/* Extended regular expression matching and search library. Copyright (C) 2002 Free Software Foundation, Inc. This file is part of the GNU C Library. Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. */ #include <assert.h> #include <ctype.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #if defined HAVE_WCHAR_H || defined _LIBC # include <wchar.h> #endif /* HAVE_WCHAR_H || _LIBC */ #if defined HAVE_WCTYPE_H || defined _LIBC # include <wctype.h> #endif /* HAVE_WCTYPE_H || _LIBC */ #ifdef _LIBC # ifndef _RE_DEFINE_LOCALE_FUNCTIONS # define _RE_DEFINE_LOCALE_FUNCTIONS 1 # include <locale/localeinfo.h> # include <locale/elem-hash.h> # include <locale/coll-lookup.h> # endif #endif #include "_regex.h" /* gnupg */ #include "regex_internal.h" static reg_errcode_t match_ctx_init (re_match_context_t *cache, int eflags, re_string_t *input, int n); static void match_ctx_free (re_match_context_t *cache); static reg_errcode_t match_ctx_add_entry (re_match_context_t *cache, int node, int str_idx, int from, int to); static void match_ctx_clear_flag (re_match_context_t *mctx); static void sift_ctx_init (re_sift_context_t *sctx, re_dfastate_t **sifted_sts, re_dfastate_t **limited_sts, int last_node, int last_str_idx, int check_subexp); static reg_errcode_t re_search_internal (const regex_t *preg, const char *string, int length, int start, int range, int stop, size_t nmatch, regmatch_t pmatch[], int eflags); static int re_search_2_stub (struct re_pattern_buffer *bufp, const char *string1, int length1, const char *string2, int length2, int start, int range, struct re_registers *regs, int stop, int ret_len); static int re_search_stub (struct re_pattern_buffer *bufp, const char *string, int length, int start, int range, int stop, struct re_registers *regs, int ret_len); static unsigned re_copy_regs (struct re_registers *regs, regmatch_t *pmatch, int nregs, int regs_allocated); static inline re_dfastate_t *acquire_init_state_context (reg_errcode_t *err, const regex_t *preg, const re_match_context_t *mctx, int idx); static int check_matching (const regex_t *preg, re_match_context_t *mctx, int fl_search, int fl_longest_match); static int check_halt_node_context (const re_dfa_t *dfa, int node, unsigned int context); static int check_halt_state_context (const regex_t *preg, const re_dfastate_t *state, const re_match_context_t *mctx, int idx); static void update_regs (re_dfa_t *dfa, regmatch_t *pmatch, int cur_node, int cur_idx, int nmatch); static int proceed_next_node (const regex_t *preg, int nregs, regmatch_t *regs, const re_match_context_t *mctx, int *pidx, int node, re_node_set *eps_via_nodes, struct re_fail_stack_t *fs); static reg_errcode_t push_fail_stack (struct re_fail_stack_t *fs, int str_idx, int *dests, int nregs, regmatch_t *regs, re_node_set *eps_via_nodes); static int pop_fail_stack (struct re_fail_stack_t *fs, int *pidx, int nregs, regmatch_t *regs, re_node_set *eps_via_nodes); static reg_errcode_t set_regs (const regex_t *preg, const re_match_context_t *mctx, size_t nmatch, regmatch_t *pmatch, int fl_backtrack); #ifdef RE_ENABLE_I18N static int sift_states_iter_mb (const regex_t *preg, const re_match_context_t *mctx, re_sift_context_t *sctx, int node_idx, int str_idx, int max_str_idx); #endif /* RE_ENABLE_I18N */ static reg_errcode_t sift_states_backward (const regex_t *preg, re_match_context_t *mctx, re_sift_context_t *sctx); static reg_errcode_t update_cur_sifted_state (const regex_t *preg, re_match_context_t *mctx, re_sift_context_t *sctx, int str_idx, re_node_set *dest_nodes); static reg_errcode_t add_epsilon_src_nodes (re_dfa_t *dfa, re_node_set *dest_nodes, const re_node_set *candidates); static reg_errcode_t sub_epsilon_src_nodes (re_dfa_t *dfa, int node, re_node_set *dest_nodes, const re_node_set *and_nodes); static int check_dst_limits (re_dfa_t *dfa, re_node_set *limits, re_match_context_t *mctx, int dst_node, int dst_idx, int src_node, int src_idx); static int check_dst_limits_calc_pos (re_dfa_t *dfa, re_match_context_t *mctx, int limit, re_node_set *eclosures, int subexp_idx, int node, int str_idx); static reg_errcode_t check_subexp_limits (re_dfa_t *dfa, re_node_set *dest_nodes, const re_node_set *candidates, re_node_set *limits, struct re_backref_cache_entry *bkref_ents, int str_idx); static reg_errcode_t search_subexp (const regex_t *preg, re_match_context_t *mctx, re_sift_context_t *sctx, int str_idx, re_node_set *dest_nodes); static reg_errcode_t sift_states_bkref (const regex_t *preg, re_match_context_t *mctx, re_sift_context_t *sctx, int str_idx, re_node_set *dest_nodes); static reg_errcode_t clean_state_log_if_need (re_match_context_t *mctx, int next_state_log_idx); static reg_errcode_t merge_state_array (re_dfa_t *dfa, re_dfastate_t **dst, re_dfastate_t **src, int num); static re_dfastate_t *transit_state (reg_errcode_t *err, const regex_t *preg, re_match_context_t *mctx, re_dfastate_t *state, int fl_search); static re_dfastate_t *transit_state_sb (reg_errcode_t *err, const regex_t *preg, re_dfastate_t *pstate, int fl_search, re_match_context_t *mctx); #ifdef RE_ENABLE_I18N static reg_errcode_t transit_state_mb (const regex_t *preg, re_dfastate_t *pstate, re_match_context_t *mctx); #endif /* RE_ENABLE_I18N */ static reg_errcode_t transit_state_bkref (const regex_t *preg, re_dfastate_t *pstate, re_match_context_t *mctx); static reg_errcode_t transit_state_bkref_loop (const regex_t *preg, re_node_set *nodes, re_dfastate_t **work_state_log, re_match_context_t *mctx); static re_dfastate_t **build_trtable (const regex_t *dfa, const re_dfastate_t *state, int fl_search); #ifdef RE_ENABLE_I18N static int check_node_accept_bytes (const regex_t *preg, int node_idx, const re_string_t *input, int idx); # ifdef _LIBC static unsigned int find_collation_sequence_value (const unsigned char *mbs, size_t name_len); # endif /* _LIBC */ #endif /* RE_ENABLE_I18N */ static int group_nodes_into_DFAstates (const regex_t *dfa, const re_dfastate_t *state, re_node_set *states_node, bitset *states_ch); static int check_node_accept (const regex_t *preg, const re_token_t *node, const re_match_context_t *mctx, int idx); static reg_errcode_t extend_buffers (re_match_context_t *mctx); /* Entry point for POSIX code. */ /* regexec searches for a given pattern, specified by PREG, in the string STRING. If NMATCH is zero or REG_NOSUB was set in the cflags argument to `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at least NMATCH elements, and we set them to the offsets of the corresponding matched substrings. EFLAGS specifies `execution flags' which affect matching: if REG_NOTBOL is set, then ^ does not match at the beginning of the string; if REG_NOTEOL is set, then $ does not match at the end. We return 0 if we find a match and REG_NOMATCH if not. */ int regexec (preg, string, nmatch, pmatch, eflags) const regex_t *__restrict preg; const char *__restrict string; size_t nmatch; regmatch_t pmatch[]; int eflags; { reg_errcode_t err; int length = strlen (string); if (preg->no_sub) err = re_search_internal (preg, string, length, 0, length, length, 0, NULL, eflags); else err = re_search_internal (preg, string, length, 0, length, length, nmatch, pmatch, eflags); return err != REG_NOERROR; } #ifdef _LIBC weak_alias (__regexec, regexec) #endif /* Entry points for GNU code. */ /* re_match, re_search, re_match_2, re_search_2 The former two functions operate on STRING with length LENGTH, while the later two operate on concatenation of STRING1 and STRING2 with lengths LENGTH1 and LENGTH2, respectively. re_match() matches the compiled pattern in BUFP against the string, starting at index START. re_search() first tries matching at index START, then it tries to match starting from index START + 1, and so on. The last start position tried is START + RANGE. (Thus RANGE = 0 forces re_search to operate the same way as re_match().) The parameter STOP of re_{match,search}_2 specifies that no match exceeding the first STOP characters of the concatenation of the strings should be concerned. If REGS is not NULL, and BUFP->no_sub is not set, the offsets of the match and all groups is stroed in REGS. (For the "_2" variants, the offsets are computed relative to the concatenation, not relative to the individual strings.) On success, re_match* functions return the length of the match, re_search* return the position of the start of the match. Return value -1 means no match was found and -2 indicates an internal error. */ int re_match (bufp, string, length, start, regs) struct re_pattern_buffer *bufp; const char *string; int length, start; struct re_registers *regs; { return re_search_stub (bufp, string, length, start, 0, length, regs, 1); } #ifdef _LIBC weak_alias (__re_match, re_match) #endif int re_search (bufp, string, length, start, range, regs) struct re_pattern_buffer *bufp; const char *string; int length, start, range; struct re_registers *regs; { return re_search_stub (bufp, string, length, start, range, length, regs, 0); } #ifdef _LIBC weak_alias (__re_search, re_search) #endif int re_match_2 (bufp, string1, length1, string2, length2, start, regs, stop) struct re_pattern_buffer *bufp; const char *string1, *string2; int length1, length2, start, stop; struct re_registers *regs; { return re_search_2_stub (bufp, string1, length1, string2, length2, start, 0, regs, stop, 1); } #ifdef _LIBC weak_alias (__re_match_2, re_match_2) #endif int re_search_2 (bufp, string1, length1, string2, length2, start, range, regs, stop) struct re_pattern_buffer *bufp; const char *string1, *string2; int length1, length2, start, range, stop; struct re_registers *regs; { return re_search_2_stub (bufp, string1, length1, string2, length2, start, range, regs, stop, 0); } #ifdef _LIBC weak_alias (__re_search_2, re_search_2) #endif static int re_search_2_stub (bufp, string1, length1, string2, length2, start, range, regs, stop, ret_len) struct re_pattern_buffer *bufp; const char *string1, *string2; int length1, length2, start, range, stop, ret_len; struct re_registers *regs; { const char *str; int rval; int len = length1 + length2; int free_str = 0; if (BE (length1 < 0 || length2 < 0 || stop < 0, 0)) return -2; /* Concatenate the strings. */ if (length2 > 0) if (length1 > 0) { char *s = re_malloc (char, len); if (BE (s == NULL, 0)) return -2; memcpy (s, string1, length1); memcpy (s + length1, string2, length2); str = s; free_str = 1; } else str = string2; else str = string1; rval = re_search_stub (bufp, str, len, start, range, stop, regs, ret_len); if (free_str) re_free ((char *) str); return rval; } /* The parameters have the same meaning as those of re_search. Additional parameters: If RET_LEN is nonzero the length of the match is returned (re_match style); otherwise the position of the match is returned. */ static int re_search_stub (bufp, string, length, start, range, stop, regs, ret_len) struct re_pattern_buffer *bufp; const char *string; int length, start, range, stop, ret_len; struct re_registers *regs; { reg_errcode_t result; regmatch_t *pmatch; int nregs, rval; int eflags = 0; /* Check for out-of-range. */ if (BE (start < 0 || start > length, 0)) return -1; if (BE (start + range > length, 0)) range = length - start; else if (BE (start + range < 0, 0)) range = -start; eflags |= (bufp->not_bol) ? REG_NOTBOL : 0; eflags |= (bufp->not_eol) ? REG_NOTEOL : 0; /* Compile fastmap if we haven't yet. */ if (range > 0 && bufp->fastmap != NULL && !bufp->fastmap_accurate) re_compile_fastmap (bufp); if (BE (bufp->no_sub, 0)) regs = NULL; /* We need at least 1 register. */ if (regs == NULL) nregs = 1; else if (BE (bufp->regs_allocated == REGS_FIXED && regs->num_regs < bufp->re_nsub + 1, 0)) { nregs = regs->num_regs; if (BE (nregs < 1, 0)) { /* Nothing can be copied to regs. */ regs = NULL; nregs = 1; } } else nregs = bufp->re_nsub + 1; pmatch = re_malloc (regmatch_t, nregs); if (BE (pmatch == NULL, 0)) return -2; result = re_search_internal (bufp, string, length, start, range, stop, nregs, pmatch, eflags); rval = 0; /* I hope we needn't fill ther regs with -1's when no match was found. */ if (result != REG_NOERROR) rval = -1; else if (regs != NULL) { /* If caller wants register contents data back, copy them. */ bufp->regs_allocated = re_copy_regs (regs, pmatch, nregs, bufp->regs_allocated); if (BE (bufp->regs_allocated == REGS_UNALLOCATED, 0)) rval = -2; } if (BE (rval == 0, 1)) { if (ret_len) { assert (pmatch[0].rm_so == start); rval = pmatch[0].rm_eo - start; } else rval = pmatch[0].rm_so; } re_free (pmatch); return rval; } static unsigned re_copy_regs (regs, pmatch, nregs, regs_allocated) struct re_registers *regs; regmatch_t *pmatch; int nregs, regs_allocated; { int rval = REGS_REALLOCATE; int i; int need_regs = nregs + 1; /* We need one extra element beyond `num_regs' for the `-1' marker GNU code uses. */ /* Have the register data arrays been allocated? */ if (regs_allocated == REGS_UNALLOCATED) { /* No. So allocate them with malloc. */ regs->start = re_malloc (regoff_t, need_regs); if (BE (regs->start == NULL, 0)) return REGS_UNALLOCATED; regs->end = re_malloc (regoff_t, need_regs); if (BE (regs->end == NULL, 0)) { re_free (regs->start); return REGS_UNALLOCATED; } regs->num_regs = need_regs; } else if (regs_allocated == REGS_REALLOCATE) { /* Yes. If we need more elements than were already allocated, reallocate them. If we need fewer, just leave it alone. */ if (need_regs > regs->num_regs) { regs->start = re_realloc (regs->start, regoff_t, need_regs); if (BE (regs->start == NULL, 0)) { if (regs->end != NULL) re_free (regs->end); return REGS_UNALLOCATED; } regs->end = re_realloc (regs->end, regoff_t, need_regs); if (BE (regs->end == NULL, 0)) { re_free (regs->start); return REGS_UNALLOCATED; } regs->num_regs = need_regs; } } else { assert (regs_allocated == REGS_FIXED); /* This function may not be called with REGS_FIXED and nregs too big. */ assert (regs->num_regs >= nregs); rval = REGS_FIXED; } /* Copy the regs. */ for (i = 0; i < nregs; ++i) { regs->start[i] = pmatch[i].rm_so; regs->end[i] = pmatch[i].rm_eo; } for ( ; i < regs->num_regs; ++i) regs->start[i] = regs->end[i] = -1; return rval; } /* Set REGS to hold NUM_REGS registers, storing them in STARTS and ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use this memory for recording register information. STARTS and ENDS must be allocated using the malloc library routine, and must each be at least NUM_REGS * sizeof (regoff_t) bytes long. If NUM_REGS == 0, then subsequent matches should allocate their own register data. Unless this function is called, the first search or match using PATTERN_BUFFER will allocate its own register data, without freeing the old data. */ void re_set_registers (bufp, regs, num_regs, starts, ends) struct re_pattern_buffer *bufp; struct re_registers *regs; unsigned num_regs; regoff_t *starts, *ends; { if (num_regs) { bufp->regs_allocated = REGS_REALLOCATE; regs->num_regs = num_regs; regs->start = starts; regs->end = ends; } else { bufp->regs_allocated = REGS_UNALLOCATED; regs->num_regs = 0; regs->start = regs->end = (regoff_t *) 0; } } #ifdef _LIBC weak_alias (__re_set_registers, re_set_registers) #endif /* Entry points compatible with 4.2 BSD regex library. We don't define them unless specifically requested. */ #if defined _REGEX_RE_COMP || defined _LIBC int # ifdef _LIBC weak_function # endif re_exec (s) const char *s; { return 0 == regexec (&re_comp_buf, s, 0, NULL, 0); } #endif /* _REGEX_RE_COMP */ static re_node_set empty_set; /* Internal entry point. */ /* Searches for a compiled pattern PREG in the string STRING, whose length is LENGTH. NMATCH, PMATCH, and EFLAGS have the same mingings with regexec. START, and RANGE have the same meanings with re_search. Return REG_NOERROR if we find a match, and REG_NOMATCH if not, otherwise return the error code. Note: We assume front end functions already check ranges. (START + RANGE >= 0 && START + RANGE <= LENGTH) */ static reg_errcode_t re_search_internal (preg, string, length, start, range, stop, nmatch, pmatch, eflags) const regex_t *preg; const char *string; int length, start, range, stop, eflags; size_t nmatch; regmatch_t pmatch[]; { reg_errcode_t err; re_dfa_t *dfa = (re_dfa_t *)preg->buffer; re_string_t input; int left_lim, right_lim, incr; int fl_longest_match, match_first, match_last = -1; re_match_context_t mctx; char *fastmap = ((preg->fastmap != NULL && preg->fastmap_accurate) ? preg->fastmap : NULL); /* Check if the DFA haven't been compiled. */ if (BE (preg->used == 0 || dfa->init_state == NULL || dfa->init_state_word == NULL || dfa->init_state_nl == NULL || dfa->init_state_begbuf == NULL, 0)) return REG_NOMATCH; re_node_set_init_empty (&empty_set); /* We must check the longest matching, if nmatch > 0. */ fl_longest_match = (nmatch != 0); err = re_string_allocate (&input, string, length, dfa->nodes_len + 1, preg->translate, preg->syntax & RE_ICASE); if (BE (err != REG_NOERROR, 0)) return err; input.stop = stop; err = match_ctx_init (&mctx, eflags, &input, dfa->nbackref * 2); if (BE (err != REG_NOERROR, 0)) return err; /* We will log all the DFA states through which the dfa pass, if nmatch > 1, or this dfa has "multibyte node", which is a back-reference or a node which can accept multibyte character or multi character collating element. */ if (nmatch > 1 || dfa->has_mb_node) { mctx.state_log = re_malloc (re_dfastate_t *, dfa->nodes_len + 1); if (BE (mctx.state_log == NULL, 0)) return REG_ESPACE; } else mctx.state_log = NULL; #ifdef DEBUG /* We assume front-end functions already check them. */ assert (start + range >= 0 && start + range <= length); #endif match_first = start; input.tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF : CONTEXT_NEWLINE | CONTEXT_BEGBUF); /* Check incrementally whether of not the input string match. */ incr = (range < 0) ? -1 : 1; left_lim = (range < 0) ? start + range : start; right_lim = (range < 0) ? start : start + range; for (;;) { /* At first get the current byte from input string. */ int ch; if (MB_CUR_MAX > 1 && (preg->syntax & RE_ICASE || preg->translate)) { /* In this case, we can't determin easily the current byte, since it might be a component byte of a multibyte character. Then we use the constructed buffer instead. */ /* If MATCH_FIRST is out of the valid range, reconstruct the buffers. */ if (input.raw_mbs_idx + input.valid_len <= match_first) re_string_reconstruct (&input, match_first, eflags, preg->newline_anchor); /* If MATCH_FIRST is out of the buffer, leave it as '\0'. Note that MATCH_FIRST must not be smaller than 0. */ ch = ((match_first >= length) ? 0 : re_string_byte_at (&input, match_first - input.raw_mbs_idx)); } else { /* We apply translate/conversion manually, since it is trivial in this case. */ /* If MATCH_FIRST is out of the buffer, leave it as '\0'. Note that MATCH_FIRST must not be smaller than 0. */ ch = (match_first < length) ? (unsigned char)string[match_first] : 0; /* Apply translation if we need. */ ch = preg->translate ? preg->translate[ch] : ch; /* In case of case insensitive mode, convert to upper case. */ ch = ((preg->syntax & RE_ICASE) && islower (ch)) ? toupper (ch) : ch; } /* Eliminate inappropriate one by fastmap. */ if (preg->can_be_null || fastmap == NULL || fastmap[ch]) { /* Reconstruct the buffers so that the matcher can assume that the matching starts from the begining of the buffer. */ re_string_reconstruct (&input, match_first, eflags, preg->newline_anchor); #ifdef RE_ENABLE_I18N /* Eliminate it when it is a component of a multibyte character and isn't the head of a multibyte character. */ if (MB_CUR_MAX == 1 || re_string_first_byte (&input, 0)) #endif { /* It seems to be appropriate one, then use the matcher. */ /* We assume that the matching starts from 0. */ mctx.state_log_top = mctx.nbkref_ents = mctx.max_mb_elem_len = 0; match_last = check_matching (preg, &mctx, 0, fl_longest_match); if (match_last != -1) { if (BE (match_last == -2, 0)) return REG_ESPACE; else break; /* We found a matching. */ } } } /* Update counter. */ match_first += incr; if (match_first < left_lim || right_lim < match_first) break; } /* Set pmatch[] if we need. */ if (match_last != -1 && nmatch > 0) { int reg_idx; /* Initialize registers. */ for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) pmatch[reg_idx].rm_so = pmatch[reg_idx].rm_eo = -1; /* Set the points where matching start/end. */ pmatch[0].rm_so = 0; mctx.match_last = pmatch[0].rm_eo = match_last; if (!preg->no_sub && nmatch > 1) { /* We need the ranges of all the subexpressions. */ int halt_node; re_dfastate_t **sifted_states; re_dfastate_t **lim_states = NULL; re_dfastate_t *pstate = mctx.state_log[match_last]; re_sift_context_t sctx; #ifdef DEBUG assert (mctx.state_log != NULL); #endif halt_node = check_halt_state_context (preg, pstate, &mctx, match_last); if (dfa->has_plural_match) { match_ctx_clear_flag (&mctx); sifted_states = re_malloc (re_dfastate_t *, match_last + 1); if (BE (sifted_states == NULL, 0)) return REG_ESPACE; if (dfa->nbackref) { lim_states = calloc (sizeof (re_dfastate_t *), match_last + 1); if (BE (lim_states == NULL, 0)) return REG_ESPACE; } sift_ctx_init (&sctx, sifted_states, lim_states, halt_node, mctx.match_last, 0); err = sift_states_backward (preg, &mctx, &sctx); if (BE (err != REG_NOERROR, 0)) return err; if (lim_states != NULL) { err = merge_state_array (dfa, sifted_states, lim_states, match_last + 1); if (BE (err != REG_NOERROR, 0)) return err; re_free (lim_states); } re_node_set_free (&sctx.limits); re_free (mctx.state_log); mctx.state_log = sifted_states; } mctx.last_node = halt_node; err = set_regs (preg, &mctx, nmatch, pmatch, dfa->has_plural_match && dfa->nbackref > 0); if (BE (err != REG_NOERROR, 0)) return err; } /* At last, add the offset to the each registers, since we slided the buffers so that We can assume that the matching starts from 0. */ for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) if (pmatch[reg_idx].rm_so != -1) { pmatch[reg_idx].rm_so += match_first; pmatch[reg_idx].rm_eo += match_first; } } re_free (mctx.state_log); if (dfa->nbackref) match_ctx_free (&mctx); re_string_destruct (&input); return (match_last == -1) ? REG_NOMATCH : REG_NOERROR; } /* Acquire an initial state and return it. We must select appropriate initial state depending on the context, since initial states may have constraints like "\<", "^", etc.. */ static inline re_dfastate_t * acquire_init_state_context (err, preg, mctx, idx) reg_errcode_t *err; const regex_t *preg; const re_match_context_t *mctx; int idx; { re_dfa_t *dfa = (re_dfa_t *) preg->buffer; *err = REG_NOERROR; if (dfa->init_state->has_constraint) { unsigned int context; context = re_string_context_at (mctx->input, idx - 1, mctx->eflags, preg->newline_anchor); if (IS_WORD_CONTEXT (context)) return dfa->init_state_word; else if (IS_ORDINARY_CONTEXT (context)) return dfa->init_state; else if (IS_BEGBUF_CONTEXT (context) && IS_NEWLINE_CONTEXT (context)) return dfa->init_state_begbuf; else if (IS_NEWLINE_CONTEXT (context)) return dfa->init_state_nl; else if (IS_BEGBUF_CONTEXT (context)) { /* It is relatively rare case, then calculate on demand. */ return re_acquire_state_context (err, dfa, dfa->init_state->entrance_nodes, context); } else /* Must not happen? */ return dfa->init_state; } else return dfa->init_state; } /* Check whether the regular expression match input string INPUT or not, and return the index where the matching end, return -1 if not match, or return -2 in case of an error. FL_SEARCH means we must search where the matching starts, FL_LONGEST_MATCH means we want the POSIX longest matching. Note that the matcher assume that the maching starts from the current index of the buffer. */ static int check_matching (preg, mctx, fl_search, fl_longest_match) const regex_t *preg; re_match_context_t *mctx; int fl_search, fl_longest_match; { reg_errcode_t err; int match = 0; int match_last = -1; int cur_str_idx = re_string_cur_idx (mctx->input); re_dfastate_t *cur_state; cur_state = acquire_init_state_context (&err, preg, mctx, cur_str_idx); /* An initial state must not be NULL(invalid state). */ if (BE (cur_state == NULL, 0)) return -2; if (mctx->state_log != NULL) mctx->state_log[cur_str_idx] = cur_state; if (cur_state->has_backref) { int i; re_dfa_t *dfa = (re_dfa_t *) preg->buffer; for (i = 0; i < cur_state->nodes.nelem; ++i) { re_token_type_t type; int node = cur_state->nodes.elems[i]; int entity = (dfa->nodes[node].type != OP_CONTEXT_NODE ? node : dfa->nodes[node].opr.ctx_info->entity); type = dfa->nodes[entity].type; if (type == OP_BACK_REF) { int clexp_idx; for (clexp_idx = 0; clexp_idx < cur_state->nodes.nelem; ++clexp_idx) { re_token_t *clexp_node; clexp_node = dfa->nodes + cur_state->nodes.elems[clexp_idx]; if (clexp_node->type == OP_CLOSE_SUBEXP && clexp_node->opr.idx + 1== dfa->nodes[entity].opr.idx) { err = match_ctx_add_entry (mctx, node, 0, 0, 0); if (BE (err != REG_NOERROR, 0)) return -2; break; } } } } } /* If the RE accepts NULL string. */ if (cur_state->halt) { if (!cur_state->has_constraint || check_halt_state_context (preg, cur_state, mctx, cur_str_idx)) { if (!fl_longest_match) return cur_str_idx; else { match_last = cur_str_idx; match = 1; } } } while (!re_string_eoi (mctx->input)) { cur_state = transit_state (&err, preg, mctx, cur_state, fl_search && !match); if (cur_state == NULL) /* Reached at the invalid state or an error. */ { cur_str_idx = re_string_cur_idx (mctx->input); if (BE (err != REG_NOERROR, 0)) return -2; if (fl_search && !match) { /* Restart from initial state, since we are searching the point from where matching start. */ #ifdef RE_ENABLE_I18N if (MB_CUR_MAX == 1 || re_string_first_byte (mctx->input, cur_str_idx)) #endif /* RE_ENABLE_I18N */ cur_state = acquire_init_state_context (&err, preg, mctx, cur_str_idx); if (BE (cur_state == NULL && err != REG_NOERROR, 0)) return -2; if (mctx->state_log != NULL) mctx->state_log[cur_str_idx] = cur_state; } else if (!fl_longest_match && match) break; else /* (fl_longest_match && match) || (!fl_search && !match) */ { if (mctx->state_log == NULL) break; else { int max = mctx->state_log_top; for (; cur_str_idx <= max; ++cur_str_idx) if (mctx->state_log[cur_str_idx] != NULL) break; if (cur_str_idx > max) break; } } } if (cur_state != NULL && cur_state->halt) { /* Reached at a halt state. Check the halt state can satisfy the current context. */ if (!cur_state->has_constraint || check_halt_state_context (preg, cur_state, mctx, re_string_cur_idx (mctx->input))) { /* We found an appropriate halt state. */ match_last = re_string_cur_idx (mctx->input); match = 1; if (!fl_longest_match) break; } } } return match_last; } /* Check NODE match the current context. */ static int check_halt_node_context (dfa, node, context) const re_dfa_t *dfa; int node; unsigned int context; { int entity; re_token_type_t type = dfa->nodes[node].type; if (type == END_OF_RE) return 1; if (type != OP_CONTEXT_NODE) return 0; entity = dfa->nodes[node].opr.ctx_info->entity; if (dfa->nodes[entity].type != END_OF_RE || NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[node].constraint, context)) return 0; return 1; } /* Check the halt state STATE match the current context. Return 0 if not match, if the node, STATE has, is a halt node and match the context, return the node. */ static int check_halt_state_context (preg, state, mctx, idx) const regex_t *preg; const re_dfastate_t *state; const re_match_context_t *mctx; int idx; { re_dfa_t *dfa = (re_dfa_t *) preg->buffer; int i; unsigned int context; #ifdef DEBUG assert (state->halt); #endif context = re_string_context_at (mctx->input, idx, mctx->eflags, preg->newline_anchor); for (i = 0; i < state->nodes.nelem; ++i) if (check_halt_node_context (dfa, state->nodes.elems[i], context)) return state->nodes.elems[i]; return 0; } /* Compute the next node to which "NFA" transit from NODE("NFA" is a NFA corresponding to the DFA). Return the destination node, and update EPS_VIA_NODES, return -1 in case of errors. */ static int proceed_next_node (preg, nregs, regs, mctx, pidx, node, eps_via_nodes, fs) const regex_t *preg; regmatch_t *regs; const re_match_context_t *mctx; int nregs, *pidx, node; re_node_set *eps_via_nodes; struct re_fail_stack_t *fs; { re_dfa_t *dfa = (re_dfa_t *)preg->buffer; int i, err, dest_node, cur_entity; dest_node = -1; cur_entity = ((dfa->nodes[node].type == OP_CONTEXT_NODE) ? dfa->nodes[node].opr.ctx_info->entity : node); if (IS_EPSILON_NODE (dfa->nodes[node].type)) { int ndest, dest_nodes[2], dest_entities[2]; err = re_node_set_insert (eps_via_nodes, node); if (BE (err < 0, 0)) return -1; /* Pick up valid destinations. */ for (ndest = 0, i = 0; i < mctx->state_log[*pidx]->nodes.nelem; ++i) { int candidate = mctx->state_log[*pidx]->nodes.elems[i]; int entity; entity = ((dfa->nodes[candidate].type == OP_CONTEXT_NODE) ? dfa->nodes[candidate].opr.ctx_info->entity : candidate); if (!re_node_set_contains (dfa->edests + node, entity)) continue; dest_nodes[0] = (ndest == 0) ? candidate : dest_nodes[0]; dest_entities[0] = (ndest == 0) ? entity : dest_entities[0]; dest_nodes[1] = (ndest == 1) ? candidate : dest_nodes[1]; dest_entities[1] = (ndest == 1) ? entity : dest_entities[1]; ++ndest; } if (ndest <= 1) return ndest == 0 ? -1 : (ndest == 1 ? dest_nodes[0] : 0); if (dest_entities[0] > dest_entities[1]) { int swap_work = dest_nodes[0]; dest_nodes[0] = dest_nodes[1]; dest_nodes[1] = swap_work; } /* In order to avoid infinite loop like "(a*)*". */ if (re_node_set_contains (eps_via_nodes, dest_nodes[0])) return dest_nodes[1]; if (fs != NULL) push_fail_stack (fs, *pidx, dest_nodes, nregs, regs, eps_via_nodes); return dest_nodes[0]; } else { int naccepted = 0, entity = node; re_token_type_t type = dfa->nodes[node].type; if (type == OP_CONTEXT_NODE) { entity = dfa->nodes[node].opr.ctx_info->entity; type = dfa->nodes[entity].type; } #ifdef RE_ENABLE_I18N if (ACCEPT_MB_NODE (type)) naccepted = check_node_accept_bytes (preg, entity, mctx->input, *pidx); else #endif /* RE_ENABLE_I18N */ if (type == OP_BACK_REF) { int subexp_idx = dfa->nodes[entity].opr.idx; naccepted = regs[subexp_idx].rm_eo - regs[subexp_idx].rm_so; if (fs != NULL) { if (regs[subexp_idx].rm_so == -1 || regs[subexp_idx].rm_eo == -1) return -1; else if (naccepted) { char *buf = re_string_get_buffer (mctx->input); if (strncmp (buf + regs[subexp_idx].rm_so, buf + *pidx, naccepted) != 0) return -1; } } if (naccepted == 0) { err = re_node_set_insert (eps_via_nodes, node); if (BE (err < 0, 0)) return -2; dest_node = dfa->nexts[node]; if (re_node_set_contains (&mctx->state_log[*pidx]->nodes, dest_node)) return dest_node; for (i = 0; i < mctx->state_log[*pidx]->nodes.nelem; ++i) { dest_node = mctx->state_log[*pidx]->nodes.elems[i]; if ((dfa->nodes[dest_node].type == OP_CONTEXT_NODE && (dfa->nexts[node] == dfa->nodes[dest_node].opr.ctx_info->entity))) return dest_node; } } } if (naccepted != 0 || check_node_accept (preg, dfa->nodes + node, mctx, *pidx)) { dest_node = dfa->nexts[node]; *pidx = (naccepted == 0) ? *pidx + 1 : *pidx + naccepted; if (fs && (*pidx > mctx->match_last || mctx->state_log[*pidx] == NULL || !re_node_set_contains (&mctx->state_log[*pidx]->nodes, dest_node))) return -1; re_node_set_empty (eps_via_nodes); return dest_node; } } return -1; } static reg_errcode_t push_fail_stack (fs, str_idx, dests, nregs, regs, eps_via_nodes) struct re_fail_stack_t *fs; int str_idx, *dests, nregs; regmatch_t *regs; re_node_set *eps_via_nodes; { reg_errcode_t err; int num = fs->num++; if (fs->num == fs->alloc) { fs->alloc *= 2; fs->stack = realloc (fs->stack, (sizeof (struct re_fail_stack_ent_t) * fs->alloc)); if (fs->stack == NULL) return REG_ESPACE; } fs->stack[num].idx = str_idx; fs->stack[num].node = dests[1]; fs->stack[num].regs = re_malloc (regmatch_t, nregs); memcpy (fs->stack[num].regs, regs, sizeof (regmatch_t) * nregs); err = re_node_set_init_copy (&fs->stack[num].eps_via_nodes, eps_via_nodes); return err; } static int pop_fail_stack (fs, pidx, nregs, regs, eps_via_nodes) struct re_fail_stack_t *fs; int *pidx, nregs; regmatch_t *regs; re_node_set *eps_via_nodes; { int num = --fs->num; assert (num >= 0); *pidx = fs->stack[num].idx; memcpy (regs, fs->stack[num].regs, sizeof (regmatch_t) * nregs); re_node_set_free (eps_via_nodes); *eps_via_nodes = fs->stack[num].eps_via_nodes; return fs->stack[num].node; } /* Set the positions where the subexpressions are starts/ends to registers PMATCH. Note: We assume that pmatch[0] is already set, and pmatch[i].rm_so == pmatch[i].rm_eo == -1 (i > 1). */ static reg_errcode_t set_regs (preg, mctx, nmatch, pmatch, fl_backtrack) const regex_t *preg; const re_match_context_t *mctx; size_t nmatch; regmatch_t *pmatch; int fl_backtrack; { re_dfa_t *dfa = (re_dfa_t *)preg->buffer; int idx, cur_node, real_nmatch; re_node_set eps_via_nodes; struct re_fail_stack_t *fs; struct re_fail_stack_t fs_body = {0, 2, NULL}; #ifdef DEBUG assert (nmatch > 1); assert (mctx->state_log != NULL); #endif if (fl_backtrack) { fs = &fs_body; fs->stack = re_malloc (struct re_fail_stack_ent_t, fs->alloc); } else fs = NULL; cur_node = dfa->init_node; real_nmatch = (nmatch <= preg->re_nsub) ? nmatch : preg->re_nsub + 1; re_node_set_init_empty (&eps_via_nodes); for (idx = pmatch[0].rm_so; idx <= pmatch[0].rm_eo ;) { update_regs (dfa, pmatch, cur_node, idx, real_nmatch); if (idx == pmatch[0].rm_eo && cur_node == mctx->last_node) { int reg_idx; if (fs) { for (reg_idx = 0; reg_idx < nmatch; ++reg_idx) if (pmatch[reg_idx].rm_so > -1 && pmatch[reg_idx].rm_eo == -1) break; if (reg_idx == nmatch) return REG_NOERROR; cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, &eps_via_nodes); } else return REG_NOERROR; } /* Proceed to next node. */ cur_node = proceed_next_node (preg, nmatch, pmatch, mctx, &idx, cur_node, &eps_via_nodes, fs); if (BE (cur_node < 0, 0)) { if (cur_node == -2) return REG_ESPACE; if (fs) cur_node = pop_fail_stack (fs, &idx, nmatch, pmatch, &eps_via_nodes); else return REG_NOMATCH; } } re_node_set_free (&eps_via_nodes); return REG_NOERROR; } static void update_regs (dfa, pmatch, cur_node, cur_idx, nmatch) re_dfa_t *dfa; regmatch_t *pmatch; int cur_node, cur_idx, nmatch; { int type = dfa->nodes[cur_node].type; int reg_num; if (type != OP_OPEN_SUBEXP && type != OP_CLOSE_SUBEXP) return; reg_num = dfa->nodes[cur_node].opr.idx + 1; if (reg_num >= nmatch) return; if (type == OP_OPEN_SUBEXP) { /* We are at the first node of this sub expression. */ pmatch[reg_num].rm_so = cur_idx; pmatch[reg_num].rm_eo = -1; } else if (type == OP_CLOSE_SUBEXP) /* We are at the first node of this sub expression. */ pmatch[reg_num].rm_eo = cur_idx; } #define NUMBER_OF_STATE 1 /* This function checks the STATE_LOG from the SCTX->last_str_idx to 0 and sift the nodes in each states according to the following rules. Updated state_log will be wrote to STATE_LOG. Rules: We throw away the Node `a' in the STATE_LOG[STR_IDX] if... 1. When STR_IDX == MATCH_LAST(the last index in the state_log): If `a' isn't the LAST_NODE and `a' can't epsilon transit to the LAST_NODE, we throw away the node `a'. 2. When 0 <= STR_IDX < MATCH_LAST and `a' accepts string `s' and transit to `b': i. If 'b' isn't in the STATE_LOG[STR_IDX+strlen('s')], we throw away the node `a'. ii. If 'b' is in the STATE_LOG[STR_IDX+strlen('s')] but 'b' is throwed away, we throw away the node `a'. 3. When 0 <= STR_IDX < n and 'a' epsilon transit to 'b': i. If 'b' isn't in the STATE_LOG[STR_IDX], we throw away the node `a'. ii. If 'b' is in the STATE_LOG[STR_IDX] but 'b' is throwed away, we throw away the node `a'. */ #define STATE_NODE_CONTAINS(state,node) \ ((state) != NULL && re_node_set_contains (&(state)->nodes, node)) static reg_errcode_t sift_states_backward (preg, mctx, sctx) const regex_t *preg; re_match_context_t *mctx; re_sift_context_t *sctx; { reg_errcode_t err; re_dfa_t *dfa = (re_dfa_t *)preg->buffer; int null_cnt = 0; int str_idx = sctx->last_str_idx; re_node_set cur_dest; re_node_set *cur_src; /* Points the state_log[str_idx]->nodes */ #ifdef DEBUG assert (mctx->state_log != NULL && mctx->state_log[str_idx] != NULL); #endif cur_src = &mctx->state_log[str_idx]->nodes; /* Build sifted state_log[str_idx]. It has the nodes which can epsilon transit to the last_node and the last_node itself. */ err = re_node_set_init_1 (&cur_dest, sctx->last_node); if (BE (err != REG_NOERROR, 0)) return err; err = update_cur_sifted_state (preg, mctx, sctx, str_idx, &cur_dest); if (BE (err != REG_NOERROR, 0)) return err; /* Then check each states in the state_log. */ while (str_idx > 0) { int i, ret; /* Update counters. */ null_cnt = (sctx->sifted_states[str_idx] == NULL) ? null_cnt + 1 : 0; if (null_cnt > mctx->max_mb_elem_len) { memset (sctx->sifted_states, '\0', sizeof (re_dfastate_t *) * str_idx); return REG_NOERROR; } re_node_set_empty (&cur_dest); --str_idx; cur_src = ((mctx->state_log[str_idx] == NULL) ? &empty_set : &mctx->state_log[str_idx]->nodes); /* Then build the next sifted state. We build the next sifted state on `cur_dest', and update `sifted_states[str_idx]' with `cur_dest'. Note: `cur_dest' is the sifted state from `state_log[str_idx + 1]'. `cur_src' points the node_set of the old `state_log[str_idx]'. */ for (i = 0; i < cur_src->nelem; i++) { int prev_node = cur_src->elems[i]; int entity = prev_node; int naccepted = 0; re_token_type_t type = dfa->nodes[prev_node].type; if (IS_EPSILON_NODE(type)) continue; if (type == OP_CONTEXT_NODE) { entity = dfa->nodes[prev_node].opr.ctx_info->entity; type = dfa->nodes[entity].type; } #ifdef RE_ENABLE_I18N /* If the node may accept `multi byte'. */ if (ACCEPT_MB_NODE (type)) naccepted = sift_states_iter_mb (preg, mctx, sctx, entity, str_idx, sctx->last_str_idx); #endif /* RE_ENABLE_I18N */ /* We don't check backreferences here. See update_cur_sifted_state(). */ if (!naccepted && check_node_accept (preg, dfa->nodes + prev_node, mctx, str_idx) && STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + 1], dfa->nexts[prev_node])) naccepted = 1; if (naccepted == 0) continue; if (sctx->limits.nelem) { int to_idx = str_idx + naccepted; if (check_dst_limits (dfa, &sctx->limits, mctx, dfa->nexts[prev_node], to_idx, prev_node, str_idx)) continue; } ret = re_node_set_insert (&cur_dest, prev_node); if (BE (ret == -1, 0)) return err; } /* Add all the nodes which satisfy the following conditions: - It can epsilon transit to a node in CUR_DEST. - It is in CUR_SRC. And update state_log. */ err = update_cur_sifted_state (preg, mctx, sctx, str_idx, &cur_dest); if (BE (err != REG_NOERROR, 0)) return err; } re_node_set_free (&cur_dest); return REG_NOERROR; } /* Helper functions. */ static inline reg_errcode_t clean_state_log_if_need (mctx, next_state_log_idx) re_match_context_t *mctx; int next_state_log_idx; { int top = mctx->state_log_top; if (next_state_log_idx >= mctx->input->bufs_len || (next_state_log_idx >= mctx->input->valid_len && mctx->input->valid_len < mctx->input->len)) { reg_errcode_t err; err = extend_buffers (mctx); if (BE (err != REG_NOERROR, 0)) return err; } if (top < next_state_log_idx) { memset (mctx->state_log + top + 1, '\0', sizeof (re_dfastate_t *) * (next_state_log_idx - top)); mctx->state_log_top = next_state_log_idx; } return REG_NOERROR; } static reg_errcode_t merge_state_array (dfa, dst, src, num) re_dfa_t *dfa; re_dfastate_t **dst; re_dfastate_t **src; int num; { int st_idx; reg_errcode_t err; for (st_idx = 0; st_idx < num; ++st_idx) { if (dst[st_idx] == NULL) dst[st_idx] = src[st_idx]; else if (src[st_idx] != NULL) { re_node_set merged_set; err = re_node_set_init_union (&merged_set, &dst[st_idx]->nodes, &src[st_idx]->nodes); if (BE (err != REG_NOERROR, 0)) return err; dst[st_idx] = re_acquire_state (&err, dfa, &merged_set); if (BE (err != REG_NOERROR, 0)) return err; re_node_set_free (&merged_set); } } return REG_NOERROR; } static reg_errcode_t update_cur_sifted_state (preg, mctx, sctx, str_idx, dest_nodes) const regex_t *preg; re_match_context_t *mctx; re_sift_context_t *sctx; int str_idx; re_node_set *dest_nodes; { reg_errcode_t err; re_dfa_t *dfa = (re_dfa_t *)preg->buffer; const re_node_set *candidates; candidates = ((mctx->state_log[str_idx] == NULL) ? &empty_set : &mctx->state_log[str_idx]->nodes); /* At first, add the nodes which can epsilon transit to a node in DEST_NODE. */ err = add_epsilon_src_nodes (dfa, dest_nodes, candidates); if (BE (err != REG_NOERROR, 0)) return err; /* Then, check the limitations in the current sift_context. */ if (sctx->limits.nelem) { err = check_subexp_limits (dfa, dest_nodes, candidates, &sctx->limits, mctx->bkref_ents, str_idx); if (BE (err != REG_NOERROR, 0)) return err; } /* Update state_log. */ sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes); if (BE (sctx->sifted_states[str_idx] == NULL && err != REG_NOERROR, 0)) return err; /* If we are searching for the subexpression candidates. Note that we were from transit_state_bkref_loop() in this case. */ if (sctx->check_subexp) { err = search_subexp (preg, mctx, sctx, str_idx, dest_nodes); if (BE (err != REG_NOERROR, 0)) return err; } if ((mctx->state_log[str_idx] != NULL && mctx->state_log[str_idx]->has_backref)) { err = sift_states_bkref (preg, mctx, sctx, str_idx, dest_nodes); if (BE (err != REG_NOERROR, 0)) return err; } return REG_NOERROR; } static reg_errcode_t add_epsilon_src_nodes (dfa, dest_nodes, candidates) re_dfa_t *dfa; re_node_set *dest_nodes; const re_node_set *candidates; { reg_errcode_t err; int src_idx; re_node_set src_copy; err = re_node_set_init_copy (&src_copy, dest_nodes); if (BE (err != REG_NOERROR, 0)) return err; for (src_idx = 0; src_idx < src_copy.nelem; ++src_idx) { err = re_node_set_add_intersect (dest_nodes, candidates, dfa->inveclosures + src_copy.elems[src_idx]); if (BE (err != REG_NOERROR, 0)) return err; } re_node_set_free (&src_copy); return REG_NOERROR; } static reg_errcode_t sub_epsilon_src_nodes (dfa, node, dest_nodes, candidates) re_dfa_t *dfa; int node; re_node_set *dest_nodes; const re_node_set *candidates; { int ecl_idx; reg_errcode_t err; re_node_set *inv_eclosure = dfa->inveclosures + node; re_node_set except_nodes; re_node_set_init_empty (&except_nodes); for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) { int cur_node = inv_eclosure->elems[ecl_idx]; if (cur_node == node) continue; if (dfa->edests[cur_node].nelem) { int edst1 = dfa->edests[cur_node].elems[0]; int edst2 = ((dfa->edests[cur_node].nelem > 1) ? dfa->edests[cur_node].elems[1] : -1); if ((!re_node_set_contains (inv_eclosure, edst1) && re_node_set_contains (dest_nodes, edst1)) || (edst2 > 0 && !re_node_set_contains (inv_eclosure, edst2) && re_node_set_contains (dest_nodes, edst2))) { err = re_node_set_add_intersect (&except_nodes, candidates, dfa->inveclosures + cur_node); if (BE (err != REG_NOERROR, 0)) return err; } } } for (ecl_idx = 0; ecl_idx < inv_eclosure->nelem; ++ecl_idx) { int cur_node = inv_eclosure->elems[ecl_idx]; if (!re_node_set_contains (&except_nodes, cur_node)) { int idx = re_node_set_contains (dest_nodes, cur_node) - 1; re_node_set_remove_at (dest_nodes, idx); } } re_node_set_free (&except_nodes); return REG_NOERROR; } static int check_dst_limits (dfa, limits, mctx, dst_node, dst_idx, src_node, src_idx) re_dfa_t *dfa; re_node_set *limits; re_match_context_t *mctx; int dst_node, dst_idx, src_node, src_idx; { int lim_idx, src_pos, dst_pos; for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) { int bkref, subexp_idx/*, node_idx, cls_node*/; struct re_backref_cache_entry *ent; ent = mctx->bkref_ents + limits->elems[lim_idx]; bkref = (dfa->nodes[ent->node].type == OP_CONTEXT_NODE ? dfa->nodes[ent->node].opr.ctx_info->entity : ent->node); subexp_idx = dfa->nodes[bkref].opr.idx - 1; dst_pos = check_dst_limits_calc_pos (dfa, mctx, limits->elems[lim_idx], dfa->eclosures + dst_node, subexp_idx, dst_node, dst_idx); src_pos = check_dst_limits_calc_pos (dfa, mctx, limits->elems[lim_idx], dfa->eclosures + src_node, subexp_idx, src_node, src_idx); /* In case of: <src> <dst> ( <subexp> ) ( <subexp> ) <src> <dst> ( <subexp1> <src> <subexp2> <dst> <subexp3> ) */ if (src_pos == dst_pos) continue; /* This is unrelated limitation. */ else return 1; } return 0; } static int check_dst_limits_calc_pos (dfa, mctx, limit, eclosures, subexp_idx, node, str_idx) re_dfa_t *dfa; re_match_context_t *mctx; re_node_set *eclosures; int limit, subexp_idx, node, str_idx; { struct re_backref_cache_entry *lim = mctx->bkref_ents + limit; int pos = (str_idx < lim->subexp_from ? -1 : (lim->subexp_to < str_idx ? 1 : 0)); if (pos == 0 && (str_idx == lim->subexp_from || str_idx == lim->subexp_to)) { int node_idx; for (node_idx = 0; node_idx < eclosures->nelem; ++node_idx) { int node = eclosures->elems[node_idx]; int entity = node; re_token_type_t type= dfa->nodes[node].type; if (type == OP_CONTEXT_NODE) { entity = dfa->nodes[node].opr.ctx_info->entity; type = dfa->nodes[entity].type; } if (type == OP_BACK_REF) { int bi; for (bi = 0; bi < mctx->nbkref_ents; ++bi) { struct re_backref_cache_entry *ent = mctx->bkref_ents + bi; if (ent->node == node && ent->subexp_from == ent->subexp_to && ent->str_idx == str_idx) { int cpos, dst; dst = dfa->nexts[node]; cpos = check_dst_limits_calc_pos (dfa, mctx, limit, dfa->eclosures + dst, subexp_idx, dst, str_idx); if ((str_idx == lim->subexp_from && cpos == -1) || (str_idx == lim->subexp_to && cpos == 0)) return cpos; } } } if (type == OP_OPEN_SUBEXP && subexp_idx == dfa->nodes[node].opr.idx && str_idx == lim->subexp_from) { pos = -1; break; } if (type == OP_CLOSE_SUBEXP && subexp_idx == dfa->nodes[node].opr.idx && str_idx == lim->subexp_to) break; } if (node_idx == eclosures->nelem && str_idx == lim->subexp_to) pos = 1; } return pos; } /* Check the limitations of sub expressions LIMITS, and remove the nodes which are against limitations from DEST_NODES. */ static reg_errcode_t check_subexp_limits (dfa, dest_nodes, candidates, limits, bkref_ents, str_idx) re_dfa_t *dfa; re_node_set *dest_nodes; const re_node_set *candidates; re_node_set *limits; struct re_backref_cache_entry *bkref_ents; int str_idx; { reg_errcode_t err; int node_idx, lim_idx; for (lim_idx = 0; lim_idx < limits->nelem; ++lim_idx) { int bkref, subexp_idx; struct re_backref_cache_entry *ent; ent = bkref_ents + limits->elems[lim_idx]; if (str_idx <= ent->subexp_from || ent->str_idx < str_idx) continue; /* This is unrelated limitation. */ bkref = (dfa->nodes[ent->node].type == OP_CONTEXT_NODE ? dfa->nodes[ent->node].opr.ctx_info->entity : ent->node); subexp_idx = dfa->nodes[bkref].opr.idx - 1; if (ent->subexp_to == str_idx) { int ops_node = -1; int cls_node = -1; for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) { int node = dest_nodes->elems[node_idx]; re_token_type_t type= dfa->nodes[node].type; if (type == OP_OPEN_SUBEXP && subexp_idx == dfa->nodes[node].opr.idx) ops_node = node; else if (type == OP_CLOSE_SUBEXP && subexp_idx == dfa->nodes[node].opr.idx) cls_node = node; } /* Check the limitation of the open subexpression. */ /* Note that (ent->subexp_to = str_idx != ent->subexp_from). */ if (ops_node >= 0) { err = sub_epsilon_src_nodes(dfa, ops_node, dest_nodes, candidates); if (BE (err != REG_NOERROR, 0)) return err; } /* Check the limitation of the close subexpression. */ for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) { int node = dest_nodes->elems[node_idx]; if (!re_node_set_contains (dfa->inveclosures + node, cls_node) && !re_node_set_contains (dfa->eclosures + node, cls_node)) { /* It is against this limitation. Remove it form the current sifted state. */ err = sub_epsilon_src_nodes(dfa, node, dest_nodes, candidates); if (BE (err != REG_NOERROR, 0)) return err; --node_idx; } } } else /* (ent->subexp_to != str_idx) */ { for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) { int node = dest_nodes->elems[node_idx]; re_token_type_t type= dfa->nodes[node].type; if (type == OP_CLOSE_SUBEXP || type == OP_OPEN_SUBEXP) { if (subexp_idx != dfa->nodes[node].opr.idx) continue; if ((type == OP_CLOSE_SUBEXP && ent->subexp_to != str_idx) || (type == OP_OPEN_SUBEXP)) { /* It is against this limitation. Remove it form the current sifted state. */ err = sub_epsilon_src_nodes(dfa, node, dest_nodes, candidates); if (BE (err != REG_NOERROR, 0)) return err; } } } } } return REG_NOERROR; } /* Search for the top (in case of sctx->check_subexp < 0) or the bottom (in case of sctx->check_subexp > 0) of the subexpressions which the backreference sctx->cur_bkref can match. */ static reg_errcode_t search_subexp (preg, mctx, sctx, str_idx, dest_nodes) const regex_t *preg; re_match_context_t *mctx; re_sift_context_t *sctx; int str_idx; re_node_set *dest_nodes; { reg_errcode_t err; re_dfa_t *dfa = (re_dfa_t *)preg->buffer; re_sift_context_t local_sctx; int node_idx, node=0; /* gnupg */ const re_node_set *candidates; re_dfastate_t **lim_states = NULL; candidates = ((mctx->state_log[str_idx] == NULL) ? &empty_set : &mctx->state_log[str_idx]->nodes); local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized. */ for (node_idx = 0; node_idx < dest_nodes->nelem; ++node_idx) { re_token_type_t type; int entity; node = dest_nodes->elems[node_idx]; type = dfa->nodes[node].type; entity = (type != OP_CONTEXT_NODE ? node : dfa->nodes[node].opr.ctx_info->entity); type = (type != OP_CONTEXT_NODE ? type : dfa->nodes[entity].type); if (type == OP_CLOSE_SUBEXP && sctx->check_subexp == dfa->nodes[node].opr.idx + 1) { re_dfastate_t *cur_state; /* Found the bottom of the subexpression, then search for the top of it. */ if (local_sctx.sifted_states == NULL) { /* It hasn't been initialized yet, initialize it now. */ local_sctx = *sctx; err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits); if (BE (err != REG_NOERROR, 0)) return err; } local_sctx.check_subexp = -sctx->check_subexp; local_sctx.limited_states = sctx->limited_states; local_sctx.last_node = node; local_sctx.last_str_idx = local_sctx.cls_subexp_idx = str_idx; cur_state = local_sctx.sifted_states[str_idx]; err = sift_states_backward (preg, mctx, &local_sctx); local_sctx.sifted_states[str_idx] = cur_state; if (BE (err != REG_NOERROR, 0)) return err; /* There must not 2 same node in a node set. */ break; } else if (type == OP_OPEN_SUBEXP && -sctx->check_subexp == dfa->nodes[node].opr.idx + 1) { /* Found the top of the subexpression, check that the backreference can match the input string. */ char *buf; int dest_str_idx; int bkref_str_idx = re_string_cur_idx (mctx->input); int subexp_len = sctx->cls_subexp_idx - str_idx; if (subexp_len < 0 || bkref_str_idx + subexp_len > mctx->input->len) break; if (bkref_str_idx + subexp_len > mctx->input->valid_len && mctx->input->valid_len < mctx->input->len) { reg_errcode_t err; err = extend_buffers (mctx); if (BE (err != REG_NOERROR, 0)) return err; } buf = (char *) re_string_get_buffer (mctx->input); if (strncmp (buf + str_idx, buf + bkref_str_idx, subexp_len) != 0) break; if (sctx->limits.nelem && str_idx > 0) { re_dfastate_t *cur_state = sctx->sifted_states[str_idx]; if (lim_states == NULL) { lim_states = re_malloc (re_dfastate_t *, str_idx + 1); } if (local_sctx.sifted_states == NULL) { /* It hasn't been initialized yet, initialize it now. */ local_sctx = *sctx; if (BE (lim_states == NULL, 0)) return REG_ESPACE; err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits); if (BE (err != REG_NOERROR, 0)) return err; } local_sctx.check_subexp = 0; local_sctx.last_node = node; local_sctx.last_str_idx = str_idx; local_sctx.limited_states = lim_states; memset (lim_states, '\0', sizeof (re_dfastate_t*) * (str_idx + 1)); err = sift_states_backward (preg, mctx, &local_sctx); if (BE (err != REG_NOERROR, 0)) return err; if (local_sctx.sifted_states[0] == NULL && local_sctx.limited_states[0] == NULL) { sctx->sifted_states[str_idx] = cur_state; break; } sctx->sifted_states[str_idx] = cur_state; } /* Successfully matched, add a new cache entry. */ dest_str_idx = bkref_str_idx + subexp_len; err = match_ctx_add_entry (mctx, sctx->cur_bkref, bkref_str_idx, str_idx, sctx->cls_subexp_idx); if (BE (err != REG_NOERROR, 0)) return err; err = clean_state_log_if_need (mctx, dest_str_idx); if (BE (err != REG_NOERROR, 0)) return err; break; } } /* Remove the top/bottom of the sub expression we processed. */ if (node_idx < dest_nodes->nelem) { err = sub_epsilon_src_nodes(dfa, node, dest_nodes, candidates); if (BE (err != REG_NOERROR, 0)) return err; /* Update state_log. */ sctx->sifted_states[str_idx] = re_acquire_state (&err, dfa, dest_nodes); if (BE (err != REG_NOERROR, 0)) return err; } if (local_sctx.sifted_states != NULL) re_node_set_free (&local_sctx.limits); if (lim_states != NULL) re_free (lim_states); return REG_NOERROR; } static reg_errcode_t sift_states_bkref (preg, mctx, sctx, str_idx, dest_nodes) const regex_t *preg; re_match_context_t *mctx; re_sift_context_t *sctx; int str_idx; re_node_set *dest_nodes; { reg_errcode_t err; re_dfa_t *dfa = (re_dfa_t *)preg->buffer; int node_idx, node; re_sift_context_t local_sctx; const re_node_set *candidates; candidates = ((mctx->state_log[str_idx] == NULL) ? &empty_set : &mctx->state_log[str_idx]->nodes); local_sctx.sifted_states = NULL; /* Mark that it hasn't been initialized. */ for (node_idx = 0; node_idx < candidates->nelem; ++node_idx) { int entity; int cur_bkref_idx = re_string_cur_idx (mctx->input); re_token_type_t type; node = candidates->elems[node_idx]; type = dfa->nodes[node].type; entity = (type != OP_CONTEXT_NODE ? node : dfa->nodes[node].opr.ctx_info->entity); type = (type != OP_CONTEXT_NODE ? type : dfa->nodes[entity].type); if (node == sctx->cur_bkref && str_idx == cur_bkref_idx) continue; /* Avoid infinite loop for the REs like "()\1+". */ if (node == sctx->last_node && str_idx == sctx->last_str_idx) continue; if (type == OP_BACK_REF) { int enabled_idx; for (enabled_idx = 0; enabled_idx < mctx->nbkref_ents; ++enabled_idx) { int disabled_idx, subexp_len, to_idx; struct re_backref_cache_entry *entry; entry = mctx->bkref_ents + enabled_idx; subexp_len = entry->subexp_to - entry->subexp_from; to_idx = str_idx + subexp_len; if (entry->node != node || entry->str_idx != str_idx || to_idx > sctx->last_str_idx || sctx->sifted_states[to_idx] == NULL) continue; if (!STATE_NODE_CONTAINS (sctx->sifted_states[to_idx], dfa->nexts[node])) { int dst_idx; re_node_set *dsts = &sctx->sifted_states[to_idx]->nodes; for (dst_idx = 0; dst_idx < dsts->nelem; ++dst_idx) { int dst_node = dsts->elems[dst_idx]; if (dfa->nodes[dst_node].type == OP_CONTEXT_NODE && (dfa->nodes[dst_node].opr.ctx_info->entity == dfa->nexts[node])) break; } if (dst_idx == dsts->nelem) continue; } if (check_dst_limits (dfa, &sctx->limits, mctx, node, str_idx, dfa->nexts[node], to_idx)) continue; if (sctx->check_subexp == dfa->nodes[entity].opr.idx) { char *buf; buf = (char *) re_string_get_buffer (mctx->input); if (strncmp (buf + entry->subexp_from, buf + cur_bkref_idx, subexp_len) != 0) continue; err = match_ctx_add_entry (mctx, sctx->cur_bkref, cur_bkref_idx, entry->subexp_from, entry->subexp_to); if (BE (err != REG_NOERROR, 0)) return err; err = clean_state_log_if_need (mctx, cur_bkref_idx + subexp_len); if (BE (err != REG_NOERROR, 0)) return err; } else { re_dfastate_t *cur_state; entry->flag = 0; for (disabled_idx = enabled_idx + 1; disabled_idx < mctx->nbkref_ents; ++disabled_idx) { struct re_backref_cache_entry *entry2; entry2 = mctx->bkref_ents + disabled_idx; if (entry2->node != node || entry2->str_idx != str_idx) continue; entry2->flag = 1; } if (local_sctx.sifted_states == NULL) { local_sctx = *sctx; err = re_node_set_init_copy (&local_sctx.limits, &sctx->limits); if (BE (err != REG_NOERROR, 0)) return err; } local_sctx.last_node = node; local_sctx.last_str_idx = str_idx; err = re_node_set_insert (&local_sctx.limits, enabled_idx); if (BE (err < 0, 0)) return REG_ESPACE; cur_state = local_sctx.sifted_states[str_idx]; err = sift_states_backward (preg, mctx, &local_sctx); if (BE (err != REG_NOERROR, 0)) return err; if (sctx->limited_states != NULL) { err = merge_state_array (dfa, sctx->limited_states, local_sctx.sifted_states, str_idx + 1); if (BE (err != REG_NOERROR, 0)) return err; } local_sctx.sifted_states[str_idx] = cur_state; re_node_set_remove_at (&local_sctx.limits, local_sctx.limits.nelem - 1); entry->flag = 1; } } for (enabled_idx = 0; enabled_idx < mctx->nbkref_ents; ++enabled_idx) { struct re_backref_cache_entry *entry; entry = mctx->bkref_ents + enabled_idx; if (entry->node == node && entry->str_idx == str_idx) entry->flag = 0; } } } if (local_sctx.sifted_states != NULL) { re_node_set_free (&local_sctx.limits); } return REG_NOERROR; } #ifdef RE_ENABLE_I18N static int sift_states_iter_mb (preg, mctx, sctx, node_idx, str_idx, max_str_idx) const regex_t *preg; const re_match_context_t *mctx; re_sift_context_t *sctx; int node_idx, str_idx, max_str_idx; { re_dfa_t *dfa = (re_dfa_t *) preg->buffer; int naccepted; /* Check the node can accept `multi byte'. */ naccepted = check_node_accept_bytes (preg, node_idx, mctx->input, str_idx); if (naccepted > 0 && str_idx + naccepted <= max_str_idx && !STATE_NODE_CONTAINS (sctx->sifted_states[str_idx + naccepted], dfa->nexts[node_idx])) /* The node can't accept the `multi byte', or the destination was already throwed away, then the node could't accept the current input `multi byte'. */ naccepted = 0; /* Otherwise, it is sure that the node could accept `naccepted' bytes input. */ return naccepted; } #endif /* RE_ENABLE_I18N */ /* Functions for state transition. */ /* Return the next state to which the current state STATE will transit by accepting the current input byte, and update STATE_LOG if necessary. If STATE can accept a multibyte char/collating element/back reference update the destination of STATE_LOG. */ static re_dfastate_t * transit_state (err, preg, mctx, state, fl_search) reg_errcode_t *err; const regex_t *preg; re_match_context_t *mctx; re_dfastate_t *state; int fl_search; { re_dfa_t *dfa = (re_dfa_t *) preg->buffer; re_dfastate_t **trtable, *next_state; unsigned char ch; if (re_string_cur_idx (mctx->input) + 1 >= mctx->input->bufs_len || (re_string_cur_idx (mctx->input) + 1 >= mctx->input->valid_len && mctx->input->valid_len < mctx->input->len)) { *err = extend_buffers (mctx); if (BE (*err != REG_NOERROR, 0)) return NULL; } *err = REG_NOERROR; if (state == NULL) { next_state = state; re_string_skip_bytes (mctx->input, 1); } else { #ifdef RE_ENABLE_I18N /* If the current state can accept multibyte. */ if (state->accept_mb) { *err = transit_state_mb (preg, state, mctx); if (BE (*err != REG_NOERROR, 0)) return NULL; } #endif /* RE_ENABLE_I18N */ /* Then decide the next state with the single byte. */ if (1) { /* Use transition table */ ch = re_string_fetch_byte (mctx->input); trtable = fl_search ? state->trtable_search : state->trtable; if (trtable == NULL) { trtable = build_trtable (preg, state, fl_search); if (fl_search) state->trtable_search = trtable; else state->trtable = trtable; } next_state = trtable[ch]; } else { /* don't use transition table */ next_state = transit_state_sb (err, preg, state, fl_search, mctx); if (BE (next_state == NULL && err != REG_NOERROR, 0)) return NULL; } } /* Update the state_log if we need. */ if (mctx->state_log != NULL) { int cur_idx = re_string_cur_idx (mctx->input); if (cur_idx > mctx->state_log_top) { mctx->state_log[cur_idx] = next_state; mctx->state_log_top = cur_idx; } else if (mctx->state_log[cur_idx] == 0) { mctx->state_log[cur_idx] = next_state; } else { re_dfastate_t *pstate; unsigned int context; re_node_set next_nodes, *log_nodes, *table_nodes = NULL; /* If (state_log[cur_idx] != 0), it implies that cur_idx is the destination of a multibyte char/collating element/ back reference. Then the next state is the union set of these destinations and the results of the transition table. */ pstate = mctx->state_log[cur_idx]; log_nodes = pstate->entrance_nodes; if (next_state != NULL) { table_nodes = next_state->entrance_nodes; *err = re_node_set_init_union (&next_nodes, table_nodes, log_nodes); if (BE (*err != REG_NOERROR, 0)) return NULL; } else next_nodes = *log_nodes; /* Note: We already add the nodes of the initial state, then we don't need to add them here. */ context = re_string_context_at (mctx->input, re_string_cur_idx (mctx->input) - 1, mctx->eflags, preg->newline_anchor); next_state = mctx->state_log[cur_idx] = re_acquire_state_context (err, dfa, &next_nodes, context); /* We don't need to check errors here, since the return value of this function is next_state and ERR is already set. */ if (table_nodes != NULL) re_node_set_free (&next_nodes); } /* If the next state has back references. */ if (next_state != NULL && next_state->has_backref) { *err = transit_state_bkref (preg, next_state, mctx); if (BE (*err != REG_NOERROR, 0)) return NULL; next_state = mctx->state_log[cur_idx]; } } return next_state; } /* Helper functions for transit_state. */ /* Return the next state to which the current state STATE will transit by accepting the current input byte. */ static re_dfastate_t * transit_state_sb (err, preg, state, fl_search, mctx) reg_errcode_t *err; const regex_t *preg; re_dfastate_t *state; int fl_search; re_match_context_t *mctx; { re_dfa_t *dfa = (re_dfa_t *) preg->buffer; re_node_set next_nodes; re_dfastate_t *next_state; int node_cnt, cur_str_idx = re_string_cur_idx (mctx->input); unsigned int context; *err = re_node_set_alloc (&next_nodes, state->nodes.nelem + 1); if (BE (*err != REG_NOERROR, 0)) return NULL; for (node_cnt = 0; node_cnt < state->nodes.nelem; ++node_cnt) { int cur_node = state->nodes.elems[node_cnt]; if (check_node_accept (preg, dfa->nodes + cur_node, mctx, cur_str_idx)) { *err = re_node_set_merge (&next_nodes, dfa->eclosures + dfa->nexts[cur_node]); if (BE (*err != REG_NOERROR, 0)) return NULL; } } if (fl_search) { #ifdef RE_ENABLE_I18N int not_initial = 0; if (MB_CUR_MAX > 1) for (node_cnt = 0; node_cnt < next_nodes.nelem; ++node_cnt) if (dfa->nodes[next_nodes.elems[node_cnt]].type == CHARACTER) { not_initial = dfa->nodes[next_nodes.elems[node_cnt]].mb_partial; break; } if (!not_initial) #endif { *err = re_node_set_merge (&next_nodes, dfa->init_state->entrance_nodes); if (BE (*err != REG_NOERROR, 0)) return NULL; } } context = re_string_context_at (mctx->input, cur_str_idx, mctx->eflags, preg->newline_anchor); next_state = re_acquire_state_context (err, dfa, &next_nodes, context); /* We don't need to check errors here, since the return value of this function is next_state and ERR is already set. */ re_node_set_free (&next_nodes); re_string_skip_bytes (mctx->input, 1); return next_state; } #ifdef RE_ENABLE_I18N static reg_errcode_t transit_state_mb (preg, pstate, mctx) const regex_t *preg; re_dfastate_t *pstate; re_match_context_t *mctx; { reg_errcode_t err; re_dfa_t *dfa = (re_dfa_t *) preg->buffer; int i; for (i = 0; i < pstate->nodes.nelem; ++i) { re_node_set dest_nodes, *new_nodes; int cur_node_idx = pstate->nodes.elems[i]; int naccepted = 0, dest_idx; unsigned int context; re_dfastate_t *dest_state; if (dfa->nodes[cur_node_idx].type == OP_CONTEXT_NODE) { context = re_string_context_at (mctx->input, re_string_cur_idx (mctx->input), mctx->eflags, preg->newline_anchor); if (NOT_SATISFY_NEXT_CONSTRAINT (dfa->nodes[cur_node_idx].constraint, context)) continue; cur_node_idx = dfa->nodes[cur_node_idx].opr.ctx_info->entity; } /* How many bytes the node can accepts? */ if (ACCEPT_MB_NODE (dfa->nodes[cur_node_idx].type)) naccepted = check_node_accept_bytes (preg, cur_node_idx, mctx->input, re_string_cur_idx (mctx->input)); if (naccepted == 0) continue; /* The node can accepts `naccepted' bytes. */ dest_idx = re_string_cur_idx (mctx->input) + naccepted; mctx->max_mb_elem_len = ((mctx->max_mb_elem_len < naccepted) ? naccepted : mctx->max_mb_elem_len); err = clean_state_log_if_need (mctx, dest_idx); if (BE (err != REG_NOERROR, 0)) return err; #ifdef DEBUG assert (dfa->nexts[cur_node_idx] != -1); #endif /* `cur_node_idx' may point the entity of the OP_CONTEXT_NODE, then we use pstate->nodes.elems[i] instead. */ new_nodes = dfa->eclosures + dfa->nexts[pstate->nodes.elems[i]]; dest_state = mctx->state_log[dest_idx]; if (dest_state == NULL) dest_nodes = *new_nodes; else { err = re_node_set_init_union (&dest_nodes, dest_state->entrance_nodes, new_nodes); if (BE (err != REG_NOERROR, 0)) return err; } context = re_string_context_at (mctx->input, dest_idx - 1, mctx->eflags, preg->newline_anchor); mctx->state_log[dest_idx] = re_acquire_state_context (&err, dfa, &dest_nodes, context); if (BE (mctx->state_log[dest_idx] == NULL && err != REG_NOERROR, 0)) return err; if (dest_state != NULL) re_node_set_free (&dest_nodes); } return REG_NOERROR; } #endif /* RE_ENABLE_I18N */ static reg_errcode_t transit_state_bkref (preg, pstate, mctx) const regex_t *preg; re_dfastate_t *pstate; re_match_context_t *mctx; { reg_errcode_t err; re_dfastate_t **work_state_log; work_state_log = re_malloc (re_dfastate_t *, re_string_cur_idx (mctx->input) + 1); if (BE (work_state_log == NULL, 0)) return REG_ESPACE; err = transit_state_bkref_loop (preg, &pstate->nodes, work_state_log, mctx); re_free (work_state_log); return err; } /* Caller must allocate `work_state_log'. */ static reg_errcode_t transit_state_bkref_loop (preg, nodes, work_state_log, mctx) const regex_t *preg; re_node_set *nodes; re_dfastate_t **work_state_log; re_match_context_t *mctx; { reg_errcode_t err; re_dfa_t *dfa = (re_dfa_t *) preg->buffer; int i; regmatch_t *cur_regs = re_malloc (regmatch_t, preg->re_nsub + 1); int cur_str_idx = re_string_cur_idx (mctx->input); if (BE (cur_regs == NULL, 0)) return REG_ESPACE; for (i = 0; i < nodes->nelem; ++i) { int dest_str_idx, subexp_idx, prev_nelem, bkc_idx; int node_idx = nodes->elems[i]; unsigned int context; re_token_t *node = dfa->nodes + node_idx; re_node_set *new_dest_nodes; re_sift_context_t sctx; /* Check whether `node' is a backreference or not. */ if (node->type == OP_BACK_REF) subexp_idx = node->opr.idx; else if (node->type == OP_CONTEXT_NODE && dfa->nodes[node->opr.ctx_info->entity].type == OP_BACK_REF) { context = re_string_context_at (mctx->input, cur_str_idx, mctx->eflags, preg->newline_anchor); if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) continue; subexp_idx = dfa->nodes[node->opr.ctx_info->entity].opr.idx; } else continue; /* `node' is a backreference. Check the substring which the substring matched. */ sift_ctx_init (&sctx, work_state_log, NULL, node_idx, cur_str_idx, subexp_idx); sctx.cur_bkref = node_idx; match_ctx_clear_flag (mctx); err = sift_states_backward (preg, mctx, &sctx); if (BE (err != REG_NOERROR, 0)) return err; /* And add the epsilon closures (which is `new_dest_nodes') of the backreference to appropriate state_log. */ #ifdef DEBUG assert (dfa->nexts[node_idx] != -1); #endif for (bkc_idx = 0; bkc_idx < mctx->nbkref_ents; ++bkc_idx) { int subexp_len; re_dfastate_t *dest_state; struct re_backref_cache_entry *bkref_ent; bkref_ent = mctx->bkref_ents + bkc_idx; if (bkref_ent->node != node_idx || bkref_ent->str_idx != cur_str_idx) continue; subexp_len = bkref_ent->subexp_to - bkref_ent->subexp_from; new_dest_nodes = ((node->type == OP_CONTEXT_NODE && subexp_len == 0) ? dfa->nodes[node_idx].opr.ctx_info->bkref_eclosure : dfa->eclosures + dfa->nexts[node_idx]); dest_str_idx = (cur_str_idx + bkref_ent->subexp_to - bkref_ent->subexp_from); context = (IS_WORD_CHAR (re_string_byte_at (mctx->input, dest_str_idx - 1)) ? CONTEXT_WORD : 0); dest_state = mctx->state_log[dest_str_idx]; prev_nelem = ((mctx->state_log[cur_str_idx] == NULL) ? 0 : mctx->state_log[cur_str_idx]->nodes.nelem); /* Add `new_dest_node' to state_log. */ if (dest_state == NULL) { mctx->state_log[dest_str_idx] = re_acquire_state_context (&err, dfa, new_dest_nodes, context); if (BE (mctx->state_log[dest_str_idx] == NULL && err != REG_NOERROR, 0)) return err; } else { re_node_set dest_nodes; err = re_node_set_init_union (&dest_nodes, dest_state->entrance_nodes, new_dest_nodes); if (BE (err != REG_NOERROR, 0)) return err; mctx->state_log[dest_str_idx] = re_acquire_state_context (&err, dfa, &dest_nodes, context); if (BE (mctx->state_log[dest_str_idx] == NULL && err != REG_NOERROR, 0)) return err; re_node_set_free (&dest_nodes); } /* We need to check recursively if the backreference can epsilon transit. */ if (subexp_len == 0 && mctx->state_log[cur_str_idx]->nodes.nelem > prev_nelem) { err = transit_state_bkref_loop (preg, new_dest_nodes, work_state_log, mctx); if (BE (err != REG_NOERROR, 0)) return err; } } } re_free (cur_regs); return REG_NOERROR; } /* Build transition table for the state. Return the new table if succeeded, otherwise return NULL. */ static re_dfastate_t ** build_trtable (preg, state, fl_search) const regex_t *preg; const re_dfastate_t *state; int fl_search; { reg_errcode_t err; re_dfa_t *dfa = (re_dfa_t *) preg->buffer; int i, j, k, ch; int ndests; /* Number of the destination states from `state'. */ re_dfastate_t **trtable, **dest_states, **dest_states_word, **dest_states_nl; re_node_set follows, *dests_node; bitset *dests_ch; bitset acceptable; /* We build DFA states which corresponds to the destination nodes from `state'. `dests_node[i]' represents the nodes which i-th destination state contains, and `dests_ch[i]' represents the characters which i-th destination state accepts. */ dests_node = re_malloc (re_node_set, SBC_MAX); dests_ch = re_malloc (bitset, SBC_MAX); /* Initialize transiton table. */ trtable = (re_dfastate_t **) calloc (sizeof (re_dfastate_t *), SBC_MAX); if (BE (dests_node == NULL || dests_ch == NULL || trtable == NULL, 0)) return NULL; /* At first, group all nodes belonging to `state' into several destinations. */ ndests = group_nodes_into_DFAstates (preg, state, dests_node, dests_ch); if (BE (ndests <= 0, 0)) { re_free (dests_node); re_free (dests_ch); /* Return NULL in case of an error, trtable otherwise. */ return (ndests < 0) ? NULL : trtable; } dest_states = re_malloc (re_dfastate_t *, ndests); dest_states_word = re_malloc (re_dfastate_t *, ndests); dest_states_nl = re_malloc (re_dfastate_t *, ndests); bitset_empty (acceptable); err = re_node_set_alloc (&follows, ndests + 1); if (BE (dest_states == NULL || dest_states_word == NULL || dest_states_nl == NULL || err != REG_NOERROR, 0)) return NULL; /* Then build the states for all destinations. */ for (i = 0; i < ndests; ++i) { int next_node; re_node_set_empty (&follows); /* Merge the follows of this destination states. */ for (j = 0; j < dests_node[i].nelem; ++j) { next_node = dfa->nexts[dests_node[i].elems[j]]; if (next_node != -1) { err = re_node_set_merge (&follows, dfa->eclosures + next_node); if (BE (err != REG_NOERROR, 0)) return NULL; } } /* If search flag is set, merge the initial state. */ if (fl_search) { #ifdef RE_ENABLE_I18N int not_initial = 0; for (j = 0; j < follows.nelem; ++j) if (dfa->nodes[follows.elems[j]].type == CHARACTER) { not_initial = dfa->nodes[follows.elems[j]].mb_partial; break; } if (!not_initial) #endif { err = re_node_set_merge (&follows, dfa->init_state->entrance_nodes); if (BE (err != REG_NOERROR, 0)) return NULL; } } dest_states[i] = re_acquire_state_context (&err, dfa, &follows, 0); if (BE (dest_states[i] == NULL && err != REG_NOERROR, 0)) return NULL; /* If the new state has context constraint, build appropriate states for these contexts. */ if (dest_states[i]->has_constraint) { dest_states_word[i] = re_acquire_state_context (&err, dfa, &follows, CONTEXT_WORD); if (BE (dest_states_word[i] == NULL && err != REG_NOERROR, 0)) return NULL; dest_states_nl[i] = re_acquire_state_context (&err, dfa, &follows, CONTEXT_NEWLINE); if (BE (dest_states_nl[i] == NULL && err != REG_NOERROR, 0)) return NULL; } else { dest_states_word[i] = dest_states[i]; dest_states_nl[i] = dest_states[i]; } bitset_merge (acceptable, dests_ch[i]); } /* Update the transition table. */ /* For all characters ch...: */ for (i = 0, ch = 0; i < BITSET_UINTS; ++i) for (j = 0; j < UINT_BITS; ++j, ++ch) if ((acceptable[i] >> j) & 1) { /* The current state accepts the character ch. */ if (IS_WORD_CHAR (ch)) { for (k = 0; k < ndests; ++k) if ((dests_ch[k][i] >> j) & 1) { /* k-th destination accepts the word character ch. */ trtable[ch] = dest_states_word[k]; /* There must be only one destination which accepts character ch. See group_nodes_into_DFAstates. */ break; } } else /* not WORD_CHAR */ { for (k = 0; k < ndests; ++k) if ((dests_ch[k][i] >> j) & 1) { /* k-th destination accepts the non-word character ch. */ trtable[ch] = dest_states[k]; /* There must be only one destination which accepts character ch. See group_nodes_into_DFAstates. */ break; } } } /* new line */ if (bitset_contain (acceptable, NEWLINE_CHAR)) { /* The current state accepts newline character. */ for (k = 0; k < ndests; ++k) if (bitset_contain (dests_ch[k], NEWLINE_CHAR)) { /* k-th destination accepts newline character. */ trtable[NEWLINE_CHAR] = dest_states_nl[k]; /* There must be only one destination which accepts newline. See group_nodes_into_DFAstates. */ break; } } re_free (dest_states_nl); re_free (dest_states_word); re_free (dest_states); re_node_set_free (&follows); for (i = 0; i < ndests; ++i) re_node_set_free (dests_node + i); re_free (dests_ch); re_free (dests_node); return trtable; } /* Group all nodes belonging to STATE into several destinations. Then for all destinations, set the nodes belonging to the destination to DESTS_NODE[i] and set the characters accepted by the destination to DEST_CH[i]. This function return the number of destinations. */ static int group_nodes_into_DFAstates (preg, state, dests_node, dests_ch) const regex_t *preg; const re_dfastate_t *state; re_node_set *dests_node; bitset *dests_ch; { reg_errcode_t err; const re_dfa_t *dfa = (re_dfa_t *) preg->buffer; int i, j, k; int ndests; /* Number of the destinations from `state'. */ bitset accepts; /* Characters a node can accept. */ const re_node_set *cur_nodes = &state->nodes; bitset_empty (accepts); ndests = 0; /* For all the nodes belonging to `state', */ for (i = 0; i < cur_nodes->nelem; ++i) { unsigned int constraint = 0; re_token_t *node = &dfa->nodes[cur_nodes->elems[i]]; re_token_type_t type = node->type; if (type == OP_CONTEXT_NODE) { constraint = node->constraint; node = dfa->nodes + node->opr.ctx_info->entity; type = node->type; } /* Enumerate all single byte character this node can accept. */ if (type == CHARACTER) bitset_set (accepts, node->opr.c); else if (type == SIMPLE_BRACKET) { bitset_merge (accepts, node->opr.sbcset); } else if (type == OP_PERIOD) { bitset_set_all (accepts); if (!(preg->syntax & RE_DOT_NEWLINE)) bitset_clear (accepts, '\n'); if (preg->syntax & RE_DOT_NOT_NULL) bitset_clear (accepts, '\0'); } else continue; /* Check the `accepts' and sift the characters which are not match it the context. */ if (constraint) { if (constraint & NEXT_WORD_CONSTRAINT) for (j = 0; j < BITSET_UINTS; ++j) accepts[j] &= dfa->word_char[j]; else if (constraint & NEXT_NOTWORD_CONSTRAINT) for (j = 0; j < BITSET_UINTS; ++j) accepts[j] &= ~dfa->word_char[j]; else if (constraint & NEXT_NEWLINE_CONSTRAINT) { int accepts_newline = bitset_contain (accepts, NEWLINE_CHAR); bitset_empty (accepts); if (accepts_newline) bitset_set (accepts, NEWLINE_CHAR); else continue; } } /* Then divide `accepts' into DFA states, or create a new state. */ for (j = 0; j < ndests; ++j) { bitset intersec; /* Intersection sets, see below. */ bitset remains; /* Flags, see below. */ int has_intersec, not_subset, not_consumed; /* Optimization, skip if this state doesn't accept the character. */ if (type == CHARACTER && !bitset_contain (dests_ch[j], node->opr.c)) continue; /* Enumerate the intersection set of this state and `accepts'. */ has_intersec = 0; for (k = 0; k < BITSET_UINTS; ++k) has_intersec |= intersec[k] = accepts[k] & dests_ch[j][k]; /* And skip if the intersection set is empty. */ if (!has_intersec) continue; /* Then check if this state is a subset of `accepts'. */ not_subset = not_consumed = 0; for (k = 0; k < BITSET_UINTS; ++k) { not_subset |= remains[k] = ~accepts[k] & dests_ch[j][k]; not_consumed |= accepts[k] = accepts[k] & ~dests_ch[j][k]; } /* If this state isn't a subset of `accepts', create a new group state, which has the `remains'. */ if (not_subset) { bitset_copy (dests_ch[ndests], remains); bitset_copy (dests_ch[j], intersec); err = re_node_set_init_copy (dests_node + ndests, &dests_node[j]); if (BE (err != REG_NOERROR, 0)) return -1; ++ndests; } /* Put the position in the current group. */ err = re_node_set_insert (&dests_node[j], cur_nodes->elems[i]); if (BE (err < 0, 0)) return -1; /* If all characters are consumed, go to next node. */ if (!not_consumed) break; } /* Some characters remain, create a new group. */ if (j == ndests) { bitset_copy (dests_ch[ndests], accepts); err = re_node_set_init_1 (dests_node + ndests, cur_nodes->elems[i]); if (BE (err != REG_NOERROR, 0)) return -1; ++ndests; bitset_empty (accepts); } } return ndests; } #ifdef RE_ENABLE_I18N /* Check how many bytes the node `dfa->nodes[node_idx]' accepts. Return the number of the bytes the node accepts. STR_IDX is the current index of the input string. This function handles the nodes which can accept one character, or one collating element like '.', '[a-z]', opposite to the other nodes can only accept one byte. */ static int check_node_accept_bytes (preg, node_idx, input, str_idx) const regex_t *preg; int node_idx, str_idx; const re_string_t *input; { const re_dfa_t *dfa = (re_dfa_t *) preg->buffer; const re_token_t *node = dfa->nodes + node_idx; int elem_len = re_string_elem_size_at (input, str_idx); int char_len = re_string_char_size_at (input, str_idx); int i; # ifdef _LIBC int j; uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); # endif /* _LIBC */ if (elem_len <= 1 && char_len <= 1) return 0; if (node->type == OP_PERIOD) { /* '.' accepts any one character except the following two cases. */ if ((!(preg->syntax & RE_DOT_NEWLINE) && re_string_byte_at (input, str_idx) == '\n') || ((preg->syntax & RE_DOT_NOT_NULL) && re_string_byte_at (input, str_idx) == '\0')) return 0; return char_len; } else if (node->type == COMPLEX_BRACKET) { const re_charset_t *cset = node->opr.mbcset; # ifdef _LIBC const unsigned char *pin = re_string_get_buffer (input) + str_idx; # endif /* _LIBC */ int match_len = 0; wchar_t wc = ((cset->nranges || cset->nchar_classes || cset->nmbchars) ? re_string_wchar_at (input, str_idx) : 0); /* match with multibyte character? */ for (i = 0; i < cset->nmbchars; ++i) if (wc == cset->mbchars[i]) { match_len = char_len; goto check_node_accept_bytes_match; } /* match with character_class? */ for (i = 0; i < cset->nchar_classes; ++i) { wctype_t wt = cset->char_classes[i]; if (__iswctype (wc, wt)) { match_len = char_len; goto check_node_accept_bytes_match; } } # ifdef _LIBC if (nrules != 0) { unsigned int in_collseq = 0; const int32_t *table, *indirect; const unsigned char *weights, *extra; const char *collseqwc; int32_t idx; /* This #include defines a local function! */ # include <locale/weight.h> /* match with collating_symbol? */ if (cset->ncoll_syms) extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); for (i = 0; i < cset->ncoll_syms; ++i) { const unsigned char *coll_sym = extra + cset->coll_syms[i]; /* Compare the length of input collating element and the length of current collating element. */ if (*coll_sym != elem_len) continue; /* Compare each bytes. */ for (j = 0; j < *coll_sym; j++) if (pin[j] != coll_sym[1 + j]) break; if (j == *coll_sym) { /* Match if every bytes is equal. */ match_len = j; goto check_node_accept_bytes_match; } } if (cset->nranges) { if (elem_len <= char_len) { collseqwc = _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQWC); in_collseq = collseq_table_lookup (collseqwc, wc); } else in_collseq = find_collation_sequence_value (pin, elem_len); } /* match with range expression? */ for (i = 0; i < cset->nranges; ++i) if (cset->range_starts[i] <= in_collseq && in_collseq <= cset->range_ends[i]) { match_len = elem_len; goto check_node_accept_bytes_match; } /* match with equivalence_class? */ if (cset->nequiv_classes) { const unsigned char *cp = pin; table = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); weights = (const unsigned char *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB); extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB); indirect = (const int32_t *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB); idx = findidx (&cp); if (idx > 0) for (i = 0; i < cset->nequiv_classes; ++i) { int32_t equiv_class_idx = cset->equiv_classes[i]; size_t weight_len = weights[idx]; if (weight_len == weights[equiv_class_idx]) { int cnt = 0; while (cnt <= weight_len && (weights[equiv_class_idx + 1 + cnt] == weights[idx + 1 + cnt])) ++cnt; if (cnt > weight_len) { match_len = elem_len; goto check_node_accept_bytes_match; } } } } } else # endif /* _LIBC */ { /* match with range expression? */ #if __GNUC__ >= 2 wchar_t cmp_buf[] = {L'\0', L'\0', wc, L'\0', L'\0', L'\0'}; #else wchar_t cmp_buf[] = {L'\0', L'\0', L'\0', L'\0', L'\0', L'\0'}; cmp_buf[2] = wc; #endif for (i = 0; i < cset->nranges; ++i) { cmp_buf[0] = cset->range_starts[i]; cmp_buf[4] = cset->range_ends[i]; if (wcscoll (cmp_buf, cmp_buf + 2) <= 0 && wcscoll (cmp_buf + 2, cmp_buf + 4) <= 0) { match_len = char_len; goto check_node_accept_bytes_match; } } } check_node_accept_bytes_match: if (!cset->non_match) return match_len; else { if (match_len > 0) return 0; else return (elem_len > char_len) ? elem_len : char_len; } } return 0; } # ifdef _LIBC static unsigned int find_collation_sequence_value (mbs, mbs_len) const unsigned char *mbs; size_t mbs_len; { uint32_t nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); if (nrules == 0) { if (mbs_len == 1) { /* No valid character. Match it as a single byte character. */ const unsigned char *collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_COLLSEQMB); return collseq[mbs[0]]; } return UINT_MAX; } else { int32_t idx; const unsigned char *extra = (const unsigned char *) _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); for (idx = 0; ;) { int mbs_cnt, found = 0; int32_t elem_mbs_len; /* Skip the name of collating element name. */ idx = idx + extra[idx] + 1; elem_mbs_len = extra[idx++]; if (mbs_len == elem_mbs_len) { for (mbs_cnt = 0; mbs_cnt < elem_mbs_len; ++mbs_cnt) if (extra[idx + mbs_cnt] != mbs[mbs_cnt]) break; if (mbs_cnt == elem_mbs_len) /* Found the entry. */ found = 1; } /* Skip the byte sequence of the collating element. */ idx += elem_mbs_len; /* Adjust for the alignment. */ idx = (idx + 3) & ~3; /* Skip the collation sequence value. */ idx += sizeof (uint32_t); /* Skip the wide char sequence of the collating element. */ idx = idx + sizeof (uint32_t) * (extra[idx] + 1); /* If we found the entry, return the sequence value. */ if (found) return *(uint32_t *) (extra + idx); /* Skip the collation sequence value. */ idx += sizeof (uint32_t); } } } # endif /* _LIBC */ #endif /* RE_ENABLE_I18N */ /* Check whether the node accepts the byte which is IDX-th byte of the INPUT. */ static int check_node_accept (preg, node, mctx, idx) const regex_t *preg; const re_token_t *node; const re_match_context_t *mctx; int idx; { const re_dfa_t *dfa = (re_dfa_t *) preg->buffer; const re_token_t *cur_node; unsigned char ch; if (node->type == OP_CONTEXT_NODE) { /* The node has constraints. Check whether the current context satisfies the constraints. */ unsigned int context = re_string_context_at (mctx->input, idx, mctx->eflags, preg->newline_anchor); if (NOT_SATISFY_NEXT_CONSTRAINT (node->constraint, context)) return 0; cur_node = dfa->nodes + node->opr.ctx_info->entity; } else cur_node = node; ch = re_string_byte_at (mctx->input, idx); if (cur_node->type == CHARACTER) return cur_node->opr.c == ch; else if (cur_node->type == SIMPLE_BRACKET) return bitset_contain (cur_node->opr.sbcset, ch); else if (cur_node->type == OP_PERIOD) return !((ch == '\n' && !(preg->syntax & RE_DOT_NEWLINE)) || (ch == '\0' && (preg->syntax & RE_DOT_NOT_NULL))); else return 0; } /* Extend the buffers, if the buffers have run out. */ static reg_errcode_t extend_buffers (mctx) re_match_context_t *mctx; { reg_errcode_t ret; re_string_t *pstr = mctx->input; /* Double the lengthes of the buffers. */ ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2); if (BE (ret != REG_NOERROR, 0)) return ret; if (mctx->state_log != NULL) { /* And double the length of state_log. */ mctx->state_log = re_realloc (mctx->state_log, re_dfastate_t *, pstr->bufs_len * 2); if (BE (mctx->state_log == NULL, 0)) return REG_ESPACE; } /* Then reconstruct the buffers. */ if (pstr->icase) { #ifdef RE_ENABLE_I18N if (MB_CUR_MAX > 1) build_wcs_upper_buffer (pstr); else #endif /* RE_ENABLE_I18N */ build_upper_buffer (pstr); } else { #ifdef RE_ENABLE_I18N if (MB_CUR_MAX > 1) build_wcs_buffer (pstr); else #endif /* RE_ENABLE_I18N */ { if (pstr->trans != NULL) re_string_translate_buffer (pstr); else pstr->valid_len = pstr->bufs_len; } } return REG_NOERROR; } /* Functions for matching context. */ static reg_errcode_t match_ctx_init (mctx, eflags, input, n) re_match_context_t *mctx; int eflags, n; re_string_t *input; { mctx->eflags = eflags; mctx->input = input; mctx->match_last = -1; if (n > 0) { mctx->bkref_ents = re_malloc (struct re_backref_cache_entry, n); if (BE (mctx->bkref_ents == NULL, 0)) return REG_ESPACE; } else mctx->bkref_ents = NULL; mctx->nbkref_ents = 0; mctx->abkref_ents = n; mctx->max_mb_elem_len = 0; return REG_NOERROR; } static void match_ctx_free (mctx) re_match_context_t *mctx; { re_free (mctx->bkref_ents); } /* Add a new backreference entry to the cache. */ static reg_errcode_t match_ctx_add_entry (mctx, node, str_idx, from, to) re_match_context_t *mctx; int node, str_idx, from, to; { if (mctx->nbkref_ents >= mctx->abkref_ents) { mctx->bkref_ents = re_realloc (mctx->bkref_ents, struct re_backref_cache_entry, mctx->abkref_ents * 2); if (BE (mctx->bkref_ents == NULL, 0)) return REG_ESPACE; memset (mctx->bkref_ents + mctx->nbkref_ents, '\0', sizeof (struct re_backref_cache_entry) * mctx->abkref_ents); mctx->abkref_ents *= 2; } mctx->bkref_ents[mctx->nbkref_ents].node = node; mctx->bkref_ents[mctx->nbkref_ents].str_idx = str_idx; mctx->bkref_ents[mctx->nbkref_ents].subexp_from = from; mctx->bkref_ents[mctx->nbkref_ents].subexp_to = to; mctx->bkref_ents[mctx->nbkref_ents++].flag = 0; if (mctx->max_mb_elem_len < to - from) mctx->max_mb_elem_len = to - from; return REG_NOERROR; } static void match_ctx_clear_flag (mctx) re_match_context_t *mctx; { int i; for (i = 0; i < mctx->nbkref_ents; ++i) { mctx->bkref_ents[i].flag = 0; } } static void sift_ctx_init (sctx, sifted_sts, limited_sts, last_node, last_str_idx, check_subexp) re_sift_context_t *sctx; re_dfastate_t **sifted_sts, **limited_sts; int last_node, last_str_idx, check_subexp; { sctx->sifted_states = sifted_sts; sctx->limited_states = limited_sts; sctx->last_node = last_node; sctx->last_str_idx = last_str_idx; sctx->check_subexp = check_subexp; re_node_set_init_empty (&sctx->limits); }