/* primegen.c - prime number generator * Copyright (c) 1997 by Werner Koch (dd9jn) * * This file is part of G10. * * G10 is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * G10 is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #include #include #include #include #include #include "util.h" #include "mpi.h" #include "cipher.h" static int no_of_small_prime_numbers; static int rabin_miller( MPI n ); /**************** * Generate a prime number (stored in secure memory) */ MPI generate_random_prime( unsigned nbits ) { unsigned nlimbs; MPI prime, val_2, val_3, result; int i; unsigned x, step; unsigned count1, count2; int *mods; if( DBG_CIPHER ) log_debug("generate a prime of %u bits ", nbits ); if( !no_of_small_prime_numbers ) { for(i=0; small_prime_numbers[i]; i++ ) no_of_small_prime_numbers++; } mods = m_alloc( no_of_small_prime_numbers * sizeof *mods ); /* make nbits fit into MPI implementation */ nlimbs = (nbits + BITS_PER_MPI_LIMB - 1) / BITS_PER_MPI_LIMB; assert( nlimbs ); val_2 = mpi_alloc( nlimbs ); mpi_set_ui(val_2, 2); val_3 = mpi_alloc( nlimbs ); mpi_set_ui(val_3, 3); result = mpi_alloc( nlimbs ); prime = mpi_alloc_secure( nlimbs ); count1 = count2 = 0; /* enter (endless) loop */ for(;;) { /* generate a random number */ mpi_set_bytes( prime, nbits, get_random_byte, 2 ); /* set high order bit to 1, set low order bit to 1 */ mpi_set_bit( prime, nbits-1 ); mpi_set_bit( prime, 0 ); /* calculate all remainders */ for(i=0; (x = small_prime_numbers[i]); i++ ) mods[i] = mpi_fdiv_r_ui(NULL, prime, x); for(step=0; step < 20000; step += 2 ) { /* check against all the small primes we have in mods */ count1++; for(i=0; (x = small_prime_numbers[i]); i++ ) { while( mods[i] + step >= x ) mods[i] -= x; if( !(mods[i] + step) ) break; } if( x ) continue; /* found a multiple of a already known prime */ if( DBG_CIPHER ) fputc('.', stderr); mpi_add_ui( prime, prime, step ); /* do a Fermat test */ count2++; mpi_powm( result, val_2, prime, prime ); if( mpi_cmp_ui(result, 2) ) continue; /* stepping (fermat test failed) */ if( DBG_CIPHER ) fputc('+', stderr); /* and a second one */ count2++; mpi_powm( result, val_3, prime, prime ); if( mpi_cmp_ui(result, 3) ) continue; /* stepping (fermat test failed) */ if( DBG_CIPHER ) fputc('+', stderr); /* perform Rabin-Miller tests */ for(i=5; i > 0; i-- ) { if( DBG_CIPHER ) fputc('+', stderr); if( rabin_miller(prime) ) break; } if( !i ) { if( !mpi_test_bit( prime, nbits-1 ) ) { if( DBG_CIPHER ) { fputc('\n', stderr); log_debug("overflow in prime generation\n"); break; /* step loop, cont with a new prime */ } } if( DBG_CIPHER ) { fputc('\n', stderr); log_debug("performed %u simple and %u Fermat/Rabin-Miller tests\n", count1, count2 ); log_mpidump("found prime: ", prime ); } mpi_free(val_2); mpi_free(val_3); mpi_free(result); m_free(mods); return prime; } } if( DBG_CIPHER ) fputc(':', stderr); /* restart with a new random value */ } } /**************** * Return 1 if n is not a prime */ static int rabin_miller( MPI n ) { return 0; }