/* rsa.c - RSA function * Copyright (c) 1997 by Werner Koch (dd9jn) * * ATTENTION: This code should not be exported from the United States * nor should it be used their without a license agreement with PKP. * The RSA alorithm is protected by U.S. Patent #4,405,829 which * expires on September 20, 2000! * * For a description of the algorithm, see: * Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996. * ISBN 0-471-11709-9. Pages 466 ff. * * This file is part of G10. * * G10 is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * G10 is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #include #include #include #include #include "util.h" #include "mpi.h" #include "cipher.h" void rsa_free_public_key( RSA_public_key *pk ) { mpi_free( pk->n ); pk->n = NULL; mpi_free( pk->e ); pk->e = NULL; } void rsa_free_secret_key( RSA_secret_key *sk ) { mpi_free( sk->e ); sk->e = NULL; mpi_free( sk->n ); sk->n = NULL; mpi_free( sk->p ); sk->p = NULL; mpi_free( sk->q ); sk->q = NULL; mpi_free( sk->d ); sk->d = NULL; mpi_free( sk->u ); sk->u = NULL; } static void test_keys( RSA_public_key *pk, RSA_secret_key *sk, unsigned nbits ) { MPI test = mpi_alloc( nbits / BITS_PER_MPI_LIMB ); MPI out1 = mpi_alloc( nbits / BITS_PER_MPI_LIMB ); MPI out2 = mpi_alloc( nbits / BITS_PER_MPI_LIMB ); mpi_set_bytes( test, nbits, get_random_byte, 0 ); rsa_public( out1, test, pk ); rsa_secret( out2, out1, sk ); if( mpi_cmp( test, out2 ) ) log_fatal("RSA operation: public, secret failed\n"); rsa_secret( out1, test, sk ); rsa_public( out2, out1, pk ); if( mpi_cmp( test, out2 ) ) log_fatal("RSA operation: secret, public failed\n"); mpi_free( test ); mpi_free( out1 ); mpi_free( out2 ); } /**************** * Generate a key pair with a key of size NBITS * Returns: 2 structures filles with all needed values */ void rsa_generate( RSA_public_key *pk, RSA_secret_key *sk, unsigned nbits ) { MPI p, q; /* the two primes */ MPI d; /* the private key */ MPI u; MPI t1, t2; MPI n; /* the public key */ MPI e; /* the exponent */ MPI phi; /* helper: (p-a)(q-1) */ MPI g; MPI f; /* select two (very secret) primes */ p = generate_secret_prime( nbits / 2 ); q = generate_secret_prime( nbits / 2 ); if( mpi_cmp( p, q ) > 0 ) /* p shall be smaller than q (for calc of u)*/ mpi_swap(p,q); /* calculate Euler totient: phi = (p-1)(q-1) */ t1 = mpi_alloc_secure( mpi_get_nlimbs(p) ); t2 = mpi_alloc_secure( mpi_get_nlimbs(p) ); phi = mpi_alloc_secure( nbits / BITS_PER_MPI_LIMB ); g = mpi_alloc_secure( nbits / BITS_PER_MPI_LIMB ); f = mpi_alloc_secure( nbits / BITS_PER_MPI_LIMB ); mpi_sub_ui( t1, p, 1 ); mpi_sub_ui( t2, q, 1 ); mpi_mul( phi, t1, t2 ); mpi_gcd(g, t1, t2); mpi_fdiv_q(f, phi, g); /* multiply them to make the private key */ n = mpi_alloc( nbits / BITS_PER_MPI_LIMB ); mpi_mul( n, p, q ); /* find a public exponent */ e = mpi_alloc(1); mpi_set_ui( e, 17); /* start with 17 */ while( !mpi_gcd(t1, e, phi) ) /* (while gcd is not 1) */ mpi_add_ui( e, e, 2); /* calculate the secret key d = e^1 mod phi */ d = mpi_alloc( nbits / BITS_PER_MPI_LIMB ); mpi_invm(d, e, f ); /* calculate the inverse of p and q (used for chinese remainder theorem)*/ u = mpi_alloc( nbits / BITS_PER_MPI_LIMB ); mpi_invm(u, p, q ); if( DBG_CIPHER ) { log_mpidump(" p= ", p ); log_mpidump(" q= ", q ); log_mpidump("phi= ", phi ); log_mpidump(" g= ", g ); log_mpidump(" f= ", f ); log_mpidump(" n= ", n ); log_mpidump(" e= ", e ); log_mpidump(" d= ", d ); log_mpidump(" u= ", u ); } mpi_free(t1); mpi_free(t2); mpi_free(phi); mpi_free(f); mpi_free(g); pk->n = mpi_copy(n); pk->e = mpi_copy(e); sk->n = n; sk->e = e; sk->p = p; sk->q = q; sk->d = d; sk->u = u; /* now we can test our keys (this should never fail!) */ test_keys( pk, sk, nbits - 64 ); } /**************** * Public key operation. Encrypt INPUT with PKEY and put result into OUTPUT. * * c = m^e mod n * * Where c is OUTPUT, m is INPUT and e,n are elements of PKEY. */ void rsa_public(MPI output, MPI input, RSA_public_key *pkey ) { if( output == input ) { /* powm doesn't like output and input the same */ MPI x = mpi_alloc( mpi_get_nlimbs(input)*2 ); mpi_powm( x, input, pkey->e, pkey->n ); mpi_set(output, x); mpi_free(x); } else mpi_powm( output, input, pkey->e, pkey->n ); } /**************** * Secret key operation. Encrypt INPUT with SKEY and put result into OUTPUT. * * m = c^d mod n * * Where m is OUTPUT, c is INPUT and d,n are elements of PKEY. * * FIXME: We should better use the Chinese Remainder Theorem */ void rsa_secret(MPI output, MPI input, RSA_secret_key *skey ) { mpi_powm( output, input, skey->d, skey->n ); }