/* seckey-cert.c - secret key certificate packet handling * Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #include <config.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include "util.h" #include "memory.h" #include "packet.h" #include "mpi.h" #include "keydb.h" #include "cipher.h" #include "main.h" #include "options.h" #include "i18n.h" #include "status.h" static int do_check( PKT_secret_key *sk, const char *tryagain_text, int mode ) { byte *buffer; u16 csum=0; int i, res; unsigned nbytes; if( sk->is_protected ) { /* remove the protection */ DEK *dek = NULL; u32 keyid[4]; /* 4! because we need two of them */ CIPHER_HANDLE cipher_hd=NULL; PKT_secret_key *save_sk; if( sk->protect.s2k.mode == 1001 ) { log_info(_("secret key parts are not available\n")); return G10ERR_GENERAL; } if( sk->protect.algo == CIPHER_ALGO_NONE ) BUG(); if( check_cipher_algo( sk->protect.algo ) ) { log_info(_("protection algorithm %d%s is not supported\n"), sk->protect.algo,sk->protect.algo==1?" (IDEA)":"" ); if(sk->protect.algo==CIPHER_ALGO_IDEA) idea_cipher_warn(0); return G10ERR_CIPHER_ALGO; } keyid_from_sk( sk, keyid ); keyid[2] = keyid[3] = 0; if( !sk->is_primary ) { keyid[2] = sk->main_keyid[0]; keyid[3] = sk->main_keyid[1]; } dek = passphrase_to_dek( keyid, sk->pubkey_algo, sk->protect.algo, &sk->protect.s2k, mode, tryagain_text ); cipher_hd = cipher_open( sk->protect.algo, CIPHER_MODE_AUTO_CFB, 1); cipher_setkey( cipher_hd, dek->key, dek->keylen ); m_free(dek); save_sk = copy_secret_key( NULL, sk ); cipher_setiv( cipher_hd, sk->protect.iv, sk->protect.ivlen ); csum = 0; if( sk->version >= 4 ) { int ndata; byte *p, *data; u16 csumc = 0; i = pubkey_get_npkey(sk->pubkey_algo); assert( mpi_is_opaque( sk->skey[i] ) ); p = mpi_get_opaque( sk->skey[i], &ndata ); if ( ndata > 1 ) csumc = p[ndata-2] << 8 | p[ndata-1]; data = m_alloc_secure( ndata ); cipher_decrypt( cipher_hd, data, p, ndata ); mpi_free( sk->skey[i] ); sk->skey[i] = NULL ; p = data; if (sk->protect.sha1chk) { /* This is the new SHA1 checksum method to detect tampering with the key as used by the Klima/Rosa attack */ sk->csum = 0; csum = 1; if( ndata < 20 ) log_error("not enough bytes for SHA-1 checksum\n"); else { MD_HANDLE h = md_open (DIGEST_ALGO_SHA1, 1); if (!h) BUG(); /* algo not available */ md_write (h, data, ndata - 20); md_final (h); if (!memcmp (md_read (h, DIGEST_ALGO_SHA1), data + ndata - 20, 20) ) { /* digest does match. We have to keep the old style checksum in sk->csum, so that the test used for unprotected keys does work. This test gets used when we are adding new keys. */ sk->csum = csum = checksum (data, ndata-20); } md_close (h); } } else { if( ndata < 2 ) { log_error("not enough bytes for checksum\n"); sk->csum = 0; csum = 1; } else { csum = checksum( data, ndata-2); sk->csum = data[ndata-2] << 8 | data[ndata-1]; if ( sk->csum != csum ) { /* This is a PGP 7.0.0 workaround */ sk->csum = csumc; /* take the encrypted one */ } } } /* must check it here otherwise the mpi_read_xx would fail because the length may have an arbitrary value */ if( sk->csum == csum ) { for( ; i < pubkey_get_nskey(sk->pubkey_algo); i++ ) { nbytes = ndata; sk->skey[i] = mpi_read_from_buffer(p, &nbytes, 1 ); ndata -= nbytes; p += nbytes; } /* Note: at this point ndata should be 2 for a simple checksum or 20 for the sha1 digest */ } m_free(data); } else { for(i=pubkey_get_npkey(sk->pubkey_algo); i < pubkey_get_nskey(sk->pubkey_algo); i++ ) { byte *p; int ndata; unsigned int dummy; assert (mpi_is_opaque (sk->skey[i])); p = mpi_get_opaque (sk->skey[i], &ndata); assert (ndata >= 2); assert (ndata == ((p[0] << 8 | p[1]) + 7)/8 + 2); buffer = m_alloc_secure (ndata); cipher_sync (cipher_hd); buffer[0] = p[0]; buffer[1] = p[1]; cipher_decrypt (cipher_hd, buffer+2, p+2, ndata-2); csum += checksum (buffer, ndata); mpi_free (sk->skey[i]); dummy = ndata; sk->skey[i] = mpi_read_from_buffer (buffer, &dummy, 1); assert (sk->skey[i]); m_free (buffer); /* csum += checksum_mpi (sk->skey[i]); */ } } cipher_close( cipher_hd ); /* now let's see whether we have used the right passphrase */ if( csum != sk->csum ) { copy_secret_key( sk, save_sk ); passphrase_clear_cache ( keyid, sk->pubkey_algo ); free_secret_key( save_sk ); return G10ERR_BAD_PASS; } /* the checksum may fail, so we also check the key itself */ res = pubkey_check_secret_key( sk->pubkey_algo, sk->skey ); if( res ) { copy_secret_key( sk, save_sk ); passphrase_clear_cache ( keyid, sk->pubkey_algo ); free_secret_key( save_sk ); return G10ERR_BAD_PASS; } free_secret_key( save_sk ); sk->is_protected = 0; } else { /* not protected, assume it is okay if the checksum is okay */ csum = 0; for(i=pubkey_get_npkey(sk->pubkey_algo); i < pubkey_get_nskey(sk->pubkey_algo); i++ ) { csum += checksum_mpi( sk->skey[i] ); } if( csum != sk->csum ) return G10ERR_CHECKSUM; } return 0; } /**************** * Check the secret key * Ask up to 3 (or n) times for a correct passphrase * If n is negative, disable the key info prompt and make n=abs(n) */ int check_secret_key( PKT_secret_key *sk, int n ) { int rc = G10ERR_BAD_PASS; int i,mode; if(n<0) { n=abs(n); mode=1; } else mode=0; if( n < 1 ) n = (opt.batch && !opt.use_agent)? 1 : 3; /* use the default value */ for(i=0; i < n && rc == G10ERR_BAD_PASS; i++ ) { const char *tryagain = NULL; if (i) { tryagain = _("Invalid passphrase; please try again"); log_info (_("%s ...\n"), tryagain); } rc = do_check( sk, tryagain, mode ); if( rc == G10ERR_BAD_PASS && is_status_enabled() ) { u32 kid[2]; char buf[50]; keyid_from_sk( sk, kid ); sprintf(buf, "%08lX%08lX", (ulong)kid[0], (ulong)kid[1]); write_status_text( STATUS_BAD_PASSPHRASE, buf ); } if( have_static_passphrase() ) break; } if( !rc ) write_status( STATUS_GOOD_PASSPHRASE ); return rc; } /**************** * check whether the secret key is protected. * Returns: 0 not protected, -1 on error or the protection algorithm */ int is_secret_key_protected( PKT_secret_key *sk ) { return sk->is_protected? sk->protect.algo : 0; } /**************** * Protect the secret key with the passphrase from DEK */ int protect_secret_key( PKT_secret_key *sk, DEK *dek ) { int i,j, rc = 0; byte *buffer; unsigned nbytes; u16 csum; if( !dek ) return 0; if( !sk->is_protected ) { /* okay, apply the protection */ CIPHER_HANDLE cipher_hd=NULL; if( check_cipher_algo( sk->protect.algo ) ) rc = G10ERR_CIPHER_ALGO; /* unsupport protection algorithm */ else { print_cipher_algo_note( sk->protect.algo ); cipher_hd = cipher_open( sk->protect.algo, CIPHER_MODE_AUTO_CFB, 1 ); if( cipher_setkey( cipher_hd, dek->key, dek->keylen ) ) log_info(_("WARNING: Weak key detected" " - please change passphrase again.\n")); sk->protect.ivlen = cipher_get_blocksize( sk->protect.algo ); assert( sk->protect.ivlen <= DIM(sk->protect.iv) ); if( sk->protect.ivlen != 8 && sk->protect.ivlen != 16 ) BUG(); /* yes, we are very careful */ randomize_buffer(sk->protect.iv, sk->protect.ivlen, 1); cipher_setiv( cipher_hd, sk->protect.iv, sk->protect.ivlen ); if( sk->version >= 4 ) { byte *bufarr[PUBKEY_MAX_NSKEY]; unsigned narr[PUBKEY_MAX_NSKEY]; unsigned nbits[PUBKEY_MAX_NSKEY]; int ndata=0; byte *p, *data; for(j=0, i = pubkey_get_npkey(sk->pubkey_algo); i < pubkey_get_nskey(sk->pubkey_algo); i++, j++ ) { assert( !mpi_is_opaque( sk->skey[i] ) ); bufarr[j] = mpi_get_buffer( sk->skey[i], &narr[j], NULL ); nbits[j] = mpi_get_nbits( sk->skey[i] ); ndata += narr[j] + 2; } for( ; j < PUBKEY_MAX_NSKEY; j++ ) bufarr[j] = NULL; ndata += opt.simple_sk_checksum? 2 : 20; /* for checksum */ data = m_alloc_secure( ndata ); p = data; for(j=0; j < PUBKEY_MAX_NSKEY && bufarr[j]; j++ ) { p[0] = nbits[j] >> 8 ; p[1] = nbits[j]; p += 2; memcpy(p, bufarr[j], narr[j] ); p += narr[j]; m_free(bufarr[j]); } if (opt.simple_sk_checksum) { log_info (_("generating the deprecated 16-bit checksum" " for secret key protection\n")); csum = checksum( data, ndata-2); sk->csum = csum; *p++ = csum >> 8; *p++ = csum; sk->protect.sha1chk = 0; } else { MD_HANDLE h = md_open (DIGEST_ALGO_SHA1, 1); if (!h) BUG(); /* algo not available */ md_write (h, data, ndata - 20); md_final (h); memcpy (p, md_read (h, DIGEST_ALGO_SHA1), 20); p += 20; md_close (h); sk->csum = csum = 0; sk->protect.sha1chk = 1; } assert( p == data+ndata ); cipher_encrypt( cipher_hd, data, data, ndata ); for(i = pubkey_get_npkey(sk->pubkey_algo); i < pubkey_get_nskey(sk->pubkey_algo); i++ ) { mpi_free( sk->skey[i] ); sk->skey[i] = NULL; } i = pubkey_get_npkey(sk->pubkey_algo); sk->skey[i] = mpi_set_opaque(NULL, data, ndata ); } else { csum = 0; for(i=pubkey_get_npkey(sk->pubkey_algo); i < pubkey_get_nskey(sk->pubkey_algo); i++ ) { byte *data; unsigned int nbits; csum += checksum_mpi (sk->skey[i]); buffer = mpi_get_buffer( sk->skey[i], &nbytes, NULL ); cipher_sync (cipher_hd); assert ( !mpi_is_opaque (sk->skey[i]) ); data = m_alloc (nbytes+2); nbits = mpi_get_nbits (sk->skey[i]); assert (nbytes == (nbits + 7)/8); data[0] = nbits >> 8; data[1] = nbits; cipher_encrypt (cipher_hd, data+2, buffer, nbytes); m_free( buffer ); mpi_free (sk->skey[i]); sk->skey[i] = mpi_set_opaque (NULL, data, nbytes+2); } sk->csum = csum; } sk->is_protected = 1; cipher_close( cipher_hd ); } } return rc; }