/* primegen.c - prime number generator * Copyright (C) 1998 Free Software Foundation, Inc. * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA * * *********************************************************************** * The algorithm used to generate practically save primes is due to * Lim and Lee as described in the CRYPTO '97 proceedings (ISBN3540633847) * page 260. */ #include #include #include #include #include #include "g10lib.h" #include "mpi.h" #include "cipher.h" static int no_of_small_prime_numbers; static MPI gen_prime( unsigned nbits, int mode, int randomlevel ); static int check_prime( MPI prime, MPI val_2 ); static int is_prime( MPI n, int steps, int *count ); static void m_out_of_n( char *array, int m, int n ); static void progress( int c ) { fputc( c, stderr ); } /**************** * Generate a prime number (stored in secure memory) */ MPI generate_secret_prime( unsigned nbits ) { MPI prime; prime = gen_prime( nbits, 1, 2 ); progress('\n'); return prime; } MPI generate_public_prime( unsigned nbits ) { MPI prime; prime = gen_prime( nbits, 0, 2 ); progress('\n'); return prime; } /**************** * We do not need to use the strongest RNG because we gain no extra * security from it - The prime number is public and we could also * offer the factors for those who are willing to check that it is * indeed a strong prime. * * mode 0: Standard * 1: Make sure that at least one factor is of size qbits. */ MPI generate_elg_prime( int mode, unsigned pbits, unsigned qbits, MPI g, MPI **ret_factors ) { int n; /* number of factors */ int m; /* number of primes in pool */ unsigned fbits; /* length of prime factors */ MPI *factors; /* current factors */ MPI *pool; /* pool of primes */ MPI q; /* first prime factor (variable)*/ MPI prime; /* prime test value */ MPI q_factor; /* used for mode 1 */ byte *perms = NULL; int i, j; int count1, count2; unsigned nprime; unsigned req_qbits = qbits; /* the requested q bits size */ MPI val_2 = mpi_alloc_set_ui( 2 ); /* find number of needed prime factors */ for(n=1; (pbits - qbits - 1) / n >= qbits; n++ ) ; n--; if( !n || (mode==1 && n < 2) ) log_fatal("can't gen prime with pbits=%u qbits=%u\n", pbits, qbits ); if( mode == 1 ) { n--; fbits = (pbits - 2*req_qbits -1) / n; qbits = pbits - req_qbits - n*fbits; } else { fbits = (pbits - req_qbits -1) / n; qbits = pbits - n*fbits; } if( DBG_CIPHER ) log_debug("gen prime: pbits=%u qbits=%u fbits=%u/%u n=%d\n", pbits, req_qbits, qbits, fbits, n ); prime = mpi_alloc( (pbits + BITS_PER_MPI_LIMB - 1) / BITS_PER_MPI_LIMB ); q = gen_prime( qbits, 0, 1 ); q_factor = mode==1? gen_prime( req_qbits, 0, 1 ) : NULL; /* allocate an array to hold the factors + 2 for later usage */ factors = g10_xcalloc( n+2, sizeof *factors ); /* make a pool of 3n+5 primes (this is an arbitrary value) */ m = n*3+5; if( mode == 1 ) m += 5; /* need some more for DSA */ if( m < 25 ) m = 25; pool = g10_xcalloc( m , sizeof *pool ); /* permutate over the pool of primes */ count1=count2=0; do { next_try: if( !perms ) { /* allocate new primes */ for(i=0; i < m; i++ ) { mpi_free(pool[i]); pool[i] = NULL; } /* init m_out_of_n() */ perms = g10_xcalloc( 1, m ); for(i=0; i < n; i++ ) { perms[i] = 1; pool[i] = gen_prime( fbits, 0, 1 ); factors[i] = pool[i]; } } else { m_out_of_n( perms, n, m ); for(i=j=0; i < m && j < n ; i++ ) if( perms[i] ) { if( !pool[i] ) pool[i] = gen_prime( fbits, 0, 1 ); factors[j++] = pool[i]; } if( i == n ) { g10_free(perms); perms = NULL; progress('!'); goto next_try; /* allocate new primes */ } } mpi_set( prime, q ); mpi_mul_ui( prime, prime, 2 ); if( mode == 1 ) mpi_mul( prime, prime, q_factor ); for(i=0; i < n; i++ ) mpi_mul( prime, prime, factors[i] ); mpi_add_ui( prime, prime, 1 ); nprime = mpi_get_nbits(prime); if( nprime < pbits ) { if( ++count1 > 20 ) { count1 = 0; qbits++; progress('>'); q = gen_prime( qbits, 0, 1 ); goto next_try; } } else count1 = 0; if( nprime > pbits ) { if( ++count2 > 20 ) { count2 = 0; qbits--; progress('<'); q = gen_prime( qbits, 0, 1 ); goto next_try; } } else count2 = 0; } while( !(nprime == pbits && check_prime( prime, val_2 )) ); if( DBG_CIPHER ) { progress('\n'); log_mpidump( "prime : ", prime ); log_mpidump( "factor q: ", q ); if( mode == 1 ) log_mpidump( "factor q0: ", q_factor ); for(i=0; i < n; i++ ) log_mpidump( "factor pi: ", factors[i] ); log_debug("bit sizes: prime=%u, q=%u", mpi_get_nbits(prime), mpi_get_nbits(q) ); if( mode == 1 ) fprintf(stderr, ", q0=%u", mpi_get_nbits(q_factor) ); for(i=0; i < n; i++ ) fprintf(stderr, ", p%d=%u", i, mpi_get_nbits(factors[i]) ); progress('\n'); } if( ret_factors ) { /* caller wants the factors */ *ret_factors = g10_xcalloc( n+2 , sizeof **ret_factors); if( mode == 1 ) { i = 0; (*ret_factors)[i++] = mpi_copy( q_factor ); for(; i <= n; i++ ) (*ret_factors)[i] = mpi_copy( factors[i] ); } else { for(; i < n; i++ ) (*ret_factors)[i] = mpi_copy( factors[i] ); } } if( g ) { /* create a generator (start with 3)*/ MPI tmp = mpi_alloc( mpi_get_nlimbs(prime) ); MPI b = mpi_alloc( mpi_get_nlimbs(prime) ); MPI pmin1 = mpi_alloc( mpi_get_nlimbs(prime) ); if( mode == 1 ) BUG(); /* not yet implemented */ factors[n] = q; factors[n+1] = mpi_alloc_set_ui(2); mpi_sub_ui( pmin1, prime, 1 ); mpi_set_ui(g,2); do { mpi_add_ui(g, g, 1); if( DBG_CIPHER ) { log_debug("checking g: "); mpi_print( stderr, g, 1 ); } else progress('^'); for(i=0; i < n+2; i++ ) { /*fputc('~', stderr);*/ mpi_fdiv_q(tmp, pmin1, factors[i] ); /* (no mpi_pow(), but it is okay to use this with mod prime) */ mpi_powm(b, g, tmp, prime ); if( !mpi_cmp_ui(b, 1) ) break; } if( DBG_CIPHER ) progress('\n'); } while( i < n+2 ); mpi_free(factors[n+1]); mpi_free(tmp); mpi_free(b); mpi_free(pmin1); } if( !DBG_CIPHER ) progress('\n'); g10_free( factors ); /* (factors are shallow copies) */ for(i=0; i < m; i++ ) mpi_free( pool[i] ); g10_free( pool ); g10_free(perms); mpi_free(val_2); return prime; } static MPI gen_prime( unsigned nbits, int secret, int randomlevel ) { unsigned nlimbs; MPI prime, ptest, pminus1, val_2, val_3, result; int i; unsigned x, step; unsigned count1, count2; int *mods; if( 0 && DBG_CIPHER ) log_debug("generate a prime of %u bits ", nbits ); if( !no_of_small_prime_numbers ) { for(i=0; small_prime_numbers[i]; i++ ) no_of_small_prime_numbers++; } mods = g10_xmalloc( no_of_small_prime_numbers * sizeof *mods ); /* make nbits fit into MPI implementation */ nlimbs = (nbits + BITS_PER_MPI_LIMB - 1) / BITS_PER_MPI_LIMB; val_2 = mpi_alloc_set_ui( 2 ); val_3 = mpi_alloc_set_ui( 3); prime = secret? mpi_alloc_secure( nlimbs ): mpi_alloc( nlimbs ); result = mpi_alloc_like( prime ); pminus1= mpi_alloc_like( prime ); ptest = mpi_alloc_like( prime ); count1 = count2 = 0; for(;;) { /* try forvever */ int dotcount=0; /* generate a random number */ gcry_mpi_randomize( prime, nbits, randomlevel ); /* set high order bit to 1, set low order bit to 1 */ mpi_set_highbit( prime, nbits-1 ); mpi_set_bit( prime, 0 ); /* calculate all remainders */ for(i=0; (x = small_prime_numbers[i]); i++ ) mods[i] = mpi_fdiv_r_ui(NULL, prime, x); /* now try some primes starting with prime */ for(step=0; step < 20000; step += 2 ) { /* check against all the small primes we have in mods */ count1++; for(i=0; (x = small_prime_numbers[i]); i++ ) { while( mods[i] + step >= x ) mods[i] -= x; if( !(mods[i] + step) ) break; } if( x ) continue; /* found a multiple of an already known prime */ mpi_add_ui( ptest, prime, step ); /* do a faster Fermat test */ count2++; mpi_sub_ui( pminus1, ptest, 1); mpi_powm( result, val_2, pminus1, ptest ); if( !mpi_cmp_ui( result, 1 ) ) { /* not composite */ /* perform stronger tests */ if( is_prime(ptest, 5, &count2 ) ) { if( !mpi_test_bit( ptest, nbits-1 ) ) { progress('\n'); log_debug("overflow in prime generation\n"); break; /* step loop, continue with a new prime */ } mpi_free(val_2); mpi_free(val_3); mpi_free(result); mpi_free(pminus1); mpi_free(prime); g10_free(mods); return ptest; } } if( ++dotcount == 10 ) { progress('.'); dotcount = 0; } } progress(':'); /* restart with a new random value */ } } /**************** * Returns: true if this may be a prime */ static int check_prime( MPI prime, MPI val_2 ) { int i; unsigned x; int count=0; /* check against small primes */ for(i=0; (x = small_prime_numbers[i]); i++ ) { if( mpi_divisible_ui( prime, x ) ) return 0; } /* a quick fermat test */ { MPI result = mpi_alloc_like( prime ); MPI pminus1 = mpi_alloc_like( prime ); mpi_sub_ui( pminus1, prime, 1); mpi_powm( result, val_2, pminus1, prime ); mpi_free( pminus1 ); if( mpi_cmp_ui( result, 1 ) ) { /* if composite */ mpi_free( result ); progress('.'); return 0; } mpi_free( result ); } /* perform stronger tests */ if( is_prime(prime, 5, &count ) ) return 1; /* is probably a prime */ progress('.'); return 0; } /**************** * Return true if n is probably a prime */ static int is_prime( MPI n, int steps, int *count ) { MPI x = mpi_alloc( mpi_get_nlimbs( n ) ); MPI y = mpi_alloc( mpi_get_nlimbs( n ) ); MPI z = mpi_alloc( mpi_get_nlimbs( n ) ); MPI nminus1 = mpi_alloc( mpi_get_nlimbs( n ) ); MPI a2 = mpi_alloc_set_ui( 2 ); MPI q; unsigned i, j, k; int rc = 0; unsigned nbits = mpi_get_nbits( n ); mpi_sub_ui( nminus1, n, 1 ); /* find q and k, so that n = 1 + 2^k * q */ q = mpi_copy( nminus1 ); k = mpi_trailing_zeros( q ); mpi_tdiv_q_2exp(q, q, k); for(i=0 ; i < steps; i++ ) { ++*count; if( !i ) { mpi_set_ui( x, 2 ); } else { gcry_mpi_randomize( x, nbits, GCRY_WEAK_RANDOM ); /* make sure that the number is smaller than the prime * and keep the randomness of the high bit */ if( mpi_test_bit( x, nbits-2 ) ) { mpi_set_highbit( x, nbits-2 ); /* clear all higher bits */ } else { mpi_set_highbit( x, nbits-2 ); mpi_clear_bit( x, nbits-2 ); } assert( mpi_cmp( x, nminus1 ) < 0 && mpi_cmp_ui( x, 1 ) > 0 ); } mpi_powm( y, x, q, n); if( mpi_cmp_ui(y, 1) && mpi_cmp( y, nminus1 ) ) { for( j=1; j < k && mpi_cmp( y, nminus1 ); j++ ) { mpi_powm(y, y, a2, n); if( !mpi_cmp_ui( y, 1 ) ) goto leave; /* not a prime */ } if( mpi_cmp( y, nminus1 ) ) goto leave; /* not a prime */ } progress('+'); } rc = 1; /* may be a prime */ leave: mpi_free( x ); mpi_free( y ); mpi_free( z ); mpi_free( nminus1 ); mpi_free( q ); return rc; } static void m_out_of_n( char *array, int m, int n ) { int i=0, i1=0, j=0, jp=0, j1=0, k1=0, k2=0; if( !m || m >= n ) return; if( m == 1 ) { /* special case */ for(i=0; i < n; i++ ) if( array[i] ) { array[i++] = 0; if( i >= n ) i = 0; array[i] = 1; return; } BUG(); } for(j=1; j < n; j++ ) { if( array[n-1] == array[n-j-1] ) continue; j1 = j; break; } if( m & 1 ) { /* m is odd */ if( array[n-1] ) { if( j1 & 1 ) { k1 = n - j1; k2 = k1+2; if( k2 > n ) k2 = n; goto leave; } goto scan; } k2 = n - j1 - 1; if( k2 == 0 ) { k1 = i; k2 = n - j1; } else if( array[k2] && array[k2-1] ) k1 = n; else k1 = k2 + 1; } else { /* m is even */ if( !array[n-1] ) { k1 = n - j1; k2 = k1 + 1; goto leave; } if( !(j1 & 1) ) { k1 = n - j1; k2 = k1+2; if( k2 > n ) k2 = n; goto leave; } scan: jp = n - j1 - 1; for(i=1; i <= jp; i++ ) { i1 = jp + 2 - i; if( array[i1-1] ) { if( array[i1-2] ) { k1 = i1 - 1; k2 = n - j1; } else { k1 = i1 - 1; k2 = n + 1 - j1; } goto leave; } } k1 = 1; k2 = n + 1 - m; } leave: array[k1-1] = !array[k1-1]; array[k2-1] = !array[k2-1]; }