/* getkey.c - Get a key from the database * Copyright (C) 1998 Free Software Foundation, Inc. * * This file is part of GNUPG. * * GNUPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * GNUPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #define DEFINES_GETKEY_CTX 1 #include #include #include #include #include #include #include "util.h" #include "packet.h" #include "memory.h" #include "iobuf.h" #include "keydb.h" #include "options.h" #include "main.h" #include "i18n.h" #define MAX_UNK_CACHE_ENTRIES 1000 /* we use a linked list - so I guess * this is a reasonable limit */ #define MAX_PK_CACHE_ENTRIES 50 #define MAX_UID_CACHE_ENTRIES 50 struct getkey_ctx_s { int mode; int internal; u32 keyid[2]; char *namebuf; const char *name; int primary; KBNODE keyblock; KBPOS kbpos; int last_rc; ulong count; }; static struct { int any; int okay_count; int nokey_count; int error_count; } lkup_stats[21]; #if MAX_UNK_CACHE_ENTRIES typedef struct keyid_list { struct keyid_list *next; u32 keyid[2]; } *keyid_list_t; static keyid_list_t unknown_keyids; static int unk_cache_entries; /* number of entries in unknown keys cache */ static int unk_cache_disabled; #endif #if MAX_PK_CACHE_ENTRIES typedef struct pk_cache_entry { struct pk_cache_entry *next; u32 keyid[2]; PKT_public_key *pk; } *pk_cache_entry_t; static pk_cache_entry_t pk_cache; static int pk_cache_entries; /* number of entries in pk cache */ static int pk_cache_disabled; #endif #if MAX_UID_CACHE_ENTRIES < 5 #error we really need the userid cache #endif typedef struct user_id_db { struct user_id_db *next; u32 keyid[2]; int len; char name[1]; } *user_id_db_t; static user_id_db_t user_id_db; static int uid_cache_entries; /* number of entries in uid cache */ static int lookup( GETKEY_CTX *ctx, PKT_public_key *pk, int mode, u32 *keyid, const char *name, KBNODE *ret_keyblock, int primary ); static void lookup_close( GETKEY_CTX ctx ); static int lookup_read( GETKEY_CTX ctx, PKT_public_key *pk, KBNODE *ret_keyblock ); static int lookup_sk( PKT_secret_key *sk, int mode, u32 *keyid, const char *name, int primary ); static void print_stats() { int i; for(i=0; i < DIM(lkup_stats); i++ ) { if( lkup_stats[i].any ) fprintf(stderr, "lookup stats: mode=%-2d ok=%-6d nokey=%-6d err=%-6d\n", i, lkup_stats[i].okay_count, lkup_stats[i].nokey_count, lkup_stats[i].error_count ); } } static void cache_public_key( PKT_public_key *pk ) { #if MAX_PK_CACHE_ENTRIES pk_cache_entry_t ce; u32 keyid[2]; if( pk_cache_disabled ) return; if( is_ELGAMAL(pk->pubkey_algo) || pk->pubkey_algo == PUBKEY_ALGO_DSA || is_RSA(pk->pubkey_algo) ) { keyid_from_pk( pk, keyid ); } else return; /* don't know how to get the keyid */ for( ce = pk_cache; ce; ce = ce->next ) if( ce->keyid[0] == keyid[0] && ce->keyid[1] == keyid[1] ) { if( DBG_CACHE ) log_debug("cache_public_key: already in cache\n"); return; } if( pk_cache_entries >= MAX_PK_CACHE_ENTRIES ) { /* fixme: use another algorithm to free some cache slots */ pk_cache_disabled=1; if( opt.verbose ) log_info(_("too many entries in pk cache - disabled\n")); return; } pk_cache_entries++; ce = m_alloc( sizeof *ce ); ce->next = pk_cache; pk_cache = ce; ce->pk = copy_public_key( NULL, pk ); ce->keyid[0] = keyid[0]; ce->keyid[1] = keyid[1]; #endif } /**************** * Store the association of keyid and userid */ void cache_user_id( PKT_user_id *uid, u32 *keyid ) { user_id_db_t r; for(r=user_id_db; r; r = r->next ) if( r->keyid[0] == keyid[0] && r->keyid[1] == keyid[1] ) { if( DBG_CACHE ) log_debug("cache_user_id: already in cache\n"); return; } if( uid_cache_entries >= MAX_UID_CACHE_ENTRIES ) { /* fixme: use another algorithm to free some cache slots */ r = user_id_db; user_id_db = r->next; m_free(r); uid_cache_entries--; } r = m_alloc( sizeof *r + uid->len-1 ); r->keyid[0] = keyid[0]; r->keyid[1] = keyid[1]; r->len = uid->len; memcpy(r->name, uid->name, r->len); r->next = user_id_db; user_id_db = r; uid_cache_entries++; } /**************** * Get a public key and store it into the allocated pk * can be called with PK set to NULL to just read it into some * internal structures. */ int get_pubkey( PKT_public_key *pk, u32 *keyid ) { int internal = 0; int rc = 0; #if MAX_UNK_CACHE_ENTRIES { /* let's see whether we checked the keyid already */ keyid_list_t kl; for( kl = unknown_keyids; kl; kl = kl->next ) if( kl->keyid[0] == keyid[0] && kl->keyid[1] == keyid[1] ) return G10ERR_NO_PUBKEY; /* already checked and not found */ } #endif #if MAX_PK_CACHE_ENTRIES { /* Try to get it from the cache */ pk_cache_entry_t ce; for( ce = pk_cache; ce; ce = ce->next ) { if( ce->keyid[0] == keyid[0] && ce->keyid[1] == keyid[1] ) { if( pk ) copy_public_key( pk, ce->pk ); return 0; } } } #endif /* more init stuff */ if( !pk ) { pk = m_alloc_clear( sizeof *pk ); internal++; } /* do a lookup */ rc = lookup( NULL, pk, 11, keyid, NULL, NULL, 0 ); if( !rc ) goto leave; #if MAX_UNK_CACHE_ENTRIES /* not found: store it for future reference */ if( unk_cache_disabled ) ; else if( ++unk_cache_entries > MAX_UNK_CACHE_ENTRIES ) { unk_cache_disabled = 1; if( opt.verbose ) log_info(_("too many entries in unk cache - disabled\n")); } else { keyid_list_t kl; kl = m_alloc( sizeof *kl ); kl->keyid[0] = keyid[0]; kl->keyid[1] = keyid[1]; kl->next = unknown_keyids; unknown_keyids = kl; } #endif rc = G10ERR_NO_PUBKEY; leave: if( !rc ) cache_public_key( pk ); if( internal ) free_public_key(pk); return rc; } static int hextobyte( const byte *s ) { int c; if( *s >= '0' && *s <= '9' ) c = 16 * (*s - '0'); else if( *s >= 'A' && *s <= 'F' ) c = 16 * (10 + *s - 'A'); else if( *s >= 'a' && *s <= 'f' ) c = 16 * (10 + *s - 'a'); else return -1; s++; if( *s >= '0' && *s <= '9' ) c += *s - '0'; else if( *s >= 'A' && *s <= 'F' ) c += 10 + *s - 'A'; else if( *s >= 'a' && *s <= 'f' ) c += 10 + *s - 'a'; else return -1; return c; } /**************** * Return the type of the user id: * * 0 = Invalid user ID * 1 = exact match * 2 = match a substring * 3 = match an email address * 4 = match a substring of an email address * 5 = match an email address, but compare from end * 10 = it is a short KEYID (don't care about keyid[0]) * 11 = it is a long KEYID * 16 = it is a 16 byte fingerprint * 20 = it is a 20 byte fingerprint * * if fprint is not NULL, it should be an array of at least 20 bytes. * * Rules used: * - If the username starts with 8,9,16 or 17 hex-digits (the first one * must be in the range 0..9), this is considered a keyid; depending * on the length a short or complete one. * - If the username starts with 32,33,40 or 41 hex-digits (the first one * must be in the range 0..9), this is considered a fingerprint. * - If the username starts with a left angle, we assume it is a complete * email address and look only at this part. * - If the username starts with a '.', we assume it is the ending * part of an email address * - If the username starts with an '@', we assume it is a part of an * email address * - If the userid start with an '=' an exact compare is done. * - If the userid starts with a '*' a case insensitive substring search is * done (This is the default). */ int classify_user_id( const char *name, u32 *keyid, byte *fprint, const char **retstr, size_t *retlen ) { const char *s; int mode = 0; /* check what kind of name it is */ for(s = name; *s && isspace(*s); s++ ) ; if( isdigit( *s ) ) { /* a keyid or a fingerprint */ int i, j; char buf[9]; if( *s == '0' && s[1] == 'x' && isxdigit(s[2]) ) s += 2; /*kludge to allow 0x034343434 */ for(i=0; isxdigit(s[i]); i++ ) ; if( s[i] && !isspace(s[i]) ) /* not terminated by EOS or blank*/ return 0; else if( i == 8 || (i == 9 && *s == '0') ) { /* short keyid */ if( i==9 ) s++; if( keyid ) { keyid[0] = 0; keyid[1] = strtoul( s, NULL, 16 ); } mode = 10; } else if( i == 16 || (i == 17 && *s == '0') ) { /* complete keyid */ if( i==17 ) s++; mem2str(buf, s, 9 ); keyid[0] = strtoul( buf, NULL, 16 ); keyid[1] = strtoul( s+8, NULL, 16 ); mode = 11; } else if( i == 32 || ( i == 33 && *s == '0' ) ) { /* md5 fingerprint */ if( i==33 ) s++; if( fprint ) { memset(fprint+16, 4, 0); for(j=0; j < 16; j++, s+=2 ) { int c = hextobyte( s ); if( c == -1 ) return 0; fprint[j] = c; } } mode = 16; } else if( i == 40 || ( i == 41 && *s == '0' ) ) { /* sha1/rmd160 fprint*/ if( i==33 ) s++; if( fprint ) { for(j=0; j < 20; j++, s+=2 ) { int c = hextobyte( s ); if( c == -1 ) return 0; fprint[j] = c; } } mode = 20; } else return 0; } else if( *s == '=' ) { /* exact search */ mode = 1; s++; } else if( *s == '*' ) { /* substring search */ mode = 2; s++; } else if( *s == '<' ) { /* an email address */ mode = 3; } else if( *s == '@' ) { /* a part of an email address */ mode = 4; s++; } else if( *s == '.' ) { /* an email address, compare from end */ mode = 5; s++; } else if( *s == '#' ) { /* use local id */ return 0; } else if( !*s ) /* empty string */ return 0; else mode = 2; if( retstr ) *retstr = s; if( retlen ) *retlen = strlen(s); return mode; } /**************** * Try to get the pubkey by the userid. This function looks for the * first pubkey certificate which has the given name in a user_id. * if pk has the pubkey algo set, the function will only return * a pubkey with that algo. */ static int key_byname( int secret, GETKEY_CTX *retctx, PKT_public_key *pk, PKT_secret_key *sk, const char *name, KBNODE *ret_kb ) { int internal = 0; int rc = 0; const char *s; u32 keyid[2] = {0}; /* init to avoid compiler warning */ byte fprint[20]; int mode; mode = classify_user_id( name, keyid, fprint, &s, NULL ); if( !mode ) { rc = G10ERR_INV_USER_ID; goto leave; } if( secret ) { if( !sk ) { sk = m_alloc_clear( sizeof *sk ); internal++; } rc = mode < 16? lookup_sk( sk, mode, keyid, s, 1 ) : lookup_sk( sk, mode, keyid, fprint, 1 ); } else { if( !pk ) { pk = m_alloc_clear( sizeof *pk ); internal++; } rc = mode < 16? lookup( retctx, pk, mode, keyid, s, ret_kb, 1 ) : lookup( retctx, pk, mode, keyid, fprint, ret_kb, 1 ); } leave: if( internal && secret ) m_free( sk ); else if( internal ) m_free( pk ); return rc; } int get_pubkey_byname( GETKEY_CTX *retctx, PKT_public_key *pk, const char *name, KBNODE *ret_keyblock ) { int rc; if( !pk ) { /* fixme: key_byname should not need a pk in this case */ pk = m_alloc_clear( sizeof *pk ); rc = key_byname( 0, retctx, pk, NULL, name, ret_keyblock ); free_public_key( pk ); } else rc = key_byname( 0, retctx, pk, NULL, name, ret_keyblock ); return rc; } int get_pubkey_next( GETKEY_CTX ctx, PKT_public_key *pk, KBNODE *ret_keyblock ) { int rc; if( !pk ) { /* fixme: lookup_read should not need a pk in this case */ pk = m_alloc_clear( sizeof *pk ); rc = lookup_read( ctx, pk, ret_keyblock ); free_public_key( pk ); } else rc = lookup_read( ctx, pk, ret_keyblock ); return rc; } void get_pubkey_end( GETKEY_CTX ctx ) { if( ctx ) { lookup_close( ctx ); m_free( ctx ); } } /**************** * Search for a key with the given fingerprint. */ int get_pubkey_byfprint( PKT_public_key *pk, const byte *fprint, size_t fprint_len) { int rc; if( fprint_len == 20 || fprint_len == 16 ) rc = lookup( NULL, pk, fprint_len, NULL, fprint, NULL, 0 ); else rc = G10ERR_GENERAL; /* Oops */ return rc; } /**************** * Search for a key with the given fingerprint and return the * complete keyblock which may have more than only this key. */ int get_keyblock_byfprint( KBNODE *ret_keyblock, const byte *fprint, size_t fprint_len ) { int rc; PKT_public_key *pk = m_alloc_clear( sizeof *pk ); if( fprint_len == 20 || fprint_len == 16 ) rc = lookup( NULL, pk, fprint_len, NULL, fprint, ret_keyblock, 0 ); else rc = G10ERR_GENERAL; /* Oops */ free_public_key( pk ); return rc; } /**************** * Get a secret key and store it into sk */ int get_seckey( PKT_secret_key *sk, u32 *keyid ) { int rc; rc = lookup_sk( sk, 11, keyid, NULL, 0 ); if( !rc ) { /* check the secret key (this may prompt for a passprase to * unlock the secret key */ rc = check_secret_key( sk, 0 ); } return rc; } /**************** * Check whether the secret key is available * Returns: 0 := key is available * G10ERR_NO_SECKEY := not availabe */ int seckey_available( u32 *keyid ) { PKT_secret_key *sk; int rc; sk = m_alloc_clear( sizeof *sk ); rc = lookup_sk( sk, 11, keyid, NULL, 0 ); free_secret_key( sk ); return rc; } /**************** * Get a secret key by name and store it into sk * If NAME is NULL use the default key */ int get_seckey_byname( PKT_secret_key *sk, const char *name, int unprotect ) { int rc; if( !name && opt.def_secret_key && *opt.def_secret_key ) rc = key_byname( 1, NULL, NULL, sk, opt.def_secret_key, NULL ); else if( !name ) /* use the first one as default key */ rc = lookup_sk( sk, 15, NULL, NULL, 1 ); else rc = key_byname( 1, NULL, NULL, sk, name, NULL ); if( !rc && unprotect ) rc = check_secret_key( sk, 0 ); return rc; } static int compare_name( const char *uid, size_t uidlen, const char *name, int mode ) { int i; const char *s, *se; if( mode == 1 ) { /* exact match */ for(i=0; name[i] && uidlen; i++, uidlen-- ) if( uid[i] != name[i] ) break; if( !uidlen && !name[i] ) return 0; /* found */ } else if( mode == 2 ) { /* case insensitive substring */ if( memistr( uid, uidlen, name ) ) return 0; } else if( mode >= 3 && mode <= 5 ) { /* look at the email address */ for( i=0, s= uid; i < uidlen && *s != '<'; s++, i++ ) ; if( i < uidlen ) { /* skip opening delim and one char and look for the closing one*/ s++; i++; for( se=s+1, i++; i < uidlen && *se != '>'; se++, i++ ) ; if( i < uidlen ) { i = se - s; if( mode == 3 ) { /* exact email address */ if( strlen(name)-2 == i && !memicmp( s, name+1, i) ) return 0; } else if( mode == 4 ) { /* email substring */ if( memistr( s, i, name ) ) return 0; } else { /* email from end */ /* nyi */ } } } } else BUG(); return -1; /* not found */ } /**************** * Assume that knode points to a public key packet and keyblock is * the entire keyblock. This function adds all relevant information from * a selfsignature to the public key. */ static void merge_one_pk_and_selfsig( KBNODE keyblock, KBNODE knode ) { PKT_public_key *pk = knode->pkt->pkt.public_key; PKT_signature *sig; KBNODE k; u32 kid[2]; u32 sigdate = 0; assert( knode->pkt->pkttype == PKT_PUBLIC_KEY || knode->pkt->pkttype == PKT_PUBLIC_SUBKEY ); if( pk->version < 4 ) return; /* this is only needed for version >=4 packets */ /* find the selfsignature */ if( knode->pkt->pkttype == PKT_PUBLIC_SUBKEY ) { k = find_kbnode( keyblock, PKT_PUBLIC_KEY ); if( !k ) BUG(); /* keyblock without primary key!!! */ keyid_from_pk( knode->pkt->pkt.public_key, kid ); } else keyid_from_pk( pk, kid ); for(k=keyblock; k; k = k->next ) { if( k->pkt->pkttype == PKT_SIGNATURE && (sig=k->pkt->pkt.signature)->sig_class >= 0x10 && sig->sig_class <= 0x30 && sig->keyid[0] == kid[0] && sig->keyid[1] == kid[1] && sig->version > 3 ) { /* okay this is a self-signature which can be used. * We use the latest self-signature. * FIXME: We should only use this if the signature is valid * but this is time consuming - we must provide another * way to handle this */ const byte *p; u32 ed; p = parse_sig_subpkt( sig->hashed_data, SIGSUBPKT_KEY_EXPIRE, NULL ); ed = p? pk->timestamp + buffer_to_u32(p):0; if( sig->timestamp > sigdate ) { pk->expiredate = ed; sigdate = sig->timestamp; } /* fixme: add usage etc. to pk */ } } } /**************** * merge all selfsignatures with the keys. */ void merge_keys_and_selfsig( KBNODE keyblock ) { PKT_public_key *pk = NULL; PKT_secret_key *sk = NULL; PKT_signature *sig; KBNODE k; u32 kid[2] = { 0, 0 }; u32 sigdate = 0; for(k=keyblock; k; k = k->next ) { if( k->pkt->pkttype == PKT_PUBLIC_KEY || k->pkt->pkttype == PKT_PUBLIC_SUBKEY ) { pk = k->pkt->pkt.public_key; sk = NULL; if( pk->version < 4 ) pk = NULL; /* not needed for old keys */ else if( k->pkt->pkttype == PKT_PUBLIC_KEY ) keyid_from_pk( pk, kid ); } else if( k->pkt->pkttype == PKT_SECRET_KEY || k->pkt->pkttype == PKT_SECRET_SUBKEY ) { pk = NULL; sk = k->pkt->pkt.secret_key; if( sk->version < 4 ) sk = NULL; else if( k->pkt->pkttype == PKT_SECRET_KEY ) keyid_from_sk( sk, kid ); } else if( (pk || sk ) && k->pkt->pkttype == PKT_SIGNATURE && (sig=k->pkt->pkt.signature)->sig_class >= 0x10 && sig->sig_class <= 0x30 && sig->version > 3 && sig->keyid[0] == kid[0] && sig->keyid[1] == kid[1] ) { /* okay this is a self-signature which can be used. * FIXME: We should only use this if the signature is valid * but this is time consuming - we must provide another * way to handle this */ const byte *p; u32 ed; p = parse_sig_subpkt( sig->hashed_data, SIGSUBPKT_KEY_EXPIRE, NULL ); if( pk ) { ed = p? pk->timestamp + buffer_to_u32(p):0; if( sig->timestamp > sigdate ) { pk->expiredate = ed; sigdate = sig->timestamp; } } else { ed = p? sk->timestamp + buffer_to_u32(p):0; if( sig->timestamp > sigdate ) { sk->expiredate = ed; sigdate = sig->timestamp; } } } } } static KBNODE find_by_name( KBNODE keyblock, PKT_public_key *pk, const char *name, int mode, byte *namehash, int *use_namehash ) { KBNODE k, kk; for(k=keyblock; k; k = k->next ) { if( k->pkt->pkttype == PKT_USER_ID && !compare_name( k->pkt->pkt.user_id->name, k->pkt->pkt.user_id->len, name, mode)) { /* we found a matching name, look for the key */ for(kk=keyblock; kk; kk = kk->next ) { if( ( kk->pkt->pkttype == PKT_PUBLIC_KEY || kk->pkt->pkttype == PKT_PUBLIC_SUBKEY ) && ( !pk->pubkey_algo || pk->pubkey_algo == kk->pkt->pkt.public_key->pubkey_algo) && ( !pk->pubkey_usage || !check_pubkey_algo2( kk->pkt->pkt.public_key->pubkey_algo, pk->pubkey_usage )) ) break; } if( kk ) { u32 aki[2]; keyid_from_pk( kk->pkt->pkt.public_key, aki ); cache_user_id( k->pkt->pkt.user_id, aki ); rmd160_hash_buffer( namehash, k->pkt->pkt.user_id->name, k->pkt->pkt.user_id->len ); *use_namehash = 1; return kk; } else if( is_RSA(pk->pubkey_algo) ) log_error("RSA key cannot be used in this version\n"); else log_error("No key for userid\n"); } } return NULL; } static KBNODE find_by_keyid( KBNODE keyblock, PKT_public_key *pk, u32 *keyid, int mode ) { KBNODE k; if( DBG_CACHE ) log_debug("lookup keyid=%08lx%08lx req_algo=%d mode=%d\n", (ulong)keyid[0], (ulong)keyid[1], pk->pubkey_algo, mode ); for(k=keyblock; k; k = k->next ) { if( k->pkt->pkttype == PKT_PUBLIC_KEY || k->pkt->pkttype == PKT_PUBLIC_SUBKEY ) { u32 aki[2]; keyid_from_pk( k->pkt->pkt.public_key, aki ); if( DBG_CACHE ) log_debug(" aki=%08lx%08lx algo=%d\n", (ulong)aki[0], (ulong)aki[1], k->pkt->pkt.public_key->pubkey_algo ); if( aki[1] == keyid[1] && ( mode == 10 || aki[0] == keyid[0] ) && ( !pk->pubkey_algo || pk->pubkey_algo == k->pkt->pkt.public_key->pubkey_algo) ){ KBNODE kk; /* cache the userid */ for(kk=keyblock; kk; kk = kk->next ) if( kk->pkt->pkttype == PKT_USER_ID ) break; if( kk ) cache_user_id( kk->pkt->pkt.user_id, aki ); else log_error("No userid for key\n"); return k; /* found */ } } } return NULL; } static KBNODE find_first( KBNODE keyblock, PKT_public_key *pk ) { KBNODE k; for(k=keyblock; k; k = k->next ) { if( k->pkt->pkttype == PKT_PUBLIC_KEY || k->pkt->pkttype == PKT_PUBLIC_SUBKEY ) { if( !pk->pubkey_algo || pk->pubkey_algo == k->pkt->pkt.public_key->pubkey_algo ) return k; } } return NULL; } static KBNODE find_by_fpr( KBNODE keyblock, PKT_public_key *pk, const char *name, int mode ) { KBNODE k; for(k=keyblock; k; k = k->next ) { if( k->pkt->pkttype == PKT_PUBLIC_KEY || k->pkt->pkttype == PKT_PUBLIC_SUBKEY ) { byte afp[MAX_FINGERPRINT_LEN]; size_t an; fingerprint_from_pk(k->pkt->pkt.public_key, afp, &an ); if( DBG_CACHE ) { u32 aki[2]; keyid_from_pk( k->pkt->pkt.public_key, aki ); log_debug(" aki=%08lx%08lx algo=%d mode=%d an=%u\n", (ulong)aki[0], (ulong)aki[1], k->pkt->pkt.public_key->pubkey_algo, mode, an ); } if( an == mode && !memcmp( afp, name, an) && ( !pk->pubkey_algo || pk->pubkey_algo == k->pkt->pkt.public_key->pubkey_algo) ) return k; } } return NULL; } static void finish_lookup( KBNODE keyblock, PKT_public_key *pk, KBNODE k, byte *namehash, int use_namehash, int primary ) { assert( k->pkt->pkttype == PKT_PUBLIC_KEY || k->pkt->pkttype == PKT_PUBLIC_SUBKEY ); assert( keyblock->pkt->pkttype == PKT_PUBLIC_KEY ); if( primary && !pk->pubkey_usage ) { copy_public_key_new_namehash( pk, keyblock->pkt->pkt.public_key, use_namehash? namehash:NULL); merge_one_pk_and_selfsig( keyblock, keyblock ); } else { if( primary && pk->pubkey_usage && check_pubkey_algo2( k->pkt->pkt.public_key->pubkey_algo, pk->pubkey_usage ) == G10ERR_WR_PUBKEY_ALGO ) { /* if the usage is not correct, try to use a subkey */ KBNODE save_k = k; k = NULL; /* kludge for pgp 5: which doesn't accept type 20: * try to use a type 16 subkey instead */ if( pk->pubkey_usage == PUBKEY_USAGE_ENC ) { for( k = save_k; k; k = k->next ) { if( k->pkt->pkttype == PKT_PUBLIC_SUBKEY && k->pkt->pkt.public_key->pubkey_algo == PUBKEY_ALGO_ELGAMAL_E && !check_pubkey_algo2( k->pkt->pkt.public_key->pubkey_algo, pk->pubkey_usage ) ) break; } } if( !k ) { for(k = save_k ; k; k = k->next ) { if( k->pkt->pkttype == PKT_PUBLIC_SUBKEY && !check_pubkey_algo2( k->pkt->pkt.public_key->pubkey_algo, pk->pubkey_usage ) ) break; } } if( !k ) k = save_k; else log_info(_("using secondary key %08lX " "instead of primary key %08lX\n"), (ulong)keyid_from_pk( k->pkt->pkt.public_key, NULL), (ulong)keyid_from_pk( save_k->pkt->pkt.public_key, NULL) ); } copy_public_key_new_namehash( pk, k->pkt->pkt.public_key, use_namehash? namehash:NULL); merge_one_pk_and_selfsig( keyblock, k ); } } /**************** * Lookup a key by scanning all keyresources * mode 1 = lookup by NAME (exact) * 2 = lookup by NAME (substring) * 3 = lookup by NAME (email address) * 4 = email address (substring) * 5 = email address (compare from end) * 10 = lookup by short KEYID (don't care about keyid[0]) * 11 = lookup by long KEYID * 15 = Get the first key. * 16 = lookup by 16 byte fingerprint which is stored in NAME * 20 = lookup by 20 byte fingerprint which is stored in NAME * Caller must provide an empty PK, if the pubkey_algo is filled in, only * a key of this algo will be returned. * If ret_keyblock is not NULL, the complete keyblock is returned also * and the caller must release it. */ static int lookup( GETKEY_CTX *retctx, PKT_public_key *pk, int mode, u32 *keyid, const char *name, KBNODE *ret_keyblock, int primary ) { struct getkey_ctx_s help_ctx; GETKEY_CTX ctx; int rc; if( !retctx ) ctx = &help_ctx; else { ctx = m_alloc( sizeof *ctx ); *retctx = ctx; } memset( ctx, 0, sizeof *ctx ); ctx->mode = mode; if( keyid ) { ctx->keyid[0] = keyid[0]; ctx->keyid[1] = keyid[1]; } if( retctx ) { ctx->namebuf = name? m_strdup(name) : NULL; ctx->name = ctx->namebuf; } else ctx->name = name; ctx->primary = primary; rc = lookup_read( ctx, pk, ret_keyblock ); if( !retctx ) lookup_close( ctx ); return rc; } static void lookup_close( GETKEY_CTX ctx ) { enum_keyblocks( 2, &ctx->kbpos, NULL ); /* close */ m_free( ctx->namebuf ); } static int lookup_read( GETKEY_CTX ctx, PKT_public_key *pk, KBNODE *ret_keyblock ) { int rc; KBNODE k; int oldmode = set_packet_list_mode(0); byte namehash[20]; int use_namehash=0; /* try the quick functions */ if( !ctx->count ) { k = NULL; switch( ctx->mode ) { case 10: case 11: rc = locate_keyblock_by_keyid( &ctx->kbpos, ctx->keyid, ctx->mode==10, 0 ); if( !rc ) rc = read_keyblock( &ctx->kbpos, &ctx->keyblock ); if( !rc ) k = find_by_keyid( ctx->keyblock, pk, ctx->keyid, ctx->mode ); break; case 16: case 20: rc = locate_keyblock_by_fpr( &ctx->kbpos, ctx->name, ctx->mode, 0 ); if( !rc ) rc = read_keyblock( &ctx->kbpos, &ctx->keyblock ); if( !rc ) k = find_by_fpr( ctx->keyblock, pk, ctx->name, ctx->mode ); break; default: rc = G10ERR_UNSUPPORTED; } if( !rc ) { if( !k ) { log_error("lookup: key has been located but was not found\n"); rc = G10ERR_INV_KEYRING; } else finish_lookup( ctx->keyblock, pk, k, namehash, 0, ctx->primary ); } } else rc = G10ERR_UNSUPPORTED; /* if this was not possible, loop over all keyblocks * fixme: If one of the resources in the quick functions above * works, but the key was not found, we will not find it * in the other resources */ if( rc == G10ERR_UNSUPPORTED ) { if( !ctx->count ) rc = enum_keyblocks( 0, &ctx->kbpos, &ctx->keyblock ); else rc = 0; if( !rc ) { while( !(rc = enum_keyblocks( 1, &ctx->kbpos, &ctx->keyblock )) ) { /* fixme: we donīt enum the complete keyblock, but * use the first match and that continue with the next keyblock */ if( ctx->mode < 10 ) k = find_by_name( ctx->keyblock, pk, ctx->name, ctx->mode, namehash, &use_namehash); else if( ctx->mode == 10 ||ctx-> mode == 11 ) k = find_by_keyid( ctx->keyblock, pk, ctx->keyid, ctx->mode ); else if( ctx->mode == 15 ) k = find_first( ctx->keyblock, pk ); else if( ctx->mode == 16 || ctx->mode == 20 ) k = find_by_fpr( ctx->keyblock, pk, ctx->name, ctx->mode ); else BUG(); if( k ) { finish_lookup( ctx->keyblock, pk, k, namehash, use_namehash, ctx->primary ); break; /* found */ } release_kbnode( ctx->keyblock ); ctx->keyblock = NULL; } } if( rc && rc != -1 ) log_error("enum_keyblocks failed: %s\n", g10_errstr(rc)); } if( !rc ) { if( ret_keyblock ) { *ret_keyblock = ctx->keyblock; ctx->keyblock = NULL; } } else if( rc == -1 ) rc = G10ERR_NO_PUBKEY; release_kbnode( ctx->keyblock ); ctx->keyblock = NULL; set_packet_list_mode(oldmode); if( opt.debug & DBG_MEMSTAT_VALUE ) { static int initialized; if( !initialized ) { initialized = 1; atexit( print_stats ); } assert( ctx->mode < DIM(lkup_stats) ); lkup_stats[ctx->mode].any = 1; if( !rc ) lkup_stats[ctx->mode].okay_count++; else if ( rc == G10ERR_NO_PUBKEY ) lkup_stats[ctx->mode].nokey_count++; else lkup_stats[ctx->mode].error_count++; } ctx->last_rc = rc; ctx->count++; return rc; } /**************** * Ditto for secret keys */ static int lookup_sk( PKT_secret_key *sk, int mode, u32 *keyid, const char *name, int primary ) { int rc; KBNODE keyblock = NULL; KBPOS kbpos; int oldmode = set_packet_list_mode(0); rc = enum_keyblocks( 5 /* open secret */, &kbpos, &keyblock ); if( rc ) { if( rc == -1 ) rc = G10ERR_NO_SECKEY; else if( rc ) log_error("enum_keyblocks(open secret) failed: %s\n", g10_errstr(rc) ); goto leave; } while( !(rc = enum_keyblocks( 1, &kbpos, &keyblock )) ) { KBNODE k, kk; if( mode < 10 ) { /* name lookup */ for(k=keyblock; k; k = k->next ) { if( k->pkt->pkttype == PKT_USER_ID && !compare_name( k->pkt->pkt.user_id->name, k->pkt->pkt.user_id->len, name, mode)) { /* we found a matching name, look for the key */ for(kk=keyblock; kk; kk = kk->next ) { if( ( kk->pkt->pkttype == PKT_SECRET_KEY || kk->pkt->pkttype == PKT_SECRET_SUBKEY ) && ( !sk->pubkey_algo || sk->pubkey_algo == kk->pkt->pkt.secret_key->pubkey_algo) && ( !sk->pubkey_usage || !check_pubkey_algo2( kk->pkt->pkt.secret_key->pubkey_algo, sk->pubkey_usage )) ) break; } if( kk ) { u32 aki[2]; keyid_from_sk( kk->pkt->pkt.secret_key, aki ); cache_user_id( k->pkt->pkt.user_id, aki ); k = kk; break; } else log_error("No key for userid (in sk)\n"); } } } else { /* keyid or fingerprint lookup */ if( DBG_CACHE && (mode== 10 || mode==11) ) { log_debug("lookup_sk keyid=%08lx%08lx req_algo=%d mode=%d\n", (ulong)keyid[0], (ulong)keyid[1], sk->pubkey_algo, mode ); } for(k=keyblock; k; k = k->next ) { if( k->pkt->pkttype == PKT_SECRET_KEY || k->pkt->pkttype == PKT_SECRET_SUBKEY ) { if( mode == 10 || mode == 11 ) { u32 aki[2]; keyid_from_sk( k->pkt->pkt.secret_key, aki ); if( DBG_CACHE ) { log_debug(" aki=%08lx%08lx algo=%d\n", (ulong)aki[0], (ulong)aki[1], k->pkt->pkt.secret_key->pubkey_algo ); } if( aki[1] == keyid[1] && ( mode == 10 || aki[0] == keyid[0] ) && ( !sk->pubkey_algo || sk->pubkey_algo == k->pkt->pkt.secret_key->pubkey_algo) ){ /* cache the userid */ for(kk=keyblock; kk; kk = kk->next ) if( kk->pkt->pkttype == PKT_USER_ID ) break; if( kk ) cache_user_id( kk->pkt->pkt.user_id, aki ); else log_error("No userid for key\n"); break; /* found */ } } else if( mode == 15 ) { /* get the first key */ if( !sk->pubkey_algo || sk->pubkey_algo == k->pkt->pkt.secret_key->pubkey_algo ) break; } else if( mode == 16 || mode == 20 ) { size_t an; byte afp[MAX_FINGERPRINT_LEN]; fingerprint_from_sk(k->pkt->pkt.secret_key, afp, &an ); if( an == mode && !memcmp( afp, name, an) && ( !sk->pubkey_algo || sk->pubkey_algo == k->pkt->pkt.secret_key->pubkey_algo) ) { break; } } else BUG(); } /* end compare secret keys */ } } if( k ) { /* found */ assert( k->pkt->pkttype == PKT_SECRET_KEY || k->pkt->pkttype == PKT_SECRET_SUBKEY ); assert( keyblock->pkt->pkttype == PKT_SECRET_KEY ); if( primary && !sk->pubkey_usage ) copy_secret_key( sk, keyblock->pkt->pkt.secret_key ); else copy_secret_key( sk, k->pkt->pkt.secret_key ); break; /* enumeration */ } release_kbnode( keyblock ); keyblock = NULL; } if( rc == -1 ) rc = G10ERR_NO_SECKEY; else if( rc ) log_error("enum_keyblocks(read) failed: %s\n", g10_errstr(rc)); leave: enum_keyblocks( 2, &kbpos, &keyblock ); /* close */ release_kbnode( keyblock ); set_packet_list_mode(oldmode); return rc; } /**************** * Enumerate all primary secret keys. Caller must use these procedure: * 1) create a void pointer and initialize it to NULL * 2) pass this void pointer by reference to this function * and provide space for the secret key (pass a buffer for sk) * 3) call this function as long as it does not return -1 * to indicate EOF. * 4) Always call this function a last time with SK set to NULL, * so that can free it's context. * * */ int enum_secret_keys( void **context, PKT_secret_key *sk, int with_subkeys ) { int rc=0; PACKET pkt; int save_mode; struct { int eof; int sequence; const char *name; IOBUF iobuf; } *c = *context; if( !c ) { /* make a new context */ c = m_alloc_clear( sizeof *c ); *context = c; c->sequence = 0; c->name = enum_keyblock_resources( &c->sequence, 1 ); } if( !sk ) { /* free the context */ if( c->iobuf ) iobuf_close(c->iobuf); m_free( c ); *context = NULL; return 0; } if( c->eof ) return -1; /* FIXME: This assumes a plain keyring file */ for( ; c->name; c->name = enum_keyblock_resources( &c->sequence, 1 ) ) { if( !c->iobuf ) { if( !(c->iobuf = iobuf_open( c->name ) ) ) { log_error("enum_secret_keys: can't open '%s'\n", c->name ); continue; /* try next file */ } } save_mode = set_packet_list_mode(0); init_packet(&pkt); while( (rc=parse_packet(c->iobuf, &pkt)) != -1 ) { if( rc ) ; /* e.g. unknown packet */ else if( pkt.pkttype == PKT_SECRET_KEY || ( with_subkeys && pkt.pkttype == PKT_SECRET_SUBKEY ) ) { copy_secret_key( sk, pkt.pkt.secret_key ); set_packet_list_mode(save_mode); return 0; /* found */ } free_packet(&pkt); } set_packet_list_mode(save_mode); iobuf_close(c->iobuf); c->iobuf = NULL; } c->eof = 1; return -1; } /**************** * Return a string with a printable representation of the user_id. * this string must be freed by m_free. */ char* get_user_id_string( u32 *keyid ) { user_id_db_t r; char *p; int pass=0; /* try it two times; second pass reads from key resources */ do { for(r=user_id_db; r; r = r->next ) if( r->keyid[0] == keyid[0] && r->keyid[1] == keyid[1] ) { p = m_alloc( r->len + 10 ); sprintf(p, "%08lX %.*s", (ulong)keyid[1], r->len, r->name ); return p; } } while( ++pass < 2 && !get_pubkey( NULL, keyid ) ); p = m_alloc( 15 ); sprintf(p, "%08lX [?]", (ulong)keyid[1] ); return p; } char* get_user_id( u32 *keyid, size_t *rn ) { user_id_db_t r; char *p; int pass=0; /* try it two times; second pass reads from key resources */ do { for(r=user_id_db; r; r = r->next ) if( r->keyid[0] == keyid[0] && r->keyid[1] == keyid[1] ) { p = m_alloc( r->len ); memcpy(p, r->name, r->len ); *rn = r->len; return p; } } while( ++pass < 2 && !get_pubkey( NULL, keyid ) ); p = m_alloc( 19 ); memcpy(p, "[User id not found]", 19 ); *rn = 19; return p; }