/* ecdh.c - ECDH public key operations used in public key glue code
 *	Copyright (C) 2010, 2011 Free Software Foundation, Inc.
 *
 * This file is part of GnuPG.
 *
 * GnuPG is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * GnuPG is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <https://www.gnu.org/licenses/>.
 */

#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>

#include "gpg.h"
#include "../common/util.h"
#include "pkglue.h"
#include "main.h"
#include "options.h"

/* A table with the default KEK parameters used by GnuPG.  */
static const struct
{
  unsigned int qbits;
  int openpgp_hash_id;   /* KEK digest algorithm. */
  int openpgp_cipher_id; /* KEK cipher algorithm. */
} kek_params_table[] =
  /* Note: Must be sorted by ascending values for QBITS.  */
  {
    { 256, DIGEST_ALGO_SHA256, CIPHER_ALGO_AES    },
    { 384, DIGEST_ALGO_SHA384, CIPHER_ALGO_AES256 },

    /* Note: 528 is 521 rounded to the 8 bit boundary */
    { 528, DIGEST_ALGO_SHA512, CIPHER_ALGO_AES256 }
  };



/* Return KEK parameters as an opaque MPI The caller must free the
   returned value.  Returns NULL and sets ERRNO on error.  */
gcry_mpi_t
pk_ecdh_default_params (unsigned int qbits)
{
  byte *kek_params;
  int i;

  kek_params = xtrymalloc (4);
  if (!kek_params)
    return NULL;
  kek_params[0] = 3; /* Number of bytes to follow. */
  kek_params[1] = 1; /* Version for KDF+AESWRAP.   */

  /* Search for matching KEK parameter.  Defaults to the strongest
     possible choices.  Performance is not an issue here, only
     interoperability.  */
  for (i=0; i < DIM (kek_params_table); i++)
    {
      if (kek_params_table[i].qbits >= qbits
          || i+1 == DIM (kek_params_table))
        {
          kek_params[2] = kek_params_table[i].openpgp_hash_id;
          kek_params[3] = kek_params_table[i].openpgp_cipher_id;
          break;
        }
    }
  log_assert (i < DIM (kek_params_table));
  if (DBG_CRYPTO)
    log_printhex (kek_params, sizeof(kek_params), "ECDH KEK params are");

  return gcry_mpi_set_opaque (NULL, kek_params, 4 * 8);
}


/* Extract xcomponent from the point SHARED.  POINT_NBYTES is the
   size to represent an EC point which is determined by the public
   key.  SECRET_X_SIZE is the size of x component to represent an
   integer which is determined by the curve. */
static gpg_error_t
extract_secret_x (byte **r_secret_x,
                  const char *shared, size_t nshared,
                  size_t point_nbytes, size_t secret_x_size)
{
  byte *secret_x;

  *r_secret_x = NULL;

  /* Extract X from the result.  It must be in the format of:
     04 || X || Y
     40 || X
     41 || X

     Since it may come with the prefix, the size of point is larger
     than or equals to the size of an integer X.  */
  if (point_nbytes < secret_x_size)
    return gpg_error (GPG_ERR_BAD_DATA);

  /* Extract x component of the shared point: this is the actual
     shared secret. */
  secret_x = xtrymalloc_secure (point_nbytes);
  if (!secret_x)
    return gpg_error_from_syserror ();

  memcpy (secret_x, shared, nshared);

  /* Remove the prefix.  */
  if ((point_nbytes & 1))
    memmove (secret_x, secret_x+1, secret_x_size);

  /* Clear the rest of data.  */
  if (point_nbytes - secret_x_size)
    memset (secret_x+secret_x_size, 0, point_nbytes-secret_x_size);

  if (DBG_CRYPTO)
    log_printhex (secret_x, secret_x_size, "ECDH shared secret X is:");

  *r_secret_x = secret_x;
  return 0;
}


static gpg_error_t
build_kdf_params (unsigned char kdf_params[256], size_t *r_size,
                  gcry_mpi_t *pkey, const byte pk_fp[MAX_FINGERPRINT_LEN])
{
  IOBUF obuf;
  gpg_error_t err;

  *r_size = 0;

  obuf = iobuf_temp();
  if (!obuf)
    return gpg_error_from_syserror ();

  /* variable-length field 1, curve name OID */
  err = gpg_mpi_write_nohdr (obuf, pkey[0]);
  /* fixed-length field 2 */
  iobuf_put (obuf, PUBKEY_ALGO_ECDH);
  /* variable-length field 3, KDF params */
  err = (err ? err : gpg_mpi_write_nohdr (obuf, pkey[2]));
  /* fixed-length field 4 */
  iobuf_write (obuf, "Anonymous Sender    ", 20);
  /* fixed-length field 5, recipient fp */
  iobuf_write (obuf, pk_fp, 20);

  if (!err)
    *r_size = iobuf_temp_to_buffer (obuf, kdf_params, 256);

  iobuf_close (obuf);

  if (!err)
    {
      if (DBG_CRYPTO)
        log_printhex (kdf_params, *r_size, "ecdh KDF message params are:");
    }

  return err;
}


/* Derive KEK with KEK_SIZE into the memory at SECRET_X.  */
static gpg_error_t
derive_kek (size_t kek_size,
            int kdf_hash_algo,
            byte *secret_x, int secret_x_size,
            const unsigned char *kdf_params, size_t kdf_params_size)
{
  gpg_error_t err;
  gcry_md_hd_t h;

  log_assert( gcry_md_get_algo_dlen (kdf_hash_algo) >= 32 );

  err = gcry_md_open (&h, kdf_hash_algo, 0);
  if (err)
    {
      log_error ("gcry_md_open failed for kdf_hash_algo %d: %s",
                 kdf_hash_algo, gpg_strerror (err));
      return err;
    }
  gcry_md_write(h, "\x00\x00\x00\x01", 4);      /* counter = 1 */
  gcry_md_write(h, secret_x, secret_x_size);    /* x of the point X */
  gcry_md_write(h, kdf_params, kdf_params_size);      /* KDF parameters */
  gcry_md_final (h);
  memcpy (secret_x, gcry_md_read (h, kdf_hash_algo), kek_size);
  gcry_md_close (h);
  /* Clean the tail before returning.  */
  memset (secret_x+kek_size, 0, secret_x_size - kek_size);
  if (DBG_CRYPTO)
    log_printhex (secret_x, kek_size, "ecdh KEK is:");
  return err;
}


/* Prepare ECDH using SHARED, PK_FP fingerprint, and PKEY array.
   Returns the cipher handle in R_HD, which needs to be closed by
   the caller.  */
static gpg_error_t
prepare_ecdh_with_shared_point (const char *shared, size_t nshared,
                                const byte pk_fp[MAX_FINGERPRINT_LEN],
                                gcry_mpi_t *pkey, gcry_cipher_hd_t *r_hd)
{
  gpg_error_t err;
  byte *secret_x;
  int secret_x_size;
  unsigned int nbits;
  const unsigned char *kek_params;
  size_t kek_params_size;
  int kdf_hash_algo;
  int kdf_encr_algo;
  unsigned char kdf_params[256];
  size_t kdf_params_size;
  size_t kek_size;
  gcry_cipher_hd_t hd;

  *r_hd = NULL;

  if (!gcry_mpi_get_flag (pkey[2], GCRYMPI_FLAG_OPAQUE))
    return gpg_error (GPG_ERR_BUG);

  kek_params = gcry_mpi_get_opaque (pkey[2], &nbits);
  kek_params_size = (nbits+7)/8;

  if (DBG_CRYPTO)
    log_printhex (kek_params, kek_params_size, "ecdh KDF params:");

  /* Expect 4 bytes  03 01 hash_alg symm_alg.  */
  if (kek_params_size != 4 || kek_params[0] != 3 || kek_params[1] != 1)
    return gpg_error (GPG_ERR_BAD_PUBKEY);

  kdf_hash_algo = kek_params[2];
  kdf_encr_algo = kek_params[3];

  if (DBG_CRYPTO)
    log_debug ("ecdh KDF algorithms %s+%s with aeswrap\n",
               openpgp_md_algo_name (kdf_hash_algo),
               openpgp_cipher_algo_name (kdf_encr_algo));

  if (kdf_hash_algo != GCRY_MD_SHA256
      && kdf_hash_algo != GCRY_MD_SHA384
      && kdf_hash_algo != GCRY_MD_SHA512)
    return gpg_error (GPG_ERR_BAD_PUBKEY);

  if (kdf_encr_algo != CIPHER_ALGO_AES
      && kdf_encr_algo != CIPHER_ALGO_AES192
      && kdf_encr_algo != CIPHER_ALGO_AES256)
    return gpg_error (GPG_ERR_BAD_PUBKEY);

  kek_size = gcry_cipher_get_algo_keylen (kdf_encr_algo);
  if (kek_size > gcry_md_get_algo_dlen (kdf_hash_algo))
    return gpg_error (GPG_ERR_BAD_PUBKEY);

  /* Build kdf_params.  */
  err = build_kdf_params (kdf_params, &kdf_params_size, pkey, pk_fp);
  if (err)
    return err;

  nbits = pubkey_nbits (PUBKEY_ALGO_ECDH, pkey);
  if (!nbits)
    return gpg_error (GPG_ERR_TOO_SHORT);

  secret_x_size = (nbits+7)/8;
  if (kek_size > secret_x_size)
    return gpg_error (GPG_ERR_BAD_PUBKEY);

  err = extract_secret_x (&secret_x, shared, nshared,
                          /* pkey[1] is the public point */
                          (mpi_get_nbits (pkey[1])+7)/8,
                          secret_x_size);
  if (err)
    return err;

  /*** We have now the shared secret bytes in secret_x. ***/

  /* At this point we are done with PK encryption and the rest of the
   * function uses symmetric key encryption techniques to protect the
   * input DATA.  The following two sections will simply replace
   * current secret_x with a value derived from it.  This will become
   * a KEK.
   */

  /* Derive a KEK (key wrapping key) using SECRET_X and KDF_PARAMS. */
  err = derive_kek (kek_size, kdf_hash_algo, secret_x,
                    secret_x_size, kdf_params, kdf_params_size);
  if (err)
    {
      xfree (secret_x);
      return err;
    }

  /* And, finally, aeswrap with key secret_x.  */
  err = gcry_cipher_open (&hd, kdf_encr_algo, GCRY_CIPHER_MODE_AESWRAP, 0);
  if (err)
    {
      log_error ("ecdh failed to initialize AESWRAP: %s\n",
                 gpg_strerror (err));
      xfree (secret_x);
      return err;
    }

  err = gcry_cipher_setkey (hd, secret_x, kek_size);
  xfree (secret_x);
  secret_x = NULL;
  if (err)
    {
      gcry_cipher_close (hd);
      log_error ("ecdh failed in gcry_cipher_setkey: %s\n",
                 gpg_strerror (err));
    }
  else
    *r_hd = hd;

  return err;
}

/* Encrypts DATA using a key derived from the ECC shared point SHARED
   using the FIPS SP 800-56A compliant method
   key_derivation+key_wrapping.  PKEY is the public key and PK_FP the
   fingerprint of this public key.  On success the result is stored at
   R_RESULT; on failure NULL is stored at R_RESULT and an error code
   returned.  */
gpg_error_t
pk_ecdh_encrypt_with_shared_point (const char *shared, size_t nshared,
                                   const byte pk_fp[MAX_FINGERPRINT_LEN],
                                   const byte *data, size_t ndata,
                                   gcry_mpi_t *pkey, gcry_mpi_t *r_result)
{
  gpg_error_t err;
  gcry_cipher_hd_t hd;
  byte *data_buf;
  int data_buf_size;
  gcry_mpi_t result;
  byte *in;

  *r_result = NULL;

  err = prepare_ecdh_with_shared_point (shared, nshared, pk_fp, pkey, &hd);
  if (err)
    return err;

  data_buf_size = ndata;
  if ((data_buf_size & 7) != 0)
    {
      log_error ("can't use a shared secret of %d bytes for ecdh\n",
                 data_buf_size);
      gcry_cipher_close (hd);
      return gpg_error (GPG_ERR_BAD_DATA);
    }

  data_buf = xtrymalloc_secure( 1 + 2*data_buf_size + 8);
  if (!data_buf)
    {
      err = gpg_error_from_syserror ();
      gcry_cipher_close (hd);
      return err;
    }

  in = data_buf+1+data_buf_size+8;

  /* Write data MPI into the end of data_buf. data_buf is size
     aeswrap data.  */
  memcpy (in, data, ndata);

  if (DBG_CRYPTO)
    log_printhex (in, data_buf_size, "ecdh encrypting  :");

  err = gcry_cipher_encrypt (hd, data_buf+1, data_buf_size+8,
                             in, data_buf_size);
  memset (in, 0, data_buf_size);
  gcry_cipher_close (hd);
  if (err)
    {
      log_error ("ecdh failed in gcry_cipher_encrypt: %s\n",
                 gpg_strerror (err));
      xfree (data_buf);
      return err;
    }
  data_buf[0] = data_buf_size+8;

  if (DBG_CRYPTO)
    log_printhex (data_buf+1, data_buf[0], "ecdh encrypted to:");

  result = gcry_mpi_set_opaque (NULL, data_buf, 8 * (1+data_buf[0]));
  if (!result)
    {
      err = gpg_error_from_syserror ();
      xfree (data_buf);
      log_error ("ecdh failed to create an MPI: %s\n",
                 gpg_strerror (err));
      return err;
    }

  *r_result = result;
  return err;
}


static gcry_mpi_t
gen_k (unsigned nbits, int little_endian, int is_opaque)
{
  gcry_mpi_t k;

  if (is_opaque)
    {
      unsigned char *p;
      size_t nbytes = (nbits+7)/8;

      p = gcry_random_bytes_secure (nbytes, GCRY_STRONG_RANDOM);
      if ((nbits % 8))
        {
          if (little_endian)
            p[nbytes-1] &= ((1 << (nbits % 8)) - 1);
          else
            p[0] &= ((1 << (nbits % 8)) - 1);
        }
      k = gcry_mpi_set_opaque (NULL, p, nbits);
      return k;
    }

  k = gcry_mpi_snew (nbits);
  if (DBG_CRYPTO)
    log_debug ("choosing a random k of %u bits\n", nbits);

  gcry_mpi_randomize (k, nbits-1, GCRY_STRONG_RANDOM);

  if (DBG_CRYPTO)
    {
      unsigned char *buffer;
      if (gcry_mpi_aprint (GCRYMPI_FMT_HEX, &buffer, NULL, k))
        BUG ();
      log_debug ("ephemeral scalar MPI #0: %s\n", buffer);
      gcry_free (buffer);
    }

  return k;
}


/* Generate an ephemeral key for the public ECDH key in PKEY.  On
   success the generated key is stored at R_K; on failure NULL is
   stored at R_K and an error code returned.  */
gpg_error_t
pk_ecdh_generate_ephemeral_key (gcry_mpi_t *pkey, gcry_mpi_t *r_k)
{
  unsigned int nbits;
  gcry_mpi_t k;
  int is_little_endian = 0;
  int require_opaque = 0;

  if (openpgp_oid_is_cv448 (pkey[0]))
    {
      is_little_endian = 1;
      require_opaque = 1;
    }

  *r_k = NULL;

  nbits = pubkey_nbits (PUBKEY_ALGO_ECDH, pkey);
  if (!nbits)
    return gpg_error (GPG_ERR_TOO_SHORT);
  k = gen_k (nbits, is_little_endian, require_opaque);
  if (!k)
    BUG ();

  *r_k = k;
  return 0;
}



/* Perform ECDH decryption.   */
int
pk_ecdh_decrypt (gcry_mpi_t *r_result, const byte sk_fp[MAX_FINGERPRINT_LEN],
                 gcry_mpi_t data,
                 const byte *shared, size_t nshared, gcry_mpi_t * skey)
{
  gpg_error_t err;
  gcry_cipher_hd_t hd;
  size_t nbytes;
  byte *data_buf;
  int data_buf_size;
  byte *in;
  const void *p;
  unsigned int nbits;

  *r_result = NULL;

  err = prepare_ecdh_with_shared_point (shared, nshared, sk_fp, skey, &hd);
  if (err)
    return err;

  p = gcry_mpi_get_opaque (data, &nbits);
  nbytes = (nbits+7)/8;

  data_buf_size = nbytes;
  if ((data_buf_size & 7) != 1)
    {
      log_error ("can't use a shared secret of %d bytes for ecdh\n",
                 data_buf_size);
      gcry_cipher_close (hd);
      return gpg_error (GPG_ERR_BAD_DATA);
    }

  data_buf = xtrymalloc_secure( 1 + 2*data_buf_size + 8);
  if (!data_buf)
    {
      err = gpg_error_from_syserror ();
      gcry_cipher_close (hd);
      return err;
    }

  if (!p)
    {
      xfree (data_buf);
      gcry_cipher_close (hd);
      return gpg_error (GPG_ERR_BAD_MPI);
    }
  memcpy (data_buf, p, nbytes);
  if (data_buf[0] != nbytes-1)
    {
      log_error ("ecdh inconsistent size\n");
      xfree (data_buf);
      gcry_cipher_close (hd);
      return gpg_error (GPG_ERR_BAD_MPI);
    }
  in = data_buf+data_buf_size;
  data_buf_size = data_buf[0];

  if (DBG_CRYPTO)
    log_printhex (data_buf+1, data_buf_size, "ecdh decrypting :");

  err = gcry_cipher_decrypt (hd, in, data_buf_size, data_buf+1,
                             data_buf_size);
  gcry_cipher_close (hd);
  if (err)
    {
      log_error ("ecdh failed in gcry_cipher_decrypt: %s\n",
                 gpg_strerror (err));
      xfree (data_buf);
      return err;
    }

  data_buf_size -= 8;

  if (DBG_CRYPTO)
    log_printhex (in, data_buf_size, "ecdh decrypted to :");

  /* Padding is removed later.  */
  /* if (in[data_buf_size-1] > 8 ) */
  /*   { */
  /*     log_error ("ecdh failed at decryption: invalid padding." */
  /*                " 0x%02x > 8\n", in[data_buf_size-1] ); */
  /*     return gpg_error (GPG_ERR_BAD_KEY); */
  /*   } */

  err = gcry_mpi_scan (r_result, GCRYMPI_FMT_USG, in, data_buf_size, NULL);
  xfree (data_buf);
  if (err)
    {
      log_error ("ecdh failed to create a plain text MPI: %s\n",
                 gpg_strerror (err));
      return err;
    }

  return err;
}