/* encrypt.c - Encrypt a message * Copyright (C) 2001, 2003, 2004, 2007, 2008, * 2010 Free Software Foundation, Inc. * Copyright (C) 2001-2019 Werner Koch * Copyright (C) 2015-2020 g10 Code GmbH * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * SPDX-License-Identifier: GPL-3.0-or-later */ #include #include #include #include #include #include #include #include #include "gpgsm.h" #include #include #include "keydb.h" #include "../common/i18n.h" #include "../common/compliance.h" struct dek_s { const char *algoid; int algo; gcry_cipher_hd_t chd; char key[32]; int keylen; char iv[32]; int ivlen; }; typedef struct dek_s *DEK; /* Callback parameters for the encryption. */ struct encrypt_cb_parm_s { estream_t fp; DEK dek; int eof_seen; int ready; int readerror; int bufsize; unsigned char *buffer; int buflen; }; /* Initialize the data encryption key (session key). */ static int init_dek (DEK dek) { int rc=0, mode, i; dek->algo = gcry_cipher_map_name (dek->algoid); mode = gcry_cipher_mode_from_oid (dek->algoid); if (!dek->algo || !mode) { log_error ("unsupported algorithm '%s'\n", dek->algoid); return gpg_error (GPG_ERR_UNSUPPORTED_ALGORITHM); } /* Extra check for algorithms we consider to be too weak for encryption, although we support them for decryption. Note that there is another check below discriminating on the key length. */ switch (dek->algo) { case GCRY_CIPHER_DES: case GCRY_CIPHER_RFC2268_40: log_error ("cipher algorithm '%s' not allowed: too weak\n", gnupg_cipher_algo_name (dek->algo)); return gpg_error (GPG_ERR_UNSUPPORTED_ALGORITHM); default: break; } dek->keylen = gcry_cipher_get_algo_keylen (dek->algo); if (!dek->keylen || dek->keylen > sizeof (dek->key)) return gpg_error (GPG_ERR_BUG); dek->ivlen = gcry_cipher_get_algo_blklen (dek->algo); if (!dek->ivlen || dek->ivlen > sizeof (dek->iv)) return gpg_error (GPG_ERR_BUG); /* Make sure we don't use weak keys. */ if (dek->keylen < 100/8) { log_error ("key length of '%s' too small\n", dek->algoid); return gpg_error (GPG_ERR_UNSUPPORTED_ALGORITHM); } rc = gcry_cipher_open (&dek->chd, dek->algo, mode, GCRY_CIPHER_SECURE); if (rc) { log_error ("failed to create cipher context: %s\n", gpg_strerror (rc)); return rc; } for (i=0; i < 8; i++) { gcry_randomize (dek->key, dek->keylen, GCRY_STRONG_RANDOM ); rc = gcry_cipher_setkey (dek->chd, dek->key, dek->keylen); if (gpg_err_code (rc) != GPG_ERR_WEAK_KEY) break; log_info(_("weak key created - retrying\n") ); } if (rc) { log_error ("failed to set the key: %s\n", gpg_strerror (rc)); gcry_cipher_close (dek->chd); dek->chd = NULL; return rc; } gcry_create_nonce (dek->iv, dek->ivlen); rc = gcry_cipher_setiv (dek->chd, dek->iv, dek->ivlen); if (rc) { log_error ("failed to set the IV: %s\n", gpg_strerror (rc)); gcry_cipher_close (dek->chd); dek->chd = NULL; return rc; } return 0; } /* Encode an RSA session key. */ static int encode_session_key (DEK dek, gcry_sexp_t * r_data) { gcry_sexp_t data; char *p; int rc; p = xtrymalloc (64 + 2 * dek->keylen); if (!p) return gpg_error_from_syserror (); strcpy (p, "(data\n (flags pkcs1)\n (value #"); bin2hex (dek->key, dek->keylen, p + strlen (p)); strcat (p, "#))\n"); rc = gcry_sexp_sscan (&data, NULL, p, strlen (p)); xfree (p); *r_data = data; return rc; } /* Encrypt DEK using ECDH. S_PKEY is the public key. On success the * result is stored at R_ENCVAL. Example of a public key: * * (public-key (ecc (curve "1.3.132.0.34") (q #04B0[...]B8#))) * */ static gpg_error_t ecdh_encrypt (DEK dek, gcry_sexp_t s_pkey, gcry_sexp_t *r_encval) { gpg_error_t err; gcry_sexp_t l1; char *curvebuf = NULL; const char *curve; unsigned int curvebits; const char *encr_algo_str; const char *wrap_algo_str; int hash_algo, cipher_algo; unsigned int keylen; unsigned char key[32]; gcry_sexp_t s_data = NULL; gcry_sexp_t s_encr = NULL; gcry_buffer_t ioarray[2] = { {0}, {0} }; unsigned char *secret; /* Alias for ioarray[0]. */ unsigned int secretlen; unsigned char *pubkey; /* Alias for ioarray[1]. */ unsigned int pubkeylen; gcry_cipher_hd_t cipher_hd = NULL; unsigned char *result = NULL; unsigned int resultlen; *r_encval = NULL; /* Figure out the encryption and wrap algo OIDs. */ /* Get the curve name if any, */ l1 = gcry_sexp_find_token (s_pkey, "curve", 0); if (l1) { curvebuf = gcry_sexp_nth_string (l1, 1); gcry_sexp_release (l1); } if (!curvebuf) { err = gpg_error (GPG_ERR_INV_CURVE); log_error ("%s: invalid public key: no curve\n", __func__); goto leave; } /* We need to use our OpenPGP mapping to turn a curve name into its * canonical numerical OID. We also use this to get the size of the * curve which we need to figure out a suitable hash algo. We * should have a Libgcrypt function to do this; see bug report #4926. */ curve = openpgp_curve_to_oid (curvebuf, &curvebits, NULL); if (!curve) { err = gpg_error (GPG_ERR_UNKNOWN_CURVE); log_error ("%s: invalid public key: %s\n", __func__, gpg_strerror (err)); goto leave; } xfree (curvebuf); curvebuf = NULL; /* Our mapping matches the recommended algorithms from RFC-5753 but * not supporting the short curves which would require 3DES. */ if (curvebits < 255) { err = gpg_error (GPG_ERR_UNKNOWN_CURVE); log_error ("%s: curve '%s' is not supported\n", __func__, curve); goto leave; } else if (opt.force_ecdh_sha1kdf) { /* dhSinglePass-stdDH-sha1kdf-scheme */ encr_algo_str = "1.3.133.16.840.63.0.2"; wrap_algo_str = "2.16.840.1.101.3.4.1.45"; hash_algo = GCRY_MD_SHA1; cipher_algo = GCRY_CIPHER_AES256; keylen = 32; } else if (curvebits <= 256) { /* dhSinglePass-stdDH-sha256kdf-scheme */ encr_algo_str = "1.3.132.1.11.1"; wrap_algo_str = "2.16.840.1.101.3.4.1.5"; hash_algo = GCRY_MD_SHA256; cipher_algo = GCRY_CIPHER_AES128; keylen = 16; } else if (curvebits <= 384) { /* dhSinglePass-stdDH-sha384kdf-scheme */ encr_algo_str = "1.3.132.1.11.2"; wrap_algo_str = "2.16.840.1.101.3.4.1.25"; hash_algo = GCRY_MD_SHA384; cipher_algo = GCRY_CIPHER_AES256; keylen = 24; } else { /* dhSinglePass-stdDH-sha512kdf-scheme*/ encr_algo_str = "1.3.132.1.11.3"; wrap_algo_str = "2.16.840.1.101.3.4.1.45"; hash_algo = GCRY_MD_SHA512; cipher_algo = GCRY_CIPHER_AES256; keylen = 32; } /* Create a secret and an ephemeral key. */ { char *k; k = gcry_random_bytes_secure ((curvebits+7)/8, GCRY_STRONG_RANDOM); if (DBG_CRYPTO) log_printhex (k, (curvebits+7)/8, "ephm. k .:"); err = gcry_sexp_build (&s_data, NULL, "%b", (int)(curvebits+7)/8, k); xfree (k); } if (err) { log_error ("%s: error building ephemeral secret: %s\n", __func__, gpg_strerror (err)); goto leave; } err = gcry_pk_encrypt (&s_encr, s_data, s_pkey); if (err) { log_error ("%s: error encrypting ephemeral secret: %s\n", __func__, gpg_strerror (err)); goto leave; } err = gcry_sexp_extract_param (s_encr, NULL, "&se", &ioarray+0, ioarray+1, NULL); if (err) { log_error ("%s: error extracting ephemeral key and secret: %s\n", __func__, gpg_strerror (err)); goto leave; } secret = ioarray[0].data; secretlen = ioarray[0].len; pubkey = ioarray[1].data; pubkeylen = ioarray[1].len; if (DBG_CRYPTO) { log_printhex (pubkey, pubkeylen, "pubkey ..:"); log_printhex (secret, secretlen, "secret ..:"); } /* Extract X coordinate from SECRET. */ if (secretlen < 5) /* 5 because N could be reduced to (n-1)/2. */ err = gpg_error (GPG_ERR_BAD_DATA); else if (*secret == 0x04) { secretlen--; memmove (secret, secret+1, secretlen); if ((secretlen & 1)) { err = gpg_error (GPG_ERR_BAD_DATA); goto leave; } secretlen /= 2; } else if (*secret == 0x40 || *secret == 0x41) { secretlen--; memmove (secret, secret+1, secretlen); } else err = gpg_error (GPG_ERR_BAD_DATA); if (err) goto leave; if (DBG_CRYPTO) log_printhex (secret, secretlen, "ECDH X ..:"); err = ecdh_derive_kek (key, keylen, hash_algo, wrap_algo_str, secret, secretlen, NULL, 0); if (err) goto leave; if (DBG_CRYPTO) log_printhex (key, keylen, "KEK .....:"); /* Wrap the key. */ if ((dek->keylen % 8) || dek->keylen < 16) { log_error ("%s: can't use a session key of %u bytes\n", __func__, dek->keylen); err = gpg_error (GPG_ERR_BAD_DATA); goto leave; } resultlen = dek->keylen + 8; result = xtrymalloc_secure (resultlen); if (!result) { err = gpg_error_from_syserror (); goto leave; } err = gcry_cipher_open (&cipher_hd, cipher_algo, GCRY_CIPHER_MODE_AESWRAP, 0); if (err) { log_error ("%s: failed to initialize AESWRAP: %s\n", __func__, gpg_strerror (err)); goto leave; } err = gcry_cipher_setkey (cipher_hd, key, keylen); wipememory (key, sizeof key); if (err) { log_error ("%s: failed in gcry_cipher_setkey: %s\n", __func__, gpg_strerror (err)); goto leave; } err = gcry_cipher_encrypt (cipher_hd, result, resultlen, dek->key, dek->keylen); if (err) { log_error ("%s: failed in gcry_cipher_encrypt: %s\n", __func__, gpg_strerror (err)); goto leave; } if (DBG_CRYPTO) log_printhex (result, resultlen, "w(CEK) ..:"); err = gcry_sexp_build (r_encval, NULL, "(enc-val(ecdh(e%b)(s%b)(encr-algo%s)(wrap-algo%s)))", (int)pubkeylen, pubkey, (int)resultlen, result, encr_algo_str, wrap_algo_str, NULL); if (err) log_error ("%s: failed building final S-exp: %s\n", __func__, gpg_strerror (err)); leave: gcry_cipher_close (cipher_hd); wipememory (key, sizeof key); xfree (result); xfree (ioarray[0].data); xfree (ioarray[1].data); gcry_sexp_release (s_data); gcry_sexp_release (s_encr); xfree (curvebuf); return err; } /* Encrypt the DEK under the key contained in CERT and return it as a * canonical S-expressions at ENCVAL. PK_ALGO is the public key * algorithm which the caller has already retrieved from CERT. */ static int encrypt_dek (const DEK dek, ksba_cert_t cert, int pk_algo, unsigned char **encval) { gcry_sexp_t s_ciph, s_data, s_pkey; int rc; ksba_sexp_t buf; size_t len; *encval = NULL; /* get the key from the cert */ buf = ksba_cert_get_public_key (cert); if (!buf) { log_error ("no public key for recipient\n"); return gpg_error (GPG_ERR_NO_PUBKEY); } len = gcry_sexp_canon_len (buf, 0, NULL, NULL); if (!len) { log_error ("libksba did not return a proper S-Exp\n"); return gpg_error (GPG_ERR_BUG); } rc = gcry_sexp_sscan (&s_pkey, NULL, (char*)buf, len); xfree (buf); buf = NULL; if (rc) { log_error ("gcry_sexp_scan failed: %s\n", gpg_strerror (rc)); return rc; } if (DBG_CRYPTO) { log_printsexp (" pubkey:", s_pkey); log_printhex (dek->key, dek->keylen, "CEK .....:"); } /* Put the encoded cleartext into a simple list. */ s_data = NULL; /* (avoid compiler warning) */ if (pk_algo == GCRY_PK_ECC) { rc = ecdh_encrypt (dek, s_pkey, &s_ciph); } else { rc = encode_session_key (dek, &s_data); if (rc) { log_error ("encode_session_key failed: %s\n", gpg_strerror (rc)); return rc; } if (DBG_CRYPTO) log_printsexp (" data:", s_data); /* pass it to libgcrypt */ rc = gcry_pk_encrypt (&s_ciph, s_data, s_pkey); } gcry_sexp_release (s_data); gcry_sexp_release (s_pkey); if (DBG_CRYPTO) log_printsexp ("enc-val:", s_ciph); /* Reformat it. */ if (!rc) { rc = make_canon_sexp (s_ciph, encval, NULL); gcry_sexp_release (s_ciph); } return rc; } /* do the actual encryption */ static int encrypt_cb (void *cb_value, char *buffer, size_t count, size_t *nread) { struct encrypt_cb_parm_s *parm = cb_value; int blklen = parm->dek->ivlen; unsigned char *p; size_t n; *nread = 0; if (!buffer) return -1; /* not supported */ if (parm->ready) return -1; if (count < blklen) BUG (); if (!parm->eof_seen) { /* fillup the buffer */ p = parm->buffer; for (n=parm->buflen; n < parm->bufsize; n++) { int c = es_getc (parm->fp); if (c == EOF) { if (es_ferror (parm->fp)) { parm->readerror = errno; return -1; } parm->eof_seen = 1; break; } p[n] = c; } parm->buflen = n; } n = parm->buflen < count? parm->buflen : count; n = n/blklen * blklen; if (n) { /* encrypt the stuff */ gcry_cipher_encrypt (parm->dek->chd, buffer, n, parm->buffer, n); *nread = n; /* Who cares about cycles, take the easy way and shift the buffer */ parm->buflen -= n; memmove (parm->buffer, parm->buffer+n, parm->buflen); } else if (parm->eof_seen) { /* no complete block but eof: add padding */ /* fixme: we should try to do this also in the above code path */ int i, npad = blklen - (parm->buflen % blklen); p = parm->buffer; for (n=parm->buflen, i=0; n < parm->bufsize && i < npad; n++, i++) p[n] = npad; gcry_cipher_encrypt (parm->dek->chd, buffer, n, parm->buffer, n); *nread = n; parm->ready = 1; } return 0; } /* Perform an encrypt operation. Encrypt the data received on DATA-FD and write it to OUT_FP. The recipients are take from the certificate given in recplist; if this is NULL it will be encrypted for a default recipient */ int gpgsm_encrypt (ctrl_t ctrl, certlist_t recplist, int data_fd, estream_t out_fp) { int rc = 0; gnupg_ksba_io_t b64writer = NULL; gpg_error_t err; ksba_writer_t writer; ksba_reader_t reader = NULL; ksba_cms_t cms = NULL; ksba_stop_reason_t stopreason; KEYDB_HANDLE kh = NULL; struct encrypt_cb_parm_s encparm; DEK dek = NULL; int recpno; estream_t data_fp = NULL; certlist_t cl; int count; int compliant; memset (&encparm, 0, sizeof encparm); audit_set_type (ctrl->audit, AUDIT_TYPE_ENCRYPT); /* Check that the certificate list is not empty and that at least one certificate is not flagged as encrypt_to; i.e. is a real recipient. */ for (cl = recplist; cl; cl = cl->next) if (!cl->is_encrypt_to) break; if (!cl) { log_error(_("no valid recipients given\n")); gpgsm_status (ctrl, STATUS_NO_RECP, "0"); audit_log_i (ctrl->audit, AUDIT_GOT_RECIPIENTS, 0); rc = gpg_error (GPG_ERR_NO_PUBKEY); goto leave; } for (count = 0, cl = recplist; cl; cl = cl->next) count++; audit_log_i (ctrl->audit, AUDIT_GOT_RECIPIENTS, count); kh = keydb_new (); if (!kh) { log_error (_("failed to allocate keyDB handle\n")); rc = gpg_error (GPG_ERR_GENERAL); goto leave; } /* Fixme: We should use the unlocked version of the es functions. */ data_fp = es_fdopen_nc (data_fd, "rb"); if (!data_fp) { rc = gpg_error_from_syserror (); log_error ("fdopen() failed: %s\n", strerror (errno)); goto leave; } err = ksba_reader_new (&reader); if (err) rc = err; if (!rc) rc = ksba_reader_set_cb (reader, encrypt_cb, &encparm); if (rc) goto leave; encparm.fp = data_fp; ctrl->pem_name = "ENCRYPTED MESSAGE"; rc = gnupg_ksba_create_writer (&b64writer, ((ctrl->create_pem? GNUPG_KSBA_IO_PEM : 0) | (ctrl->create_base64? GNUPG_KSBA_IO_BASE64 : 0)), ctrl->pem_name, out_fp, &writer); if (rc) { log_error ("can't create writer: %s\n", gpg_strerror (rc)); goto leave; } err = ksba_cms_new (&cms); if (err) { rc = err; goto leave; } err = ksba_cms_set_reader_writer (cms, reader, writer); if (err) { log_error ("ksba_cms_set_reader_writer failed: %s\n", gpg_strerror (err)); rc = err; goto leave; } audit_log (ctrl->audit, AUDIT_GOT_DATA); /* We are going to create enveloped data with uninterpreted data as inner content */ err = ksba_cms_set_content_type (cms, 0, KSBA_CT_ENVELOPED_DATA); if (!err) err = ksba_cms_set_content_type (cms, 1, KSBA_CT_DATA); if (err) { log_error ("ksba_cms_set_content_type failed: %s\n", gpg_strerror (err)); rc = err; goto leave; } /* Check compliance. */ if (!gnupg_cipher_is_allowed (opt.compliance, 1, gcry_cipher_map_name (opt.def_cipher_algoid), gcry_cipher_mode_from_oid (opt.def_cipher_algoid))) { log_error (_("cipher algorithm '%s' may not be used in %s mode\n"), opt.def_cipher_algoid, gnupg_compliance_option_string (opt.compliance)); rc = gpg_error (GPG_ERR_CIPHER_ALGO); goto leave; } if (!gnupg_rng_is_compliant (opt.compliance)) { rc = gpg_error (GPG_ERR_FORBIDDEN); log_error (_("%s is not compliant with %s mode\n"), "RNG", gnupg_compliance_option_string (opt.compliance)); gpgsm_status_with_error (ctrl, STATUS_ERROR, "random-compliance", rc); goto leave; } /* Create a session key */ dek = xtrycalloc_secure (1, sizeof *dek); if (!dek) rc = out_of_core (); else { dek->algoid = opt.def_cipher_algoid; rc = init_dek (dek); } if (rc) { log_error ("failed to create the session key: %s\n", gpg_strerror (rc)); goto leave; } err = ksba_cms_set_content_enc_algo (cms, dek->algoid, dek->iv, dek->ivlen); if (err) { log_error ("ksba_cms_set_content_enc_algo failed: %s\n", gpg_strerror (err)); rc = err; goto leave; } encparm.dek = dek; /* Use a ~8k (AES) or ~4k (3DES) buffer */ encparm.bufsize = 500 * dek->ivlen; encparm.buffer = xtrymalloc (encparm.bufsize); if (!encparm.buffer) { rc = out_of_core (); goto leave; } audit_log_s (ctrl->audit, AUDIT_SESSION_KEY, dek->algoid); compliant = gnupg_cipher_is_compliant (CO_DE_VS, dek->algo, GCRY_CIPHER_MODE_CBC); /* Gather certificates of recipients, encrypt the session key for each and store them in the CMS object */ for (recpno = 0, cl = recplist; cl; recpno++, cl = cl->next) { unsigned char *encval; unsigned int nbits; int pk_algo; /* Check compliance. */ pk_algo = gpgsm_get_key_algo_info (cl->cert, &nbits); if (!gnupg_pk_is_compliant (opt.compliance, pk_algo, NULL, nbits, NULL)) { char kidstr[10+1]; snprintf (kidstr, sizeof kidstr, "0x%08lX", gpgsm_get_short_fingerprint (cl->cert, NULL)); log_info (_("WARNING: key %s is not suitable for encryption" " in %s mode\n"), kidstr, gnupg_compliance_option_string (opt.compliance)); } /* Fixme: When adding ECC we need to provide the curvename and * the key to gnupg_pk_is_compliant. */ if (compliant && !gnupg_pk_is_compliant (CO_DE_VS, pk_algo, NULL, nbits, NULL)) compliant = 0; rc = encrypt_dek (dek, cl->cert, pk_algo, &encval); if (rc) { audit_log_cert (ctrl->audit, AUDIT_ENCRYPTED_TO, cl->cert, rc); log_error ("encryption failed for recipient no. %d: %s\n", recpno, gpg_strerror (rc)); goto leave; } err = ksba_cms_add_recipient (cms, cl->cert); if (err) { audit_log_cert (ctrl->audit, AUDIT_ENCRYPTED_TO, cl->cert, err); log_error ("ksba_cms_add_recipient failed: %s\n", gpg_strerror (err)); rc = err; xfree (encval); goto leave; } err = ksba_cms_set_enc_val (cms, recpno, encval); xfree (encval); audit_log_cert (ctrl->audit, AUDIT_ENCRYPTED_TO, cl->cert, err); if (err) { log_error ("ksba_cms_set_enc_val failed: %s\n", gpg_strerror (err)); rc = err; goto leave; } } if (compliant) gpgsm_status (ctrl, STATUS_ENCRYPTION_COMPLIANCE_MODE, gnupg_status_compliance_flag (CO_DE_VS)); /* Main control loop for encryption. */ recpno = 0; do { err = ksba_cms_build (cms, &stopreason); if (err) { log_debug ("ksba_cms_build failed: %s\n", gpg_strerror (err)); rc = err; goto leave; } } while (stopreason != KSBA_SR_READY); if (encparm.readerror) { log_error ("error reading input: %s\n", strerror (encparm.readerror)); rc = gpg_error (gpg_err_code_from_errno (encparm.readerror)); goto leave; } rc = gnupg_ksba_finish_writer (b64writer); if (rc) { log_error ("write failed: %s\n", gpg_strerror (rc)); goto leave; } audit_log (ctrl->audit, AUDIT_ENCRYPTION_DONE); log_info ("encrypted data created\n"); leave: ksba_cms_release (cms); gnupg_ksba_destroy_writer (b64writer); ksba_reader_release (reader); keydb_release (kh); xfree (dek); es_fclose (data_fp); xfree (encparm.buffer); return rc; }