/* pkglue.c - public key operations glue code * Copyright (C) 2000, 2003, 2010 Free Software Foundation, Inc. * Copyright (C) 2014 Werner Koch * Copyright (C) 2024 g10 Code GmbH. * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * SPDX-License-Identifier: GPL-3.0-or-later */ #include #include #include #include #include #include "gpg.h" #include "../common/util.h" #include "pkglue.h" #include "main.h" #include "options.h" /* FIXME: Better change the function name because mpi_ is used by gcrypt macros. */ gcry_mpi_t get_mpi_from_sexp (gcry_sexp_t sexp, const char *item, int mpifmt) { gcry_sexp_t list; gcry_mpi_t data; list = gcry_sexp_find_token (sexp, item, 0); log_assert (list); data = gcry_sexp_nth_mpi (list, 1, mpifmt); log_assert (data); gcry_sexp_release (list); return data; } /* * SOS (Simply, Octet String) is an attempt to handle opaque octet * string in OpenPGP, where well-formed MPI cannot represent octet * string with leading zero octets. * * To retain maximum compatibility to existing MPI handling, SOS * has same structure, but allows leading zero octets. When there * is no leading zero octets, SOS representation is as same as MPI one. * With leading zero octets, NBITS is 8*(length of octets), regardless * of leading zero bits. */ /* Extract SOS representation from SEXP for PARAM, return the result * in R_SOS. It is represented by opaque MPI with GCRYMPI_FLAG_USER2 * flag. */ gpg_error_t sexp_extract_param_sos (gcry_sexp_t sexp, const char *param, gcry_mpi_t *r_sos) { gpg_error_t err; gcry_sexp_t l2 = gcry_sexp_find_token (sexp, param, 0); *r_sos = NULL; if (!l2) err = gpg_error (GPG_ERR_NO_OBJ); else { size_t buflen; void *p0 = gcry_sexp_nth_buffer (l2, 1, &buflen); if (!p0) err = gpg_error_from_syserror (); else { gcry_mpi_t sos; unsigned int nbits = buflen*8; unsigned char *p = p0; if (*p && nbits >= 8 && !(*p & 0x80)) if (--nbits >= 7 && !(*p & 0x40)) if (--nbits >= 6 && !(*p & 0x20)) if (--nbits >= 5 && !(*p & 0x10)) if (--nbits >= 4 && !(*p & 0x08)) if (--nbits >= 3 && !(*p & 0x04)) if (--nbits >= 2 && !(*p & 0x02)) if (--nbits >= 1 && !(*p & 0x01)) --nbits; sos = gcry_mpi_set_opaque (NULL, p0, nbits); if (sos) { gcry_mpi_set_flag (sos, GCRYMPI_FLAG_USER2); *r_sos = sos; err = 0; } else err = gpg_error_from_syserror (); } gcry_sexp_release (l2); } return err; } /* "No leading zero octets" (nlz) version of the function above. * * This routine is used for backward compatibility to existing * implementation with the weird handling of little endian integer * representation with leading zero octets. For the sake of * "well-fomed" MPI, which is designed for big endian integer, leading * zero octets are removed when output, and they are recovered at * input. * * Extract SOS representation from SEXP for PARAM, removing leading * zeros, return the result in R_SOS. */ gpg_error_t sexp_extract_param_sos_nlz (gcry_sexp_t sexp, const char *param, gcry_mpi_t *r_sos) { gpg_error_t err; gcry_sexp_t l2 = gcry_sexp_find_token (sexp, param, 0); *r_sos = NULL; if (!l2) err = gpg_error (GPG_ERR_NO_OBJ); else { size_t buflen; const void *p0 = gcry_sexp_nth_data (l2, 1, &buflen); if (!p0) err = gpg_error_from_syserror (); else { gcry_mpi_t sos; unsigned int nbits = buflen*8; const unsigned char *p = p0; /* Strip leading zero bits. */ for (; nbits >= 8 && !*p; p++, nbits -= 8) ; if (nbits >= 8 && !(*p & 0x80)) if (--nbits >= 7 && !(*p & 0x40)) if (--nbits >= 6 && !(*p & 0x20)) if (--nbits >= 5 && !(*p & 0x10)) if (--nbits >= 4 && !(*p & 0x08)) if (--nbits >= 3 && !(*p & 0x04)) if (--nbits >= 2 && !(*p & 0x02)) if (--nbits >= 1 && !(*p & 0x01)) --nbits; sos = gcry_mpi_set_opaque_copy (NULL, p, nbits); if (sos) { gcry_mpi_set_flag (sos, GCRYMPI_FLAG_USER2); *r_sos = sos; err = 0; } else err = gpg_error_from_syserror (); } gcry_sexp_release (l2); } return err; } static byte * get_data_from_sexp (gcry_sexp_t sexp, const char *item, size_t *r_size) { gcry_sexp_t list; size_t valuelen; const char *value; byte *v; if (DBG_CRYPTO) log_printsexp ("get_data_from_sexp:", sexp); list = gcry_sexp_find_token (sexp, item, 0); log_assert (list); value = gcry_sexp_nth_data (list, 1, &valuelen); log_assert (value); v = xtrymalloc (valuelen); memcpy (v, value, valuelen); gcry_sexp_release (list); *r_size = valuelen; return v; } /**************** * Emulate our old PK interface here - sometime in the future we might * change the internal design to directly fit to libgcrypt. */ int pk_verify (pubkey_algo_t pkalgo, gcry_mpi_t hash, gcry_mpi_t *data, gcry_mpi_t *pkey) { gcry_sexp_t s_sig, s_hash, s_pkey; int rc; /* Make a sexp from pkey. */ if (pkalgo == PUBKEY_ALGO_DSA) { rc = gcry_sexp_build (&s_pkey, NULL, "(public-key(dsa(p%m)(q%m)(g%m)(y%m)))", pkey[0], pkey[1], pkey[2], pkey[3]); } else if (pkalgo == PUBKEY_ALGO_ELGAMAL_E || pkalgo == PUBKEY_ALGO_ELGAMAL) { rc = gcry_sexp_build (&s_pkey, NULL, "(public-key(elg(p%m)(g%m)(y%m)))", pkey[0], pkey[1], pkey[2]); } else if (pkalgo == PUBKEY_ALGO_RSA || pkalgo == PUBKEY_ALGO_RSA_S) { rc = gcry_sexp_build (&s_pkey, NULL, "(public-key(rsa(n%m)(e%m)))", pkey[0], pkey[1]); } else if (pkalgo == PUBKEY_ALGO_ECDSA) { char *curve = openpgp_oid_to_str (pkey[0]); if (!curve) rc = gpg_error_from_syserror (); else { rc = gcry_sexp_build (&s_pkey, NULL, "(public-key(ecdsa(curve %s)(q%m)))", curve, pkey[1]); xfree (curve); } } else if (pkalgo == PUBKEY_ALGO_EDDSA) { char *curve = openpgp_oid_to_str (pkey[0]); if (!curve) rc = gpg_error_from_syserror (); else { const char *fmt; if (openpgp_oid_is_ed25519 (pkey[0])) fmt = "(public-key(ecc(curve %s)(flags eddsa)(q%m)))"; else fmt = "(public-key(ecc(curve %s)(q%m)))"; rc = gcry_sexp_build (&s_pkey, NULL, fmt, curve, pkey[1]); xfree (curve); } } else return GPG_ERR_PUBKEY_ALGO; if (rc) BUG (); /* gcry_sexp_build should never fail. */ /* Put hash into a S-Exp s_hash. */ if (pkalgo == PUBKEY_ALGO_EDDSA) { const char *fmt; if (openpgp_oid_is_ed25519 (pkey[0])) fmt = "(data(flags eddsa)(hash-algo sha512)(value %m))"; else fmt = "(data(value %m))"; if (gcry_sexp_build (&s_hash, NULL, fmt, hash)) BUG (); /* gcry_sexp_build should never fail. */ } else { if (gcry_sexp_build (&s_hash, NULL, "%m", hash)) BUG (); /* gcry_sexp_build should never fail. */ } /* Put data into a S-Exp s_sig. */ s_sig = NULL; if (pkalgo == PUBKEY_ALGO_DSA) { if (!data[0] || !data[1]) rc = gpg_error (GPG_ERR_BAD_MPI); else rc = gcry_sexp_build (&s_sig, NULL, "(sig-val(dsa(r%m)(s%m)))", data[0], data[1]); } else if (pkalgo == PUBKEY_ALGO_ECDSA) { if (!data[0] || !data[1]) rc = gpg_error (GPG_ERR_BAD_MPI); else rc = gcry_sexp_build (&s_sig, NULL, "(sig-val(ecdsa(r%m)(s%m)))", data[0], data[1]); } else if (pkalgo == PUBKEY_ALGO_EDDSA) { gcry_mpi_t r = data[0]; gcry_mpi_t s = data[1]; if (openpgp_oid_is_ed25519 (pkey[0])) { size_t rlen, slen, n; /* (bytes) */ char buf[64]; unsigned int nbits; unsigned int neededfixedlen = 256 / 8; log_assert (neededfixedlen <= sizeof buf); if (!r || !s) rc = gpg_error (GPG_ERR_BAD_MPI); else if ((rlen = (gcry_mpi_get_nbits (r)+7)/8) > neededfixedlen || !rlen) rc = gpg_error (GPG_ERR_BAD_MPI); else if ((slen = (gcry_mpi_get_nbits (s)+7)/8) > neededfixedlen || !slen) rc = gpg_error (GPG_ERR_BAD_MPI); else { /* We need to fixup the length in case of leading zeroes. * OpenPGP does not allow leading zeroes and the parser for * the signature packet has no information on the use curve, * thus we need to do it here. We won't do it for opaque * MPIs under the assumption that they are known to be fine; * we won't see them here anyway but the check is anyway * required. Fixme: A nifty feature for gcry_sexp_build * would be a format to left pad the value (e.g. "%*M"). */ rc = 0; if (rlen < neededfixedlen && !gcry_mpi_get_flag (r, GCRYMPI_FLAG_OPAQUE) && !(rc=gcry_mpi_print (GCRYMPI_FMT_USG, buf, sizeof buf, &n, r))) { log_assert (n < neededfixedlen); memmove (buf + (neededfixedlen - n), buf, n); memset (buf, 0, neededfixedlen - n); r = gcry_mpi_set_opaque_copy (NULL, buf, neededfixedlen * 8); } else if (rlen < neededfixedlen && gcry_mpi_get_flag (r, GCRYMPI_FLAG_OPAQUE)) { const unsigned char *p; p = gcry_mpi_get_opaque (r, &nbits); n = (nbits+7)/8; memcpy (buf + (neededfixedlen - n), p, n); memset (buf, 0, neededfixedlen - n); gcry_mpi_set_opaque_copy (r, buf, neededfixedlen * 8); } if (slen < neededfixedlen && !gcry_mpi_get_flag (s, GCRYMPI_FLAG_OPAQUE) && !(rc=gcry_mpi_print (GCRYMPI_FMT_USG, buf, sizeof buf, &n, s))) { log_assert (n < neededfixedlen); memmove (buf + (neededfixedlen - n), buf, n); memset (buf, 0, neededfixedlen - n); s = gcry_mpi_set_opaque_copy (NULL, buf, neededfixedlen * 8); } else if (slen < neededfixedlen && gcry_mpi_get_flag (s, GCRYMPI_FLAG_OPAQUE)) { const unsigned char *p; p = gcry_mpi_get_opaque (s, &nbits); n = (nbits+7)/8; memcpy (buf + (neededfixedlen - n), p, n); memset (buf, 0, neededfixedlen - n); gcry_mpi_set_opaque_copy (s, buf, neededfixedlen * 8); } } } else rc = 0; if (!rc) rc = gcry_sexp_build (&s_sig, NULL, "(sig-val(eddsa(r%M)(s%M)))", r, s); if (r != data[0]) gcry_mpi_release (r); if (s != data[1]) gcry_mpi_release (s); } else if (pkalgo == PUBKEY_ALGO_ELGAMAL || pkalgo == PUBKEY_ALGO_ELGAMAL_E) { if (!data[0] || !data[1]) rc = gpg_error (GPG_ERR_BAD_MPI); else rc = gcry_sexp_build (&s_sig, NULL, "(sig-val(elg(r%m)(s%m)))", data[0], data[1]); } else if (pkalgo == PUBKEY_ALGO_RSA || pkalgo == PUBKEY_ALGO_RSA_S) { if (!data[0]) rc = gpg_error (GPG_ERR_BAD_MPI); else rc = gcry_sexp_build (&s_sig, NULL, "(sig-val(rsa(s%m)))", data[0]); } else BUG (); if (!rc) rc = gcry_pk_verify (s_sig, s_hash, s_pkey); gcry_sexp_release (s_sig); gcry_sexp_release (s_hash); gcry_sexp_release (s_pkey); return rc; } /* Core of the encryption for KEM algorithms. See pk_decrypt for a * description of the arguments. */ static gpg_error_t do_encrypt_kem (PKT_public_key *pk, gcry_mpi_t data, int seskey_algo, gcry_mpi_t *resarr) { log_debug ("Implement Kyber encryption\n"); return gpg_error (GPG_ERR_NOT_IMPLEMENTED); } /* Core of the encryption for the ECDH algorithms. See pk_decrypt for * a description of the arguments. */ static gpg_error_t do_encrypt_ecdh (PKT_public_key *pk, gcry_mpi_t data, gcry_mpi_t *resarr) { gcry_mpi_t *pkey = pk->pkey; gcry_sexp_t s_ciph = NULL; gcry_sexp_t s_data = NULL; gcry_sexp_t s_pkey = NULL; gpg_error_t err; gcry_mpi_t k = NULL; char *curve = NULL; int with_djb_tweak_flag; gcry_mpi_t public = NULL; gcry_mpi_t result = NULL; byte fp[MAX_FINGERPRINT_LEN]; byte *shared = NULL; byte *p; size_t nshared; unsigned int nbits; err = pk_ecdh_generate_ephemeral_key (pkey, &k); if (err) goto leave; curve = openpgp_oid_to_str (pkey[0]); if (!curve) { err = gpg_error_from_syserror (); goto leave; } with_djb_tweak_flag = openpgp_oid_is_cv25519 (pkey[0]); /* Now use the ephemeral secret to compute the shared point. */ err = gcry_sexp_build (&s_pkey, NULL, with_djb_tweak_flag ? "(public-key(ecdh(curve%s)(flags djb-tweak)(q%m)))" : "(public-key(ecdh(curve%s)(q%m)))", curve, pkey[1]); if (err) goto leave; /* Put K into a simplified S-expression. */ err = gcry_sexp_build (&s_data, NULL, "%m", k); if (err) goto leave; /* Run encryption. */ err = gcry_pk_encrypt (&s_ciph, s_data, s_pkey); if (err) goto leave; gcry_sexp_release (s_data); s_data = NULL; gcry_sexp_release (s_pkey); s_pkey = NULL; /* Get the shared point and the ephemeral public key. */ shared = get_data_from_sexp (s_ciph, "s", &nshared); if (!shared) { err = gpg_error_from_syserror (); goto leave; } err = sexp_extract_param_sos (s_ciph, "e", &public); gcry_sexp_release (s_ciph); s_ciph = NULL; if (DBG_CRYPTO) { log_debug ("ECDH ephemeral key:"); gcry_mpi_dump (public); log_printf ("\n"); } fingerprint_from_pk (pk, fp, NULL); p = gcry_mpi_get_opaque (data, &nbits); result = NULL; err = pk_ecdh_encrypt_with_shared_point (shared, nshared, fp, p, (nbits+7)/8, pkey, &result); if (err) goto leave; resarr[0] = public; public = NULL; resarr[1] = result; result = NULL; leave: gcry_mpi_release (public); gcry_mpi_release (result); xfree (shared); gcry_sexp_release (s_ciph); gcry_sexp_release (s_data); gcry_sexp_release (s_pkey); xfree (curve); gcry_mpi_release (k); return err; } /* Core of the encryption for RSA and Elgamal algorithms. See * pk_decrypt for a description of the arguments. */ static gpg_error_t do_encrypt_rsa_elg (PKT_public_key *pk, gcry_mpi_t data, gcry_mpi_t *resarr) { pubkey_algo_t algo = pk->pubkey_algo; gcry_mpi_t *pkey = pk->pkey; gcry_sexp_t s_ciph = NULL; gcry_sexp_t s_data = NULL; gcry_sexp_t s_pkey = NULL; gpg_error_t err; if (algo == PUBKEY_ALGO_ELGAMAL || algo == PUBKEY_ALGO_ELGAMAL_E) err = gcry_sexp_build (&s_pkey, NULL, "(public-key(elg(p%m)(g%m)(y%m)))", pkey[0], pkey[1], pkey[2]); else err = gcry_sexp_build (&s_pkey, NULL, "(public-key(rsa(n%m)(e%m)))", pkey[0], pkey[1]); if (err) goto leave; err = gcry_sexp_build (&s_data, NULL, "%m", data); if (err) goto leave; err = gcry_pk_encrypt (&s_ciph, s_data, s_pkey); if (err) goto leave; gcry_sexp_release (s_data); s_data = NULL; gcry_sexp_release (s_pkey); s_pkey = NULL; resarr[0] = get_mpi_from_sexp (s_ciph, "a", GCRYMPI_FMT_USG); if (!is_RSA (algo)) resarr[1] = get_mpi_from_sexp (s_ciph, "b", GCRYMPI_FMT_USG); leave: gcry_sexp_release (s_data); gcry_sexp_release (s_pkey); gcry_sexp_release (s_ciph); return err; } /* * Emulate our old PK interface here - sometime in the future we might * change the internal design to directly fit to libgcrypt. PK is is * the OpenPGP public key packet, DATA is an MPI with the to be * encrypted data, and RESARR receives the encrypted data. RESARRAY * is expected to be an two item array which will be filled with newly * allocated MPIs. SESKEY_ALGO is required for public key algorithms * which do not encode it in DATA. */ gpg_error_t pk_encrypt (PKT_public_key *pk, gcry_mpi_t data, int seskey_algo, gcry_mpi_t *resarr) { pubkey_algo_t algo = pk->pubkey_algo; if (algo == PUBKEY_ALGO_KYBER) return do_encrypt_kem (pk, data, seskey_algo, resarr); else if (algo == PUBKEY_ALGO_ECDH) return do_encrypt_ecdh (pk, data, resarr); else if (algo == PUBKEY_ALGO_ELGAMAL || algo == PUBKEY_ALGO_ELGAMAL_E) return do_encrypt_rsa_elg (pk, data, resarr); else if (algo == PUBKEY_ALGO_RSA || algo == PUBKEY_ALGO_RSA_E) return do_encrypt_rsa_elg (pk, data, resarr); else return gpg_error (GPG_ERR_PUBKEY_ALGO); } /* Check whether SKEY is a suitable secret key. */ int pk_check_secret_key (pubkey_algo_t pkalgo, gcry_mpi_t *skey) { gcry_sexp_t s_skey; int rc; if (pkalgo == PUBKEY_ALGO_DSA) { rc = gcry_sexp_build (&s_skey, NULL, "(private-key(dsa(p%m)(q%m)(g%m)(y%m)(x%m)))", skey[0], skey[1], skey[2], skey[3], skey[4]); } else if (pkalgo == PUBKEY_ALGO_ELGAMAL || pkalgo == PUBKEY_ALGO_ELGAMAL_E) { rc = gcry_sexp_build (&s_skey, NULL, "(private-key(elg(p%m)(g%m)(y%m)(x%m)))", skey[0], skey[1], skey[2], skey[3]); } else if (is_RSA (pkalgo)) { rc = gcry_sexp_build (&s_skey, NULL, "(private-key(rsa(n%m)(e%m)(d%m)(p%m)(q%m)(u%m)))", skey[0], skey[1], skey[2], skey[3], skey[4], skey[5]); } else if (pkalgo == PUBKEY_ALGO_ECDSA || pkalgo == PUBKEY_ALGO_ECDH) { char *curve = openpgp_oid_to_str (skey[0]); if (!curve) rc = gpg_error_from_syserror (); else { rc = gcry_sexp_build (&s_skey, NULL, "(private-key(ecc(curve%s)(q%m)(d%m)))", curve, skey[1], skey[2]); xfree (curve); } } else if (pkalgo == PUBKEY_ALGO_EDDSA) { char *curve = openpgp_oid_to_str (skey[0]); if (!curve) rc = gpg_error_from_syserror (); else { const char *fmt; if (openpgp_oid_is_ed25519 (skey[0])) fmt = "(private-key(ecc(curve %s)(flags eddsa)(q%m)(d%m)))"; else fmt = "(private-key(ecc(curve %s)(q%m)(d%m)))"; rc = gcry_sexp_build (&s_skey, NULL, fmt, curve, skey[1], skey[2]); xfree (curve); } } else return GPG_ERR_PUBKEY_ALGO; if (!rc) { rc = gcry_pk_testkey (s_skey); gcry_sexp_release (s_skey); } return rc; }