/* pubkey.c - pubkey dispatcher * Copyright (C) 1998, 1999 Free Software Foundation, Inc. * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #include #include #include #include #include #include #include "g10lib.h" #include "mpi.h" #include "cipher.h" #include "elgamal.h" #include "dsa.h" #include "dynload.h" /* FIXME: use set_lasterr() */ #define TABLE_SIZE 10 struct pubkey_table_s { const char *name; int algo; int npkey; int nskey; int nenc; int nsig; int use; int (*generate)( int algo, unsigned nbits, MPI *skey, MPI **retfactors ); int (*check_secret_key)( int algo, MPI *skey ); int (*encrypt)( int algo, MPI *resarr, MPI data, MPI *pkey ); int (*decrypt)( int algo, MPI *result, MPI *data, MPI *skey ); int (*sign)( int algo, MPI *resarr, MPI data, MPI *skey ); int (*verify)( int algo, MPI hash, MPI *data, MPI *pkey, int (*cmp)(void *, MPI), void *opaquev ); unsigned (*get_nbits)( int algo, MPI *pkey ); }; static struct pubkey_table_s pubkey_table[TABLE_SIZE]; static int disabled_algos[TABLE_SIZE]; static struct { const char* name; int algo; const char* common_elements; const char* public_elements; const char* secret_elements; } algo_info_table[] = { { "dsa" , PUBKEY_ALGO_DSA , "pqgy", "", "x" }, { "rsa" , PUBKEY_ALGO_RSA , "ne", "", "dpqu" }, { "elg" , PUBKEY_ALGO_ELGAMAL , "pgy", "", "x" }, { "openpgp-dsa" , PUBKEY_ALGO_DSA , "pqgy", "", "x" }, { "openpgp-rsa" , PUBKEY_ALGO_RSA , "pqgy", "", "x" }, { "openpgp-elg" , PUBKEY_ALGO_ELGAMAL_E , "pgy", "", "x" }, { "openpgp-elg-sig", PUBKEY_ALGO_ELGAMAL , "pgy", "", "x" }, { NULL }}; static struct { const char* name; int algo; const char* elements; } sig_info_table[] = { { "dsa" , PUBKEY_ALGO_DSA , "rs" }, { "rsa" , PUBKEY_ALGO_RSA , "s" }, { "elg" , PUBKEY_ALGO_ELGAMAL , "rs" }, { "openpgp-dsa" , PUBKEY_ALGO_DSA , "rs" }, { "openpgp-rsa" , PUBKEY_ALGO_RSA , "s" }, { "openpgp-elg-sig", PUBKEY_ALGO_ELGAMAL , "rs" }, { NULL }}; static struct { const char* name; int algo; const char* elements; } enc_info_table[] = { { "elg" , PUBKEY_ALGO_ELGAMAL , "ab" }, { "rsa" , PUBKEY_ALGO_RSA , "a" }, { "openpgp-rsa" , PUBKEY_ALGO_RSA , "a" }, { "openpgp-elg" , PUBKEY_ALGO_ELGAMAL_E , "ab" }, { "openpgp-elg-sig", PUBKEY_ALGO_ELGAMAL , "ab" }, { NULL }}; static int pubkey_decrypt( int algo, MPI *result, MPI *data, MPI *skey ); static int pubkey_sign( int algo, MPI *resarr, MPI hash, MPI *skey ); static int pubkey_verify( int algo, MPI hash, MPI *data, MPI *pkey, int (*cmp)(void *, MPI), void *opaque ); static int dummy_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors ) { log_bug("no generate() for %d\n", algo ); return GCRYERR_INV_PK_ALGO; } static int dummy_check_secret_key( int algo, MPI *skey ) { log_bug("no check_secret_key() for %d\n", algo ); return GCRYERR_INV_PK_ALGO; } static int dummy_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey ) { log_bug("no encrypt() for %d\n", algo ); return GCRYERR_INV_PK_ALGO; } static int dummy_decrypt( int algo, MPI *result, MPI *data, MPI *skey ) { log_bug("no decrypt() for %d\n", algo ); return GCRYERR_INV_PK_ALGO; } static int dummy_sign( int algo, MPI *resarr, MPI data, MPI *skey ) { log_bug("no sign() for %d\n", algo ); return GCRYERR_INV_PK_ALGO; } static int dummy_verify( int algo, MPI hash, MPI *data, MPI *pkey, int (*cmp)(void *, MPI), void *opaquev ) { log_bug("no verify() for %d\n", algo ); return GCRYERR_INV_PK_ALGO; } static unsigned dummy_get_nbits( int algo, MPI *pkey ) { log_bug("no get_nbits() for %d\n", algo ); return 0; } /**************** * Put the static entries into the table. * This is out constructor function which fill the table * of algorithms with the one we have statically linked. */ static void setup_pubkey_table(void) { int i; i = 0; pubkey_table[i].algo = PUBKEY_ALGO_ELGAMAL; pubkey_table[i].name = elg_get_info( pubkey_table[i].algo, &pubkey_table[i].npkey, &pubkey_table[i].nskey, &pubkey_table[i].nenc, &pubkey_table[i].nsig, &pubkey_table[i].use ); pubkey_table[i].generate = elg_generate; pubkey_table[i].check_secret_key = elg_check_secret_key; pubkey_table[i].encrypt = elg_encrypt; pubkey_table[i].decrypt = elg_decrypt; pubkey_table[i].sign = elg_sign; pubkey_table[i].verify = elg_verify; pubkey_table[i].get_nbits = elg_get_nbits; if( !pubkey_table[i].name ) BUG(); i++; pubkey_table[i].algo = PUBKEY_ALGO_ELGAMAL_E; pubkey_table[i].name = elg_get_info( pubkey_table[i].algo, &pubkey_table[i].npkey, &pubkey_table[i].nskey, &pubkey_table[i].nenc, &pubkey_table[i].nsig, &pubkey_table[i].use ); pubkey_table[i].generate = elg_generate; pubkey_table[i].check_secret_key = elg_check_secret_key; pubkey_table[i].encrypt = elg_encrypt; pubkey_table[i].decrypt = elg_decrypt; pubkey_table[i].sign = elg_sign; pubkey_table[i].verify = elg_verify; pubkey_table[i].get_nbits = elg_get_nbits; if( !pubkey_table[i].name ) BUG(); i++; pubkey_table[i].algo = PUBKEY_ALGO_DSA; pubkey_table[i].name = dsa_get_info( pubkey_table[i].algo, &pubkey_table[i].npkey, &pubkey_table[i].nskey, &pubkey_table[i].nenc, &pubkey_table[i].nsig, &pubkey_table[i].use ); pubkey_table[i].generate = dsa_generate; pubkey_table[i].check_secret_key = dsa_check_secret_key; pubkey_table[i].encrypt = dummy_encrypt; pubkey_table[i].decrypt = dummy_decrypt; pubkey_table[i].sign = dsa_sign; pubkey_table[i].verify = dsa_verify; pubkey_table[i].get_nbits = dsa_get_nbits; if( !pubkey_table[i].name ) BUG(); i++; for( ; i < TABLE_SIZE; i++ ) pubkey_table[i].name = NULL; } static void release_mpi_array( MPI *array ) { for( ; *array; array++ ) { mpi_free(*array); *array = NULL; } } /**************** * Try to load all modules and return true if new modules are available */ static int load_pubkey_modules(void) { static int initialized = 0; static int done = 0; void *context = NULL; struct pubkey_table_s *ct; int ct_idx; int i; const char *name; int any = 0; if( !initialized ) { cipher_modules_constructor(); setup_pubkey_table(); initialized = 1; return 1; } if( done ) return 0; done = 1; for(ct_idx=0, ct = pubkey_table; ct_idx < TABLE_SIZE; ct_idx++,ct++ ) { if( !ct->name ) break; } if( ct_idx >= TABLE_SIZE-1 ) BUG(); /* table already full */ /* now load all extensions */ while( (name = enum_gnupgext_pubkeys( &context, &ct->algo, &ct->npkey, &ct->nskey, &ct->nenc, &ct->nsig, &ct->use, &ct->generate, &ct->check_secret_key, &ct->encrypt, &ct->decrypt, &ct->sign, &ct->verify, &ct->get_nbits )) ) { for(i=0; pubkey_table[i].name; i++ ) if( pubkey_table[i].algo == ct->algo ) break; if( pubkey_table[i].name ) { log_info("skipping pubkey %d: already loaded\n", ct->algo ); continue; } if( !ct->generate ) ct->generate = dummy_generate; if( !ct->check_secret_key ) ct->check_secret_key = dummy_check_secret_key; if( !ct->encrypt ) ct->encrypt = dummy_encrypt; if( !ct->decrypt ) ct->decrypt = dummy_decrypt; if( !ct->sign ) ct->sign = dummy_sign; if( !ct->verify ) ct->verify = dummy_verify; if( !ct->get_nbits ) ct->get_nbits= dummy_get_nbits; /* put it into the table */ if( g10_log_verbosity( 2 ) ) log_info("loaded pubkey %d (%s)\n", ct->algo, name); ct->name = name; ct_idx++; ct++; any = 1; /* check whether there are more available table slots */ if( ct_idx >= TABLE_SIZE-1 ) { log_info("pubkey table full; ignoring other extensions\n"); break; } } enum_gnupgext_pubkeys( &context, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL ); return any; } /**************** * Map a string to the pubkey algo */ int gcry_pk_map_name( const char *string ) { int i; const char *s; do { for(i=0; (s=pubkey_table[i].name); i++ ) if( !stricmp( s, string ) ) return pubkey_table[i].algo; } while( load_pubkey_modules() ); return 0; } /**************** * Map a pubkey algo to a string */ const char * gcry_pk_algo_name( int algo ) { int i; do { for(i=0; pubkey_table[i].name; i++ ) if( pubkey_table[i].algo == algo ) return pubkey_table[i].name; } while( load_pubkey_modules() ); return NULL; } static void disable_pubkey_algo( int algo ) { int i; for(i=0; i < DIM(disabled_algos); i++ ) { if( !disabled_algos[i] || disabled_algos[i] == algo ) { disabled_algos[i] = algo; return; } } log_fatal("can't disable pubkey algo %d: table full\n", algo ); } /**************** * a use of 0 means: don't care */ static int check_pubkey_algo( int algo, unsigned use ) { int i; do { for(i=0; pubkey_table[i].name; i++ ) if( pubkey_table[i].algo == algo ) { if( (use & GCRY_PK_USAGE_SIGN) && !(pubkey_table[i].use & GCRY_PK_USAGE_SIGN) ) return GCRYERR_WRONG_PK_ALGO; if( (use & GCRY_PK_USAGE_ENCR) && !(pubkey_table[i].use & GCRY_PK_USAGE_ENCR) ) return GCRYERR_WRONG_PK_ALGO; for(i=0; i < DIM(disabled_algos); i++ ) { if( disabled_algos[i] == algo ) return GCRYERR_INV_PK_ALGO; } return 0; /* okay */ } } while( load_pubkey_modules() ); return GCRYERR_INV_PK_ALGO; } /**************** * Return the number of public key material numbers */ static int pubkey_get_npkey( int algo ) { int i; do { for(i=0; pubkey_table[i].name; i++ ) if( pubkey_table[i].algo == algo ) return pubkey_table[i].npkey; } while( load_pubkey_modules() ); if( is_RSA(algo) ) /* special hack, so that we are able to */ return 2; /* see the RSA keyids */ return 0; } /**************** * Return the number of secret key material numbers */ static int pubkey_get_nskey( int algo ) { int i; do { for(i=0; pubkey_table[i].name; i++ ) if( pubkey_table[i].algo == algo ) return pubkey_table[i].nskey; } while( load_pubkey_modules() ); if( is_RSA(algo) ) /* special hack, so that we are able to */ return 6; /* see the RSA keyids */ return 0; } /**************** * Return the number of signature material numbers */ static int pubkey_get_nsig( int algo ) { int i; do { for(i=0; pubkey_table[i].name; i++ ) if( pubkey_table[i].algo == algo ) return pubkey_table[i].nsig; } while( load_pubkey_modules() ); if( is_RSA(algo) ) /* special hack, so that we are able to */ return 1; /* see the RSA keyids */ return 0; } /**************** * Return the number of encryption material numbers */ static int pubkey_get_nenc( int algo ) { int i; do { for(i=0; pubkey_table[i].name; i++ ) if( pubkey_table[i].algo == algo ) return pubkey_table[i].nenc; } while( load_pubkey_modules() ); if( is_RSA(algo) ) /* special hack, so that we are able to */ return 1; /* see the RSA keyids */ return 0; } static int pubkey_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors ) { int i; do { for(i=0; pubkey_table[i].name; i++ ) if( pubkey_table[i].algo == algo ) return (*pubkey_table[i].generate)( algo, nbits, skey, retfactors ); } while( load_pubkey_modules() ); return GCRYERR_INV_PK_ALGO; } static int pubkey_check_secret_key( int algo, MPI *skey ) { int i; do { for(i=0; pubkey_table[i].name; i++ ) if( pubkey_table[i].algo == algo ) return (*pubkey_table[i].check_secret_key)( algo, skey ); } while( load_pubkey_modules() ); return GCRYERR_INV_PK_ALGO; } /**************** * This is the interface to the public key encryption. * Encrypt DATA with PKEY and put it into RESARR which * should be an array of MPIs of size PUBKEY_MAX_NENC (or less if the * algorithm allows this - check with pubkey_get_nenc() ) */ static int pubkey_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey ) { int i, rc; if( DBG_CIPHER ) { log_debug("pubkey_encrypt: algo=%d\n", algo ); for(i=0; i < pubkey_get_npkey(algo); i++ ) log_mpidump(" pkey:", pkey[i] ); log_mpidump(" data:", data ); } do { for(i=0; pubkey_table[i].name; i++ ) if( pubkey_table[i].algo == algo ) { rc = (*pubkey_table[i].encrypt)( algo, resarr, data, pkey ); goto ready; } } while( load_pubkey_modules() ); rc = GCRYERR_INV_PK_ALGO; ready: if( !rc && DBG_CIPHER ) { for(i=0; i < pubkey_get_nenc(algo); i++ ) log_mpidump(" encr:", resarr[i] ); } return rc; } /**************** * This is the interface to the public key decryption. * ALGO gives the algorithm to use and this implicitly determines * the size of the arrays. * result is a pointer to a mpi variable which will receive a * newly allocated mpi or NULL in case of an error. */ static int pubkey_decrypt( int algo, MPI *result, MPI *data, MPI *skey ) { int i, rc; *result = NULL; /* so the caller can always do a mpi_free */ if( DBG_CIPHER ) { log_debug("pubkey_decrypt: algo=%d\n", algo ); for(i=0; i < pubkey_get_nskey(algo); i++ ) log_mpidump(" skey:", skey[i] ); for(i=0; i < pubkey_get_nenc(algo); i++ ) log_mpidump(" data:", data[i] ); } do { for(i=0; pubkey_table[i].name; i++ ) if( pubkey_table[i].algo == algo ) { rc = (*pubkey_table[i].decrypt)( algo, result, data, skey ); goto ready; } } while( load_pubkey_modules() ); rc = GCRYERR_INV_PK_ALGO; ready: if( !rc && DBG_CIPHER ) { log_mpidump(" plain:", *result ); } return rc; } /**************** * This is the interface to the public key signing. * Sign data with skey and put the result into resarr which * should be an array of MPIs of size PUBKEY_MAX_NSIG (or less if the * algorithm allows this - check with pubkey_get_nsig() ) */ static int pubkey_sign( int algo, MPI *resarr, MPI data, MPI *skey ) { int i, rc; if( DBG_CIPHER ) { log_debug("pubkey_sign: algo=%d\n", algo ); for(i=0; i < pubkey_get_nskey(algo); i++ ) log_mpidump(" skey:", skey[i] ); log_mpidump(" data:", data ); } do { for(i=0; pubkey_table[i].name; i++ ) if( pubkey_table[i].algo == algo ) { rc = (*pubkey_table[i].sign)( algo, resarr, data, skey ); goto ready; } } while( load_pubkey_modules() ); rc = GCRYERR_INV_PK_ALGO; ready: if( !rc && DBG_CIPHER ) { for(i=0; i < pubkey_get_nsig(algo); i++ ) log_mpidump(" sig:", resarr[i] ); } return rc; } /**************** * Verify a public key signature. * Return 0 if the signature is good */ static int pubkey_verify( int algo, MPI hash, MPI *data, MPI *pkey, int (*cmp)(void *, MPI), void *opaquev ) { int i, rc; do { for(i=0; pubkey_table[i].name; i++ ) if( pubkey_table[i].algo == algo ) { rc = (*pubkey_table[i].verify)( algo, hash, data, pkey, cmp, opaquev ); goto ready; } } while( load_pubkey_modules() ); rc = GCRYERR_INV_PK_ALGO; ready: return rc; } /**************** * Convert a S-Exp with either a private or a public key to our * internal format. Currently we do only support the following * algorithms: * dsa * rsa * openpgp-dsa * openpgp-rsa * openpgp-elg * openpgp-elg-sig * Provide a SE with the first element be either "private-key" or * or "public-key". the followed by a list with its first element * be one of the above algorithm identifiers and the following * elements are pairs with parameter-id and value. * NOTE: we look through the list to find a list beginning with * "private-key" or "public-key" - the first one found is used. * * FIXME: Allow for encrypted secret keys here. * * Returns: A pointer to an allocated array of MPIs if the return value is * zero; the caller has to release this array. * * Example of a DSA public key: * (private-key * (dsa * (p ) * (g ) * (y ) * (x ) * ) * ) * The are expected to be in GCRYMPI_FMT_USG */ static int sexp_to_key( GCRY_SEXP sexp, int want_private, MPI **retarray, int *retalgo) { GCRY_SEXP list, l2; const char *name; const char *s; size_t n; int i, idx; int algo; const char *elems1, *elems2; GCRY_MPI *array; /* check that the first element is valid */ list = gcry_sexp_find_token( sexp, want_private? "private-key" :"public-key", 0 ); if( !list ) return GCRYERR_INV_OBJ; /* Does not contain a public- or private-key object */ list = gcry_sexp_cdr( list ); if( !list ) return GCRYERR_NO_OBJ; /* no cdr for the key object */ name = gcry_sexp_car_data( list, &n ); if( !name ) return GCRYERR_INV_OBJ; /* invalid structure of object */ for(i=0; (s=algo_info_table[i].name); i++ ) { if( strlen(s) == n && !memcmp( s, name, n ) ) break; } if( !s ) return GCRYERR_INV_PK_ALGO; /* unknown algorithm */ algo = algo_info_table[i].algo; elems1 = algo_info_table[i].common_elements; elems2 = want_private? algo_info_table[i].secret_elements : algo_info_table[i].public_elements; array = g10_calloc( strlen(elems1)+strlen(elems2)+1, sizeof *array ); if( !array ) return GCRYERR_NO_MEM; idx = 0; for(s=elems1; *s; s++, idx++ ) { l2 = gcry_sexp_find_token( list, s, 1 ); if( !l2 ) { for(i=0; i) * s_pkey = * r_ciph = (enc-val * ( * ( ) * ... * ( ) * )) */ int gcry_pk_encrypt( GCRY_SEXP *r_ciph, GCRY_SEXP s_data, GCRY_SEXP s_pkey ) { MPI *pkey, data, *ciph; const char *algo_name, *algo_elems; GCRY_SEXP *s_elems; int i, rc, algo; /* get the key */ rc = sexp_to_key( s_pkey, 0, &pkey, &algo ); if( rc ) { return rc; } /* get the name and the required size of the return value */ for(i=0; (algo_name = enc_info_table[i].name); i++ ) { if( enc_info_table[i].algo == algo ) break; } if( !algo_name ) { release_mpi_array( pkey ); return GCRYERR_INV_PK_ALGO; } algo_elems = enc_info_table[i].elements; /* get the stuff we want to encrypt */ data = gcry_sexp_car_mpi( s_data, 0 ); if( !data ) { release_mpi_array( pkey ); return GCRYERR_INV_OBJ; } /* Now we can encrypt data to ciph */ ciph = g10_xcalloc( (strlen(algo_elems)+1) , sizeof *ciph ); rc = pubkey_encrypt( algo, ciph, data, pkey ); release_mpi_array( pkey ); mpi_free( data ); if( rc ) { g10_free( ciph ); return rc; } /* We did it. Now build the return list */ s_elems = g10_xcalloc( (strlen(algo_elems)+2), sizeof *s_elems ); s_elems[0] = SEXP_NEW( algo_name, 0 ); for(i=0; algo_elems[i]; i++ ) { char tmp[2]; tmp[0] = algo_elems[i]; tmp[1] = 0; s_elems[i+1] = gcry_sexp_new_name_mpi( tmp, ciph[i] ); } release_mpi_array( ciph ); g10_free( ciph ); *r_ciph = SEXP_CONS( SEXP_NEW( "enc-val", 0 ), gcry_sexp_alist( s_elems ) ); g10_free( s_elems ); return 0; } /**************** * Do a PK decrypt operation * * Caller has to provide a secret key as the SEXP skey and data in a format * as created by gcry_pk_encrypt. Currently the function returns * simply a MPI. Later versions of this functions may return a more * complex data structure. * * Returns: 0 or an errorcode. * * s_data = (enc-val * ( * ( ) * ... * ( ) * )) * s_skey = * r_plain= () FIXME: Return a more structered value */ int gcry_pk_decrypt( GCRY_SEXP *r_plain, GCRY_SEXP s_data, GCRY_SEXP s_skey ) { MPI *skey, *data, plain; int rc, algo, dataalgo; rc = sexp_to_key( s_skey, 1, &skey, &algo ); if( rc ) { return rc; } rc = sexp_to_enc( s_data, &data, &dataalgo ); if( rc ) { release_mpi_array( skey ); return rc; } if( algo != dataalgo ) { release_mpi_array( skey ); release_mpi_array( data ); return -1; /* fixme: add real errornumber - algo does not match */ } rc = pubkey_decrypt( algo, &plain, data, skey ); if( rc ) { release_mpi_array( skey ); release_mpi_array( data ); return -1; /* fixme: add real errornumber - decryption failed */ } *r_plain = gcry_sexp_new_mpi( plain ); mpi_free( plain ); release_mpi_array( data ); release_mpi_array( skey ); return 0; } /**************** * Create a signature. * * Caller has to provide a secret key as the SEXP skey and data expressed * as a SEXP list hash with only one element which should instantly be * available as a MPI. Later versions of this functions may provide padding * and other things depending on data. * * Returns: 0 or an errorcode. * In case of 0 the function returns a new SEXP with the * signature value; the structure of this signature depends on the * other arguments but is always suitable to be passed to * gcry_pk_verify * * s_hash = () * s_skey = * r_sig = (sig-val * ( * ( ) * ... * ( ) * )) */ int gcry_pk_sign( GCRY_SEXP *r_sig, GCRY_SEXP s_hash, GCRY_SEXP s_skey ) { MPI *skey, hash; MPI *result; int i, algo, rc; const char *algo_name, *algo_elems; GCRY_SEXP *s_elems; rc = sexp_to_key( s_skey, 1, &skey, &algo ); if( rc ) return rc; /* get the name and the required size of the result array */ for(i=0; (algo_name = sig_info_table[i].name); i++ ) { if( sig_info_table[i].algo == algo ) break; } if( !algo_name ) { release_mpi_array( skey ); return -4; /* oops: unknown algorithm */ } algo_elems = sig_info_table[i].elements; /* get the stuff we want to sign */ hash = gcry_sexp_car_mpi( s_hash, 0 ); if( !hash ) { release_mpi_array( skey ); return -1; /* fixme: get a real errorcode for this */ } result = g10_xcalloc( (strlen(algo_elems)+1) , sizeof *result ); rc = pubkey_sign( algo, result, hash, skey ); release_mpi_array( skey ); mpi_free( hash ); if( rc ) { g10_free( result ); return rc; } s_elems = g10_xcalloc( (strlen(algo_elems)+2), sizeof *s_elems ); s_elems[0] = SEXP_NEW( algo_name, 0 ); for(i=0; algo_elems[i]; i++ ) { char tmp[2]; tmp[0] = algo_elems[i]; tmp[1] = 0; s_elems[i+1] = gcry_sexp_new_name_mpi( tmp, result[i] ); } release_mpi_array( result ); g10_free( result ); *r_sig = SEXP_CONS( SEXP_NEW( "sig-val", 0 ), gcry_sexp_alist( s_elems ) ); g10_free( s_elems ); return 0; } /**************** * Verify a sgnature. Caller has to supply the public key pkey, * the signature sig and his hashvalue data. Public key has to be * a standard public key given as an S-Exp, sig is a S-Exp as returned * from gcry_pk_sign and data must be an S-Exp like the one in sign too. */ int gcry_pk_verify( GCRY_SEXP s_sig, GCRY_SEXP s_hash, GCRY_SEXP s_pkey ) { MPI *pkey, hash, *sig; int algo, sigalgo; int rc; rc = sexp_to_key( s_pkey, 0, &pkey, &algo ); if( rc ) return rc; rc = sexp_to_sig( s_sig, &sig, &sigalgo ); if( rc ) { release_mpi_array( pkey ); return rc; } if( algo != sigalgo ) { release_mpi_array( pkey ); release_mpi_array( sig ); return -1; /* fixme: add real errornumber - algo does not match */ } hash = gcry_sexp_car_mpi( s_hash, 0 ); if( !hash ) { release_mpi_array( pkey ); release_mpi_array( sig ); return -1; /* fixme: get a real errorcode for this */ } rc = pubkey_verify( algo, hash, sig, pkey, NULL, NULL ); release_mpi_array( pkey ); release_mpi_array( sig ); mpi_free(hash); return rc; } /**************** * Test a key. This may be used either for a public or a secret key * to see whether internal structre is valid. * * Returns: 0 or an errorcode. * * s_key = */ int gcry_pk_testkey( GCRY_SEXP s_key ) { MPI *key; int rc, algo; /* Note we currently support only secret key checking */ rc = sexp_to_key( s_key, 1, &key, &algo ); if( rc ) { return rc; } rc = pubkey_check_secret_key( algo, key ); release_mpi_array( key ); return rc; } /**************** * Create a public key pair and return it in r_key. * How the key is created depends on s_parms: * (genkey * (algo * (parameter_name_1 ....) * .... * (parameter_name_n ....) * )) * The key is returned in a format depending on the * algorithm. Both, private and secret keys are returned * and optionally some additional informatin. * For elgamal we return this structure: * (key-data * (public-key * (elg * (p ) * (g ) * (y ) * ) * ) * (private-key * (elg * (p ) * (g ) * (y ) * (x ) * ) * ) * (misc-key-info * (pm1-factors n1 n2 ... nn) * ) * ) */ int gcry_pk_genkey( GCRY_SEXP *r_key, GCRY_SEXP s_parms ) { GCRY_SEXP list, l2, *s_elems, pub_list, sec_list, misc_list; const char *name; const char *s; size_t n; int rc, i; const char *algo_name; int algo; char sec_elems[20], pub_elems[20]; /* fixme: check bounds */ GCRY_MPI skey[10], *factors; unsigned int nbits; list = gcry_sexp_find_token( s_parms, "genkey", 0 ); if( !list ) return GCRYERR_INV_OBJ; /* Does not contain genkey data */ list = gcry_sexp_cdr( list ); if( !list ) return GCRYERR_NO_OBJ; /* no cdr for the genkey */ name = gcry_sexp_car_data( list, &n ); if( !name ) return GCRYERR_INV_OBJ; /* algo string missing */ for(i=0; (s=algo_info_table[i].name); i++ ) { if( strlen(s) == n && !memcmp( s, name, n ) ) break; } if( !s ) return GCRYERR_INV_PK_ALGO; /* unknown algorithm */ algo = algo_info_table[i].algo; algo_name = algo_info_table[i].name; strcpy( pub_elems, algo_info_table[i].common_elements ); strcat( pub_elems, algo_info_table[i].public_elements ); strcpy( sec_elems, algo_info_table[i].common_elements ); strcat( sec_elems, algo_info_table[i].secret_elements ); l2 = gcry_sexp_find_token( list, "nbits", 0 ); if( !l2 ) return GCRYERR_NO_OBJ; /* no nbits aparemter */ name = gcry_sexp_cdr_data( l2, &n ); if( !name ) return GCRYERR_INV_OBJ; /* nbits without a cdr */ { char *p = g10_xmalloc(n+1); memcpy(p, name, n ); p[n] = 0; nbits = (unsigned int)strtol( p, NULL, 0 ); g10_free( p ); } rc = pubkey_generate( algo, nbits, skey, &factors ); if( rc ) { return rc; } /* build the public key list */ s_elems = g10_xcalloc( (strlen(pub_elems)+2), sizeof *s_elems ); s_elems[0] = SEXP_NEW( algo_name, 0 ); for(i=0; pub_elems[i]; i++ ) { char tmp[2]; tmp[0] = pub_elems[i]; tmp[1] = 0; s_elems[i+1] = gcry_sexp_new_name_mpi( tmp, skey[i] ); } pub_list = SEXP_CONS( SEXP_NEW( "public-key", 0 ), gcry_sexp_alist( s_elems ) ); g10_free( s_elems ); /* build the secret key list */ s_elems = g10_xcalloc( (strlen(sec_elems)+2), sizeof *s_elems ); s_elems[0] = SEXP_NEW( algo_name, 0 ); for(i=0; sec_elems[i]; i++ ) { char tmp[2]; tmp[0] = sec_elems[i]; tmp[1] = 0; s_elems[i+1] = gcry_sexp_new_name_mpi( tmp, skey[i] ); } sec_list = SEXP_CONS( SEXP_NEW( "private-key", 0 ), gcry_sexp_alist( s_elems ) ); g10_free( s_elems ); /* build the list of factors */ for(n=0; factors[n]; n++ ) ; s_elems = g10_xcalloc( n+2, sizeof *s_elems ); s_elems[0] = SEXP_NEW( "pm1-factors", 0 ); for(i=0; factors[i]; i++ ) { s_elems[i+1] = gcry_sexp_new_mpi( factors[i] ); } misc_list = SEXP_CONS( SEXP_NEW( "misc-key-info", 0 ), gcry_sexp_alist( s_elems ) ); g10_free( s_elems ); /* and put all together */ *r_key = gcry_sexp_vlist( SEXP_NEW( "key-data", 0 ), pub_list, sec_list, misc_list, NULL ); gcry_sexp_release( pub_list ); gcry_sexp_release( sec_list ); gcry_sexp_release( misc_list ); return 0; } /**************** * Get the number of nbits from the public key * Hmmm: Should we have really this function or is it * better to have a more general function to retrieve * different propoerties of the key? */ unsigned int gcry_pk_get_nbits( GCRY_SEXP key ) { int rc, i, algo; MPI *keyarr; unsigned int nbits = 0; rc = sexp_to_key( key, 0, &keyarr, &algo ); if( rc == GCRYERR_INV_OBJ ) rc = sexp_to_key( key, 0, &keyarr, &algo ); if( rc ) return 0; do { for(i=0; pubkey_table[i].name; i++ ) if( pubkey_table[i].algo == algo ) { nbits = (*pubkey_table[i].get_nbits)( algo, keyarr ); goto leave; } } while( load_pubkey_modules() ); if( is_RSA(algo) ) /* we always wanna see the length of a key :-) */ nbits = mpi_get_nbits( keyarr[0] ); leave: release_mpi_array( keyarr ); return nbits; } int gcry_pk_ctl( int cmd, void *buffer, size_t buflen) { switch( cmd ) { case GCRYCTL_DISABLE_ALGO: /* this one expects a buffer pointing to an * integer with the algo number. */ if( !buffer || buflen != sizeof(int) ) return set_lasterr( GCRYERR_INV_CIPHER_ALGO ); disable_pubkey_algo( *(int*)buffer ); break; default: return set_lasterr( GCRYERR_INV_OP ); } return 0; } /**************** * Return information about the given algorithm * WHAT select the kind of information returned: * GCRYCTL_TEST_ALGO: * Returns 0 when the specified algorithm is available for use. * Buffer must be NULL, nbytes may have the address of a variable * with the required usage of the algorithm. It may be 0 for don't * care or a combination of the GCRY_PK_USAGE_xxx flags; * * On error the value -1 is returned and the error reason may be * retrieved by gcry_errno(). * Note: Because this function is in most caes used to return an * integer value, we can make it easier for the caller to just look at * the return value. The caller will in all cases consult the value * and thereby detecting whether a error occured or not (i.e. while checking * the block size) */ int gcry_pk_algo_info( int algo, int what, void *buffer, size_t *nbytes) { switch( what ) { case GCRYCTL_TEST_ALGO: { int use = nbytes? *nbytes: 0; if( buffer ) { set_lasterr( GCRYERR_INV_ARG ); return -1; } if( check_pubkey_algo( algo, use ) ) { set_lasterr( GCRYERR_INV_PK_ALGO ); return -1; } } break; case GCRYCTL_GET_ALGO_NPKEY: return pubkey_get_npkey( algo ); case GCRYCTL_GET_ALGO_NSKEY: return pubkey_get_nskey( algo ); case GCRYCTL_GET_ALGO_NSIGN: return pubkey_get_nsig( algo ); case GCRYCTL_GET_ALGO_NENCR: return pubkey_get_nenc( algo ); default: set_lasterr( GCRYERR_INV_OP ); return -1; } return 0; }