/* dsa.c - DSA signature scheme * Copyright (C) 1998 Free Software Foundation, Inc. * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #include #include #include #include #include #include "util.h" #include "mpi.h" #include "cipher.h" #include "dsa.h" typedef struct { MPI p; /* prime */ MPI q; /* group order */ MPI g; /* group generator */ MPI y; /* g^x mod p */ } DSA_public_key; typedef struct { MPI p; /* prime */ MPI q; /* group order */ MPI g; /* group generator */ MPI y; /* g^x mod p */ MPI x; /* secret exponent */ } DSA_secret_key; static MPI gen_k( MPI q ); static void test_keys( DSA_secret_key *sk, unsigned qbits ); static int check_secret_key( DSA_secret_key *sk ); static void generate( DSA_secret_key *sk, unsigned nbits, MPI **ret_factors ); static void sign(MPI r, MPI s, MPI input, DSA_secret_key *skey); static int verify(MPI r, MPI s, MPI input, DSA_public_key *pkey); static void (*progress_cb) ( void *, int ); static void *progress_cb_data; void register_pk_dsa_progress ( void (*cb)( void *, int), void *cb_data ) { progress_cb = cb; progress_cb_data = cb_data; } static void progress( int c ) { if ( progress_cb ) progress_cb ( progress_cb_data, c ); else fputc( c, stderr ); } /**************** * Generate a random secret exponent k less than q */ static MPI gen_k( MPI q ) { MPI k = mpi_alloc_secure( mpi_get_nlimbs(q) ); unsigned int nbits = mpi_get_nbits(q); unsigned int nbytes = (nbits+7)/8; char *rndbuf = NULL; if( DBG_CIPHER ) log_debug("choosing a random k "); for(;;) { if( DBG_CIPHER ) progress('.'); if( !rndbuf || nbits < 32 ) { m_free(rndbuf); rndbuf = get_random_bits( nbits, 1, 1 ); } else { /* change only some of the higher bits */ /* we could imporove this by directly requesting more memory * at the first call to get_random_bits() and use this the here * maybe it is easier to do this directly in random.c */ char *pp = get_random_bits( 32, 1, 1 ); memcpy( rndbuf,pp, 4 ); m_free(pp); } mpi_set_buffer( k, rndbuf, nbytes, 0 ); if( mpi_test_bit( k, nbits-1 ) ) mpi_set_highbit( k, nbits-1 ); else { mpi_set_highbit( k, nbits-1 ); mpi_clear_bit( k, nbits-1 ); } if( !(mpi_cmp( k, q ) < 0) ) { /* check: k < q */ if( DBG_CIPHER ) progress('+'); continue; /* no */ } if( !(mpi_cmp_ui( k, 0 ) > 0) ) { /* check: k > 0 */ if( DBG_CIPHER ) progress('-'); continue; /* no */ } break; /* okay */ } m_free(rndbuf); if( DBG_CIPHER ) progress('\n'); return k; } static void test_keys( DSA_secret_key *sk, unsigned qbits ) { DSA_public_key pk; MPI test = mpi_alloc( qbits / BITS_PER_MPI_LIMB ); MPI out1_a = mpi_alloc( qbits / BITS_PER_MPI_LIMB ); MPI out1_b = mpi_alloc( qbits / BITS_PER_MPI_LIMB ); pk.p = sk->p; pk.q = sk->q; pk.g = sk->g; pk.y = sk->y; /*mpi_set_bytes( test, qbits, get_random_byte, 0 );*/ { char *p = get_random_bits( qbits, 0, 0 ); mpi_set_buffer( test, p, (qbits+7)/8, 0 ); m_free(p); } sign( out1_a, out1_b, test, sk ); if( !verify( out1_a, out1_b, test, &pk ) ) log_fatal("DSA:: sign, verify failed\n"); mpi_free( test ); mpi_free( out1_a ); mpi_free( out1_b ); } /**************** * Generate a DSA key pair with a key of size NBITS * Returns: 2 structures filled with all needed values * and an array with the n-1 factors of (p-1) */ static void generate( DSA_secret_key *sk, unsigned nbits, MPI **ret_factors ) { MPI p; /* the prime */ MPI q; /* the 160 bit prime factor */ MPI g; /* the generator */ MPI y; /* g^x mod p */ MPI x; /* the secret exponent */ MPI h, e; /* helper */ unsigned qbits; byte *rndbuf; assert( nbits >= 512 && nbits <= 1024 ); qbits = 160; p = generate_elg_prime( 1, nbits, qbits, NULL, ret_factors ); /* get q out of factors */ q = mpi_copy((*ret_factors)[0]); if( mpi_get_nbits(q) != qbits ) BUG(); /* find a generator g (h and e are helpers)*/ /* e = (p-1)/q */ e = mpi_alloc( mpi_get_nlimbs(p) ); mpi_sub_ui( e, p, 1 ); mpi_fdiv_q( e, e, q ); g = mpi_alloc( mpi_get_nlimbs(p) ); h = mpi_alloc_set_ui( 1 ); /* we start with 2 */ do { mpi_add_ui( h, h, 1 ); /* g = h^e mod p */ mpi_powm( g, h, e, p ); } while( !mpi_cmp_ui( g, 1 ) ); /* continue until g != 1 */ /* select a random number which has these properties: * 0 < x < q-1 * This must be a very good random number because this * is the secret part. */ if( DBG_CIPHER ) log_debug("choosing a random x "); assert( qbits >= 160 ); x = mpi_alloc_secure( mpi_get_nlimbs(q) ); mpi_sub_ui( h, q, 1 ); /* put q-1 into h */ rndbuf = NULL; do { if( DBG_CIPHER ) progress('.'); if( !rndbuf ) rndbuf = get_random_bits( qbits, 2, 1 ); else { /* change only some of the higher bits (= 2 bytes)*/ char *r = get_random_bits( 16, 2, 1 ); memcpy(rndbuf, r, 16/8 ); m_free(r); } mpi_set_buffer( x, rndbuf, (qbits+7)/8, 0 ); mpi_clear_highbit( x, qbits+1 ); } while( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, h )<0 ) ); m_free(rndbuf); mpi_free( e ); mpi_free( h ); /* y = g^x mod p */ y = mpi_alloc( mpi_get_nlimbs(p) ); mpi_powm( y, g, x, p ); if( DBG_CIPHER ) { progress('\n'); log_mpidump("dsa p= ", p ); log_mpidump("dsa q= ", q ); log_mpidump("dsa g= ", g ); log_mpidump("dsa y= ", y ); log_mpidump("dsa x= ", x ); } /* copy the stuff to the key structures */ sk->p = p; sk->q = q; sk->g = g; sk->y = y; sk->x = x; /* now we can test our keys (this should never fail!) */ test_keys( sk, qbits ); } /**************** * Test whether the secret key is valid. * Returns: if this is a valid key. */ static int check_secret_key( DSA_secret_key *sk ) { int rc; MPI y = mpi_alloc( mpi_get_nlimbs(sk->y) ); mpi_powm( y, sk->g, sk->x, sk->p ); rc = !mpi_cmp( y, sk->y ); mpi_free( y ); return rc; } /**************** * Make a DSA signature from HASH and put it into r and s. * * Without generating the k this function runs in * about 26ms on a 300 Mhz Mobile Pentium */ static void sign(MPI r, MPI s, MPI hash, DSA_secret_key *skey ) { MPI k; MPI kinv; MPI tmp; /* select a random k with 0 < k < q */ k = gen_k( skey->q ); /* r = (a^k mod p) mod q */ mpi_powm( r, skey->g, k, skey->p ); mpi_fdiv_r( r, r, skey->q ); /* kinv = k^(-1) mod q */ kinv = mpi_alloc( mpi_get_nlimbs(k) ); mpi_invm(kinv, k, skey->q ); /* s = (kinv * ( hash + x * r)) mod q */ tmp = mpi_alloc( mpi_get_nlimbs(skey->p) ); mpi_mul( tmp, skey->x, r ); mpi_add( tmp, tmp, hash ); mpi_mulm( s , kinv, tmp, skey->q ); mpi_free(k); mpi_free(kinv); mpi_free(tmp); } /**************** * Returns true if the signature composed from R and S is valid. * * Without the checks this function runs in * about 31ms on a 300 Mhz Mobile Pentium */ static int verify(MPI r, MPI s, MPI hash, DSA_public_key *pkey ) { int rc; MPI w, u1, u2, v; MPI base[3]; MPI exp[3]; if( !(mpi_cmp_ui( r, 0 ) > 0 && mpi_cmp( r, pkey->q ) < 0) ) return 0; /* assertion 0 < r < q failed */ if( !(mpi_cmp_ui( s, 0 ) > 0 && mpi_cmp( s, pkey->q ) < 0) ) return 0; /* assertion 0 < s < q failed */ w = mpi_alloc( mpi_get_nlimbs(pkey->q) ); u1 = mpi_alloc( mpi_get_nlimbs(pkey->q) ); u2 = mpi_alloc( mpi_get_nlimbs(pkey->q) ); v = mpi_alloc( mpi_get_nlimbs(pkey->p) ); /* w = s^(-1) mod q */ mpi_invm( w, s, pkey->q ); /* u1 = (hash * w) mod q */ mpi_mulm( u1, hash, w, pkey->q ); /* u2 = r * w mod q */ mpi_mulm( u2, r, w, pkey->q ); /* v = g^u1 * y^u2 mod p mod q */ base[0] = pkey->g; exp[0] = u1; base[1] = pkey->y; exp[1] = u2; base[2] = NULL; exp[2] = NULL; mpi_mulpowm( v, base, exp, pkey->p ); mpi_fdiv_r( v, v, pkey->q ); rc = !mpi_cmp( v, r ); mpi_free(w); mpi_free(u1); mpi_free(u2); mpi_free(v); return rc; } /********************************************* ************** interface ****************** *********************************************/ int dsa_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors ) { DSA_secret_key sk; if( algo != PUBKEY_ALGO_DSA ) return G10ERR_PUBKEY_ALGO; generate( &sk, nbits, retfactors ); skey[0] = sk.p; skey[1] = sk.q; skey[2] = sk.g; skey[3] = sk.y; skey[4] = sk.x; return 0; } int dsa_check_secret_key( int algo, MPI *skey ) { DSA_secret_key sk; if( algo != PUBKEY_ALGO_DSA ) return G10ERR_PUBKEY_ALGO; if( !skey[0] || !skey[1] || !skey[2] || !skey[3] || !skey[4] ) return G10ERR_BAD_MPI; sk.p = skey[0]; sk.q = skey[1]; sk.g = skey[2]; sk.y = skey[3]; sk.x = skey[4]; if( !check_secret_key( &sk ) ) return G10ERR_BAD_SECKEY; return 0; } int dsa_sign( int algo, MPI *resarr, MPI data, MPI *skey ) { DSA_secret_key sk; if( algo != PUBKEY_ALGO_DSA ) return G10ERR_PUBKEY_ALGO; if( !data || !skey[0] || !skey[1] || !skey[2] || !skey[3] || !skey[4] ) return G10ERR_BAD_MPI; sk.p = skey[0]; sk.q = skey[1]; sk.g = skey[2]; sk.y = skey[3]; sk.x = skey[4]; resarr[0] = mpi_alloc( mpi_get_nlimbs( sk.p ) ); resarr[1] = mpi_alloc( mpi_get_nlimbs( sk.p ) ); sign( resarr[0], resarr[1], data, &sk ); return 0; } int dsa_verify( int algo, MPI hash, MPI *data, MPI *pkey, int (*cmp)(void *, MPI), void *opaquev ) { DSA_public_key pk; if( algo != PUBKEY_ALGO_DSA ) return G10ERR_PUBKEY_ALGO; if( !data[0] || !data[1] || !hash || !pkey[0] || !pkey[1] || !pkey[2] || !pkey[3] ) return G10ERR_BAD_MPI; pk.p = pkey[0]; pk.q = pkey[1]; pk.g = pkey[2]; pk.y = pkey[3]; if( !verify( data[0], data[1], hash, &pk ) ) return G10ERR_BAD_SIGN; return 0; } unsigned dsa_get_nbits( int algo, MPI *pkey ) { if( algo != PUBKEY_ALGO_DSA ) return 0; return mpi_get_nbits( pkey[0] ); } /**************** * Return some information about the algorithm. We need algo here to * distinguish different flavors of the algorithm. * Returns: A pointer to string describing the algorithm or NULL if * the ALGO is invalid. * Usage: Bit 0 set : allows signing * 1 set : allows encryption */ const char * dsa_get_info( int algo, int *npkey, int *nskey, int *nenc, int *nsig, int *use ) { *npkey = 4; *nskey = 5; *nenc = 0; *nsig = 2; switch( algo ) { case PUBKEY_ALGO_DSA: *use = PUBKEY_USAGE_SIG; return "DSA"; default: *use = 0; return NULL; } }