/* ecdh.c - ECDH public key operations used in public key glue code * Copyright (C) 2010, 2011 Free Software Foundation, Inc. * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include #include "gpg.h" #include "util.h" #include "pkglue.h" #include "main.h" #include "options.h" /* A table with the default KEK parameters used by GnuPG. */ static const struct { unsigned int qbits; int openpgp_hash_id; /* KEK digest algorithm. */ int openpgp_cipher_id; /* KEK cipher algorithm. */ } kek_params_table[] = /* Note: Must be sorted by ascending values for QBITS. */ { { 256, DIGEST_ALGO_SHA256, CIPHER_ALGO_AES }, { 384, DIGEST_ALGO_SHA384, CIPHER_ALGO_AES256 }, /* Note: 528 is 521 rounded to the 8 bit boundary */ { 528, DIGEST_ALGO_SHA512, CIPHER_ALGO_AES256 } }; /* Return KEK parameters as an opaque MPI The caller must free the returned value. Returns NULL and sets ERRNO on error. */ gcry_mpi_t pk_ecdh_default_params (unsigned int qbits) { byte *kek_params; int i; kek_params = xtrymalloc (4); if (!kek_params) return NULL; kek_params[0] = 3; /* Number of bytes to follow. */ kek_params[1] = 1; /* Version for KDF+AESWRAP. */ /* Search for matching KEK parameter. Defaults to the strongest possible choices. Performance is not an issue here, only interoperability. */ for (i=0; i < DIM (kek_params_table); i++) { if (kek_params_table[i].qbits >= qbits || i+1 == DIM (kek_params_table)) { kek_params[2] = kek_params_table[i].openpgp_hash_id; kek_params[3] = kek_params_table[i].openpgp_cipher_id; break; } } assert (i < DIM (kek_params_table)); if (DBG_CIPHER) log_printhex ("ECDH KEK params are", kek_params, sizeof(kek_params) ); return gcry_mpi_set_opaque (NULL, kek_params, 4 * 8); } /* Encrypts/decrypts DATA using a key derived from the ECC shared point SHARED_MPI using the FIPS SP 800-56A compliant method key_derivation+key_wrapping. If IS_ENCRYPT is true the function encrypts; if false, it decrypts. PKEY is the public key and PK_FP the fingerprint of this public key. On success the result is stored at R_RESULT; on failure NULL is stored at R_RESULT and an error code returned. */ gpg_error_t pk_ecdh_encrypt_with_shared_point (int is_encrypt, gcry_mpi_t shared_mpi, const byte pk_fp[MAX_FINGERPRINT_LEN], gcry_mpi_t data, gcry_mpi_t *pkey, gcry_mpi_t *r_result) { gpg_error_t err; byte *secret_x; int secret_x_size; unsigned int nbits; const unsigned char *kek_params; size_t kek_params_size; int kdf_hash_algo; int kdf_encr_algo; unsigned char message[256]; size_t message_size; *r_result = NULL; nbits = pubkey_nbits (PUBKEY_ALGO_ECDH, pkey); if (!nbits) return gpg_error (GPG_ERR_TOO_SHORT); { size_t nbytes; /* Extract x component of the shared point: this is the actual shared secret. */ nbytes = (mpi_get_nbits (pkey[1] /* public point */)+7)/8; secret_x = xtrymalloc_secure (nbytes); if (!secret_x) return gpg_error_from_syserror (); err = gcry_mpi_print (GCRYMPI_FMT_USG, secret_x, nbytes, &nbytes, shared_mpi); if (err) { xfree (secret_x); log_error ("ECDH ephemeral export of shared point failed: %s\n", gpg_strerror (err)); return err; } secret_x_size = (nbits+7)/8; assert (nbytes > secret_x_size); memmove (secret_x, secret_x+1, secret_x_size); memset (secret_x+secret_x_size, 0, nbytes-secret_x_size); if (DBG_CIPHER) log_printhex ("ECDH shared secret X is:", secret_x, secret_x_size ); } /*** We have now the shared secret bytes in secret_x. ***/ /* At this point we are done with PK encryption and the rest of the * function uses symmetric key encryption techniques to protect the * input DATA. The following two sections will simply replace * current secret_x with a value derived from it. This will become * a KEK. */ if (!gcry_mpi_get_flag (pkey[2], GCRYMPI_FLAG_OPAQUE)) { xfree (secret_x); return gpg_error (GPG_ERR_BUG); } kek_params = gcry_mpi_get_opaque (pkey[2], &nbits); kek_params_size = (nbits+7)/8; if (DBG_CIPHER) log_printhex ("ecdh KDF params:", kek_params, kek_params_size); /* Expect 4 bytes 03 01 hash_alg symm_alg. */ if (kek_params_size != 4 || kek_params[0] != 3 || kek_params[1] != 1) { xfree (secret_x); return gpg_error (GPG_ERR_BAD_PUBKEY); } kdf_hash_algo = kek_params[2]; kdf_encr_algo = kek_params[3]; if (DBG_CIPHER) log_debug ("ecdh KDF algorithms %s+%s with aeswrap\n", openpgp_md_algo_name (kdf_hash_algo), openpgp_cipher_algo_name (kdf_encr_algo)); if (kdf_hash_algo != GCRY_MD_SHA256 && kdf_hash_algo != GCRY_MD_SHA384 && kdf_hash_algo != GCRY_MD_SHA512) { xfree (secret_x); return gpg_error (GPG_ERR_BAD_PUBKEY); } if (kdf_encr_algo != GCRY_CIPHER_AES128 && kdf_encr_algo != GCRY_CIPHER_AES192 && kdf_encr_algo != GCRY_CIPHER_AES256) { xfree (secret_x); return gpg_error (GPG_ERR_BAD_PUBKEY); } /* Build kdf_params. */ { IOBUF obuf; obuf = iobuf_temp(); /* variable-length field 1, curve name OID */ err = gpg_mpi_write_nohdr (obuf, pkey[0]); /* fixed-length field 2 */ iobuf_put (obuf, PUBKEY_ALGO_ECDH); /* variable-length field 3, KDF params */ err = (err ? err : gpg_mpi_write_nohdr (obuf, pkey[2])); /* fixed-length field 4 */ iobuf_write (obuf, "Anonymous Sender ", 20); /* fixed-length field 5, recipient fp */ iobuf_write (obuf, pk_fp, 20); message_size = iobuf_temp_to_buffer (obuf, message, sizeof message); iobuf_close (obuf); if (err) { xfree (secret_x); return err; } if(DBG_CIPHER) log_printhex ("ecdh KDF message params are:", message, message_size); } /* Derive a KEK (key wrapping key) using MESSAGE and SECRET_X. */ { gcry_md_hd_t h; int old_size; err = gcry_md_open (&h, kdf_hash_algo, 0); if (err) { log_error ("gcry_md_open failed for kdf_hash_algo %d: %s", kdf_hash_algo, gpg_strerror (err)); xfree (secret_x); return err; } gcry_md_write(h, "\x00\x00\x00\x01", 4); /* counter = 1 */ gcry_md_write(h, secret_x, secret_x_size); /* x of the point X */ gcry_md_write(h, message, message_size);/* KDF parameters */ gcry_md_final (h); assert( gcry_md_get_algo_dlen (kdf_hash_algo) >= 32 ); memcpy (secret_x, gcry_md_read (h, kdf_hash_algo), gcry_md_get_algo_dlen (kdf_hash_algo)); gcry_md_close (h); old_size = secret_x_size; assert( old_size >= gcry_cipher_get_algo_keylen( kdf_encr_algo ) ); secret_x_size = gcry_cipher_get_algo_keylen( kdf_encr_algo ); assert( secret_x_size <= gcry_md_get_algo_dlen (kdf_hash_algo) ); /* We could have allocated more, so clean the tail before returning. */ memset( secret_x+secret_x_size, old_size-secret_x_size, 0 ); if (DBG_CIPHER) log_printhex ("ecdh KEK is:", secret_x, secret_x_size ); } /* And, finally, aeswrap with key secret_x. */ { gcry_cipher_hd_t hd; size_t nbytes; byte *data_buf; int data_buf_size; gcry_mpi_t result; err = gcry_cipher_open (&hd, kdf_encr_algo, GCRY_CIPHER_MODE_AESWRAP, 0); if (err) { log_error ("ecdh failed to initialize AESWRAP: %s\n", gpg_strerror (err)); xfree (secret_x); return err; } err = gcry_cipher_setkey (hd, secret_x, secret_x_size); xfree (secret_x); secret_x = NULL; if (err) { gcry_cipher_close (hd); log_error ("ecdh failed in gcry_cipher_setkey: %s\n", gpg_strerror (err)); return err; } data_buf_size = (gcry_mpi_get_nbits(data)+7)/8; if ((data_buf_size & 7) != (is_encrypt ? 0 : 1)) { log_error ("can't use a shared secret of %d bytes for ecdh\n", data_buf_size); return gpg_error (GPG_ERR_BAD_DATA); } data_buf = xtrymalloc_secure( 1 + 2*data_buf_size + 8); if (!data_buf) { err = gpg_error_from_syserror (); gcry_cipher_close (hd); return err; } if (is_encrypt) { byte *in = data_buf+1+data_buf_size+8; /* Write data MPI into the end of data_buf. data_buf is size aeswrap data. */ err = gcry_mpi_print (GCRYMPI_FMT_USG, in, data_buf_size, &nbytes, data/*in*/); if (err) { log_error ("ecdh failed to export DEK: %s\n", gpg_strerror (err)); gcry_cipher_close (hd); xfree (data_buf); return err; } if (DBG_CIPHER) log_printhex ("ecdh encrypting :", in, data_buf_size ); err = gcry_cipher_encrypt (hd, data_buf+1, data_buf_size+8, in, data_buf_size); memset (in, 0, data_buf_size); gcry_cipher_close (hd); if (err) { log_error ("ecdh failed in gcry_cipher_encrypt: %s\n", gpg_strerror (err)); xfree (data_buf); return err; } data_buf[0] = data_buf_size+8; if (DBG_CIPHER) log_printhex ("ecdh encrypted to:", data_buf+1, data_buf[0] ); result = gcry_mpi_set_opaque (NULL, data_buf, 8 * (1+data_buf[0])); if (!result) { err = gpg_error_from_syserror (); xfree (data_buf); log_error ("ecdh failed to create an MPI: %s\n", gpg_strerror (err)); return err; } *r_result = result; } else { byte *in; const void *p; p = gcry_mpi_get_opaque (data, &nbits); nbytes = (nbits+7)/8; if (!p || nbytes > data_buf_size || !nbytes) { xfree (data_buf); return gpg_error (GPG_ERR_BAD_MPI); } memcpy (data_buf, p, nbytes); if (data_buf[0] != nbytes-1) { log_error ("ecdh inconsistent size\n"); xfree (data_buf); return gpg_error (GPG_ERR_BAD_MPI); } in = data_buf+data_buf_size; data_buf_size = data_buf[0]; if (DBG_CIPHER) log_printhex ("ecdh decrypting :", data_buf+1, data_buf_size); err = gcry_cipher_decrypt (hd, in, data_buf_size, data_buf+1, data_buf_size); gcry_cipher_close (hd); if (err) { log_error ("ecdh failed in gcry_cipher_decrypt: %s\n", gpg_strerror (err)); xfree (data_buf); return err; } data_buf_size -= 8; if (DBG_CIPHER) log_printhex ("ecdh decrypted to :", in, data_buf_size); /* Padding is removed later. */ /* if (in[data_buf_size-1] > 8 ) */ /* { */ /* log_error ("ecdh failed at decryption: invalid padding." */ /* " 0x%02x > 8\n", in[data_buf_size-1] ); */ /* return gpg_error (GPG_ERR_BAD_KEY); */ /* } */ err = gcry_mpi_scan (&result, GCRYMPI_FMT_USG, in, data_buf_size, NULL); xfree (data_buf); if (err) { log_error ("ecdh failed to create a plain text MPI: %s\n", gpg_strerror (err)); return err; } *r_result = result; } } return err; } static gcry_mpi_t gen_k (unsigned nbits) { gcry_mpi_t k; k = gcry_mpi_snew (nbits); if (DBG_CIPHER) log_debug ("choosing a random k of %u bits\n", nbits); gcry_mpi_randomize (k, nbits-1, GCRY_STRONG_RANDOM); if (DBG_CIPHER) { unsigned char *buffer; if (gcry_mpi_aprint (GCRYMPI_FMT_HEX, &buffer, NULL, k)) BUG (); log_debug ("ephemeral scalar MPI #0: %s\n", buffer); gcry_free (buffer); } return k; } /* Generate an ephemeral key for the public ECDH key in PKEY. On success the generated key is stored at R_K; on failure NULL is stored at R_K and an error code returned. */ gpg_error_t pk_ecdh_generate_ephemeral_key (gcry_mpi_t *pkey, gcry_mpi_t *r_k) { unsigned int nbits; gcry_mpi_t k; *r_k = NULL; nbits = pubkey_nbits (PUBKEY_ALGO_ECDH, pkey); if (!nbits) return gpg_error (GPG_ERR_TOO_SHORT); k = gen_k (nbits); if (!k) BUG (); *r_k = k; return 0; } /* Perform ECDH decryption. */ int pk_ecdh_decrypt (gcry_mpi_t * result, const byte sk_fp[MAX_FINGERPRINT_LEN], gcry_mpi_t data, gcry_mpi_t shared, gcry_mpi_t * skey) { if (!data) return gpg_error (GPG_ERR_BAD_MPI); return pk_ecdh_encrypt_with_shared_point (0 /*=decryption*/, shared, sk_fp, data/*encr data as an MPI*/, skey, result); }