SC-Daemon takes care of syncronizing access to a token between sessions. @menu * Scdaemon SERIALNO:: Return the serial number. * Scdaemon LEARN:: Read all useful information from the card. * Scdaemon READCERT:: Return a certificate. * Scdaemon READKEY:: Return a public key. * Scdaemon PKSIGN:: Signing data with a Smartcard. * Scdaemon PKDECRYPT:: Decrypting data with a Smartcard. * Scdaemon GETATTR:: Read an attribute's value. * Scdaemon SETATTR:: Update an attribute's value. * Scdaemon WRITEKEY:: Write a key to a card. * Scdaemon GENKEY:: Generate a new key on-card. * Scdaemon RANDOM:: Return random bytes generate on-card. * Scdaemon PASSWD:: Change PINs. * Scdaemon CHECKPIN:: Perform a VERIFY operation. @end menu @node Scdaemon SERIALNO @subsection Return the serial number This command should be used to check for the presence of a card. It is special in that it can be used to reset the card. Most other commands will return an error when a card change has been detected and the use of this function is therefore required. Background: We want to keep the client clear of handling card changes between operations; i.e. the client can assume that all operations are done on the same card unless he call this function. @example SERIALNO @end example Return the serial number of the card using a status reponse like: @example S SERIALNO D27600000000000000000000 0 @end example The trailing 0 should be ignored for now, it is reserved for a future extension. The serial number is the hex encoded value identified by the @code{0x5A} tag in the GDO file (FIX=0x2F02). @node Scdaemon LEARN @subsection Read all useful information from the card @example LEARN [--force] @end example Learn all useful information of the currently inserted card. When used without the force options, the command might do an INQUIRE like this: @example INQUIRE KNOWNCARDP @end example The client should just send an @code{END} if the processing should go on or a @code{CANCEL} to force the function to terminate with a cancel error message. The response of this command is a list of status lines formatted as this: @example S KEYPAIRINFO @var{hexstring_with_keygrip} @var{hexstring_with_id} @end example If there is no certificate yet stored on the card a single "X" is returned in @var{hexstring_with_keygrip}. @node Scdaemon READCERT @subsection Return a certificate @example READCERT @var{hexified_certid} @end example This function is used to read a certificate identified by @var{hexified_certid} from the card. @node Scdaemon READKEY @subsection Return a public key @example READKEY @var{hexified_certid} @end example Return the public key for the given cert or key ID as an standard S-Expression. @node Scdaemon PKSIGN @subsection Signing data with a Smartcard To sign some data the caller should use the command @example SETDATA @var{hexstring} @end example to tell @command{scdaemon} about the data to be signed. The data must be given in hex notation. The actual signing is done using the command @example PKSIGN @var{keyid} @end example where @var{keyid} is the hexified ID of the key to be used. The key id may have been retrieved using the command @code{LEARN}. @node Scdaemon PKDECRYPT @subsection Decrypting data with a Smartcard To decrypt some data the caller should use the command @example SETDATA @var{hexstring} @end example to tell @command{scdaemon} about the data to be decrypted. The data must be given in hex notation. The actual decryption is then done using the command @example PKDECRYPT @var{keyid} @end example where @var{keyid} is the hexified ID of the key to be used. @node Scdaemon GETATTR @subsection Read an attribute's value. TO BE WRITTEN. @node Scdaemon SETATTR @subsection Update an attribute's value. TO BE WRITTEN. @node Scdaemon WRITEKEY @subsection Write a key to a card. @example WRITEKEY [--force] @var{keyid} @end example This command is used to store a secret key on a a smartcard. The allowed keyids depend on the currently selected smartcard application. The actual keydata is requested using the inquiry @code{KEYDATA} and need to be provided without any protection. With @option{--force} set an existing key under this @var{keyid} will get overwritten. The key data is expected to be the usual canonical encoded S-expression. A PIN will be requested in most saes. This however depends on the actual card application. @node Scdaemon GENKEY @subsection Generate a new key on-card. TO BE WRITTEN. @node Scdaemon RANDOM @subsection Return random bytes generate on-card. TO BE WRITTEN. @node Scdaemon PASSWD @subsection Change PINs. @example PASSWD [--reset] @var{chvno} @end example Change the PIN or reset the retry counter of the card holder verification vector number @var{chvno}. @node Scdaemon CHECKPIN @subsection Perform a VERIFY operation. @example CHECKPIN @var{idstr} @end example Perform a VERIFY operation without doing anything else. This may be used to initialize a the PIN cache earlier to long lasting operations. Its use is highly application dependent: @table @strong @item OpenPGP Perform a simple verify operation for CHV1 and CHV2, so that further operations won't ask for CHV2 and it is possible to do a cheap check on the PIN: If there is something wrong with the PIN entry system, only the regular CHV will get blocked and not the dangerous CHV3. @var{idstr} is the usual card's serial number in hex notation; an optional fingerprint part will get ignored. There is however a special mode if @var{idstr} is suffixed with the literal string @code{[CHV3]}: In this case the Admin PIN is checked if and only if the retry counter is still at 3. @end table