/* keyid.c - jeyid and fingerprint handling * Copyright (C) 1998 Free Software Foundation, Inc. * * This file is part of GNUPG. * * GNUPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * GNUPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA */ #include #include #include #include #include #include #include #include "util.h" #include "main.h" #include "packet.h" #include "options.h" #include "mpi.h" #include "keydb.h" int pubkey_letter( int algo ) { switch( algo ) { case PUBKEY_ALGO_RSA: return 'R' ; case PUBKEY_ALGO_RSA_E: return 'r' ; case PUBKEY_ALGO_RSA_S: return 's' ; case PUBKEY_ALGO_ELGAMAL: return 'G' ; case PUBKEY_ALGO_DSA: return 'D' ; default: return '?'; } } /* this is special code for V3 which uses ElGamal and * calculates a fingerprint like V4, but with rmd160 * and a version byte of 3. Returns an md handle, caller must * do md_close() */ static MD_HANDLE v3_elg_fingerprint_md( PKT_public_cert *pkc ) { MD_HANDLE md; byte *buf1, *buf2, *buf3; byte *p1, *p2, *p3; unsigned n1, n2, n3; unsigned nb1, nb2, nb3; unsigned n; nb1 = mpi_get_nbits(pkc->d.elg.p); p1 = buf1 = mpi_get_buffer( pkc->d.elg.p, &n1, NULL ); nb2 = mpi_get_nbits(pkc->d.elg.g); p2 = buf2 = mpi_get_buffer( pkc->d.elg.g, &n2, NULL ); nb3 = mpi_get_nbits(pkc->d.elg.y); p3 = buf3 = mpi_get_buffer( pkc->d.elg.y, &n3, NULL ); /* calculate length of packet (1+4+2+1+2+n1+2+n2+2+n3) */ n = 14 + n1 + n2 + n3; md = md_open( DIGEST_ALGO_RMD160, 0); md_putc( md, 0x99 ); /* ctb */ md_putc( md, n >> 8 ); /* 2 byte length header */ md_putc( md, n ); md_putc( md, 3 ); /* version */ { u32 a = pkc->timestamp; md_putc( md, a >> 24 ); md_putc( md, a >> 16 ); md_putc( md, a >> 8 ); md_putc( md, a ); } { u16 a = pkc->valid_days; md_putc( md, a >> 8 ); md_putc( md, a ); } md_putc( md, pkc->pubkey_algo ); md_putc( md, nb1>>8); md_putc( md, nb1 ); md_write( md, p1, n1 ); md_putc( md, nb2>>8); md_putc( md, nb2 ); md_write( md, p2, n2 ); md_putc( md, nb3>>8); md_putc( md, nb3 ); md_write( md, p3, n3 ); m_free(buf1); m_free(buf2); m_free(buf3); md_final( md ); return md; } static MD_HANDLE elg_fingerprint_md( PKT_public_cert *pkc ) { MD_HANDLE md; byte *buf1, *buf3, *buf4 ; byte *p1, *p3, *p4; unsigned n1, n3, n4; unsigned nb1, nb3, nb4; unsigned n; nb1 = mpi_get_nbits(pkc->d.elg.p); p1 = buf1 = mpi_get_buffer( pkc->d.elg.p, &n1, NULL ); nb3 = mpi_get_nbits(pkc->d.elg.g); p3 = buf3 = mpi_get_buffer( pkc->d.elg.g, &n3, NULL ); nb4 = mpi_get_nbits(pkc->d.elg.y); p4 = buf4 = mpi_get_buffer( pkc->d.elg.y, &n4, NULL ); /* calculate length of packet */ n = 12 + n1 + n3 +n4 ; md = md_open( DIGEST_ALGO_SHA1, 0); md_putc( md, 0x99 ); /* ctb */ md_putc( md, n >> 8 ); /* 2 byte length header */ md_putc( md, n ); md_putc( md, 4 ); /* version */ { u32 a = pkc->timestamp; md_putc( md, a >> 24 ); md_putc( md, a >> 16 ); md_putc( md, a >> 8 ); md_putc( md, a ); } md_putc( md, pkc->pubkey_algo ); md_putc( md, nb1>>8); md_putc( md, nb1 ); md_write( md, p1, n1 ); md_putc( md, nb3>>8); md_putc( md, nb3 ); md_write( md, p3, n3 ); md_putc( md, nb4>>8); md_putc( md, nb4 ); md_write( md, p4, n4 ); m_free(buf1); m_free(buf3); m_free(buf4); md_final( md ); return md; } static MD_HANDLE dsa_fingerprint_md( PKT_public_cert *pkc ) { MD_HANDLE md; byte *buf1, *buf2, *buf3, *buf4 ; byte *p1, *p2, *p3, *p4; unsigned n1, n2, n3, n4; unsigned nb1, nb2, nb3, nb4; unsigned n; nb1 = mpi_get_nbits(pkc->d.dsa.p); p1 = buf1 = mpi_get_buffer( pkc->d.dsa.p, &n1, NULL ); nb2 = mpi_get_nbits(pkc->d.dsa.q); p2 = buf2 = mpi_get_buffer( pkc->d.dsa.q, &n2, NULL ); nb3 = mpi_get_nbits(pkc->d.dsa.g); p3 = buf3 = mpi_get_buffer( pkc->d.dsa.g, &n3, NULL ); nb4 = mpi_get_nbits(pkc->d.dsa.y); p4 = buf4 = mpi_get_buffer( pkc->d.dsa.y, &n4, NULL ); /* calculate length of packet */ n = 14 + n1 + n2 + n3 +n4 ; md = md_open( DIGEST_ALGO_SHA1, 0); md_putc( md, 0x99 ); /* ctb */ md_putc( md, n >> 8 ); /* 2 byte length header */ md_putc( md, n ); md_putc( md, 4 ); /* version */ { u32 a = pkc->timestamp; md_putc( md, a >> 24 ); md_putc( md, a >> 16 ); md_putc( md, a >> 8 ); md_putc( md, a ); } md_putc( md, pkc->pubkey_algo ); md_putc( md, nb1>>8); md_putc( md, nb1 ); md_write( md, p1, n1 ); md_putc( md, nb2>>8); md_putc( md, nb2 ); md_write( md, p2, n2 ); md_putc( md, nb3>>8); md_putc( md, nb3 ); md_write( md, p3, n3 ); md_putc( md, nb4>>8); md_putc( md, nb4 ); md_write( md, p4, n4 ); m_free(buf1); m_free(buf2); m_free(buf3); m_free(buf4); md_final( md ); return md; } static MD_HANDLE elg_fingerprint_md_skc( PKT_secret_cert *skc ) { PKT_public_cert pkc; pkc.pubkey_algo = skc->pubkey_algo; pkc.version = skc->version; pkc.timestamp = skc->timestamp; pkc.valid_days = skc->valid_days; pkc.pubkey_algo = skc->pubkey_algo; pkc.d.elg.p = skc->d.elg.p; pkc.d.elg.g = skc->d.elg.g; pkc.d.elg.y = skc->d.elg.y; if( pkc.version < 4 ) return v3_elg_fingerprint_md( &pkc ); else return elg_fingerprint_md( &pkc ); } static MD_HANDLE dsa_fingerprint_md_skc( PKT_secret_cert *skc ) { PKT_public_cert pkc; pkc.pubkey_algo = skc->pubkey_algo; pkc.timestamp = skc->timestamp; pkc.pubkey_algo = skc->pubkey_algo; pkc.d.dsa.p = skc->d.dsa.p; pkc.d.dsa.q = skc->d.dsa.q; pkc.d.dsa.g = skc->d.dsa.g; pkc.d.dsa.y = skc->d.dsa.y; return dsa_fingerprint_md( &pkc ); } /**************** * Get the keyid from the secret key certificate and put it into keyid * if this is not NULL. Return the 32 low bits of the keyid. */ u32 keyid_from_skc( PKT_secret_cert *skc, u32 *keyid ) { u32 lowbits; u32 dummy_keyid[2]; if( !keyid ) keyid = dummy_keyid; if( skc->pubkey_algo == PUBKEY_ALGO_ELGAMAL ) { const byte *dp; MD_HANDLE md; md = elg_fingerprint_md_skc(skc); if( skc->version < 4 ) dp = md_read( md, DIGEST_ALGO_RMD160 ); else dp = md_read( md, DIGEST_ALGO_SHA1 ); keyid[0] = dp[12] << 24 | dp[13] << 16 | dp[14] << 8 | dp[15] ; keyid[1] = dp[16] << 24 | dp[17] << 16 | dp[18] << 8 | dp[19] ; lowbits = keyid[1]; md_close(md); } else if( skc->pubkey_algo == PUBKEY_ALGO_DSA ) { const byte *dp; MD_HANDLE md; md = dsa_fingerprint_md_skc(skc); dp = md_read( md, DIGEST_ALGO_SHA1 ); keyid[0] = dp[12] << 24 | dp[13] << 16 | dp[14] << 8 | dp[15] ; keyid[1] = dp[16] << 24 | dp[17] << 16 | dp[18] << 8 | dp[19] ; lowbits = keyid[1]; md_close(md); } else if( skc->pubkey_algo == PUBKEY_ALGO_RSA ) { lowbits = mpi_get_keyid( skc->d.rsa.n, keyid ); } else { keyid[0] = keyid[1] = lowbits = 0; } return lowbits; } /**************** * Get the keyid from the public key certificate and put it into keyid * if this is not NULL. Return the 32 low bits of the keyid. */ u32 keyid_from_pkc( PKT_public_cert *pkc, u32 *keyid ) { u32 lowbits; u32 dummy_keyid[2]; if( !keyid ) keyid = dummy_keyid; if( pkc->pubkey_algo == PUBKEY_ALGO_ELGAMAL ) { const byte *dp; MD_HANDLE md; if( pkc->version < 4 ) { md = v3_elg_fingerprint_md(pkc); dp = md_read( md, DIGEST_ALGO_RMD160 ); } else { md = elg_fingerprint_md(pkc); dp = md_read( md, DIGEST_ALGO_SHA1 ); } keyid[0] = dp[12] << 24 | dp[13] << 16 | dp[14] << 8 | dp[15] ; keyid[1] = dp[16] << 24 | dp[17] << 16 | dp[18] << 8 | dp[19] ; lowbits = keyid[1]; md_close(md); } else if( pkc->pubkey_algo == PUBKEY_ALGO_DSA ) { const byte *dp; MD_HANDLE md; md = dsa_fingerprint_md(pkc); dp = md_read( md, DIGEST_ALGO_SHA1 ); keyid[0] = dp[12] << 24 | dp[13] << 16 | dp[14] << 8 | dp[15] ; keyid[1] = dp[16] << 24 | dp[17] << 16 | dp[18] << 8 | dp[19] ; lowbits = keyid[1]; md_close(md); } else if( pkc->pubkey_algo == PUBKEY_ALGO_RSA ) { lowbits = mpi_get_keyid( pkc->d.rsa.n, keyid ); } else { keyid[0] = keyid[1] = lowbits = 0; } return lowbits; } u32 keyid_from_sig( PKT_signature *sig, u32 *keyid ) { if( keyid ) { keyid[0] = sig->keyid[0]; keyid[1] = sig->keyid[1]; } return sig->keyid[1]; } /**************** * return the number of bits used in the pkc */ unsigned nbits_from_pkc( PKT_public_cert *pkc ) { if( pkc->pubkey_algo == PUBKEY_ALGO_ELGAMAL ) { return mpi_get_nbits( pkc->d.elg.p ); } else if( pkc->pubkey_algo == PUBKEY_ALGO_DSA ) { return mpi_get_nbits( pkc->d.dsa.p ); } else if( pkc->pubkey_algo == PUBKEY_ALGO_RSA ) { return mpi_get_nbits( pkc->d.rsa.n ); } else return 0; } /**************** * return the number of bits used in the skc */ unsigned nbits_from_skc( PKT_secret_cert *skc ) { if( skc->pubkey_algo == PUBKEY_ALGO_ELGAMAL ) { return mpi_get_nbits( skc->d.elg.p ); } else if( skc->pubkey_algo == PUBKEY_ALGO_DSA ) { return mpi_get_nbits( skc->d.dsa.p ); } else if( skc->pubkey_algo == PUBKEY_ALGO_RSA ) { return mpi_get_nbits( skc->d.rsa.n ); } else return 0; } /**************** * return a string with the creation date of the pkc * Note: this is alloced in a static buffer. * Format is: yyyy-mm-dd */ const char * datestr_from_pkc( PKT_public_cert *pkc ) { static char buffer[11+5]; struct tm *tp; time_t atime = pkc->timestamp; tp = gmtime( &atime ); sprintf(buffer,"%04d-%02d-%02d", 1900+tp->tm_year, tp->tm_mon+1, tp->tm_mday ); return buffer; } const char * datestr_from_skc( PKT_secret_cert *skc ) { static char buffer[11+5]; struct tm *tp; time_t atime = skc->timestamp; tp = gmtime( &atime ); sprintf(buffer,"%04d-%02d-%02d", 1900+tp->tm_year, tp->tm_mon+1, tp->tm_mday ); return buffer; } const char * datestr_from_sig( PKT_signature *sig ) { static char buffer[11+5]; struct tm *tp; time_t atime = sig->timestamp; tp = gmtime( &atime ); sprintf(buffer,"%04d-%02d-%02d", 1900+tp->tm_year, tp->tm_mon+1, tp->tm_mday ); return buffer; } /**************** . * Return a byte array with the fingerprint for the given PKC/SKC * The length of the array is returned in ret_len. Caller must free * the array. */ byte * fingerprint_from_skc( PKT_secret_cert *skc, size_t *ret_len ) { PKT_public_cert pkc; byte *p; pkc.pubkey_algo = skc->pubkey_algo; pkc.version = skc->version; if( pkc.pubkey_algo == PUBKEY_ALGO_ELGAMAL ) { pkc.timestamp = skc->timestamp; pkc.valid_days = skc->valid_days; pkc.pubkey_algo = skc->pubkey_algo; pkc.d.elg.p = skc->d.elg.p; pkc.d.elg.g = skc->d.elg.g; pkc.d.elg.y = skc->d.elg.y; } else if( pkc.pubkey_algo == PUBKEY_ALGO_DSA ) { pkc.timestamp = skc->timestamp; pkc.valid_days = skc->valid_days; pkc.pubkey_algo = skc->pubkey_algo; pkc.d.dsa.p = skc->d.dsa.p; pkc.d.dsa.q = skc->d.dsa.q; pkc.d.dsa.g = skc->d.dsa.g; pkc.d.dsa.y = skc->d.dsa.y; } else if( pkc.pubkey_algo == PUBKEY_ALGO_RSA ) { pkc.d.rsa.n = skc->d.rsa.n; pkc.d.rsa.e = skc->d.rsa.e; } p = fingerprint_from_pkc( &pkc, ret_len ); memset(&pkc, 0, sizeof pkc); /* not really needed */ return p; } byte * fingerprint_from_pkc( PKT_public_cert *pkc, size_t *ret_len ) { byte *p, *buf, *array; const char *dp; size_t len; unsigned n; if( pkc->pubkey_algo == PUBKEY_ALGO_ELGAMAL ) { MD_HANDLE md; if( pkc->version < 4 ) { md = v3_elg_fingerprint_md(pkc); dp = md_read( md, DIGEST_ALGO_RMD160 ); } else { md = elg_fingerprint_md(pkc); dp = md_read( md, DIGEST_ALGO_SHA1 ); } array = m_alloc( 20 ); len = 20; memcpy(array, dp, 20 ); md_close(md); } else if( pkc->pubkey_algo == PUBKEY_ALGO_DSA ) { MD_HANDLE md; md = dsa_fingerprint_md(pkc); dp = md_read( md, DIGEST_ALGO_SHA1 ); array = m_alloc( 20 ); len = 20; memcpy(array, dp, 20 ); md_close(md); } else if( pkc->pubkey_algo == PUBKEY_ALGO_RSA ) { MD_HANDLE md; md = md_open( DIGEST_ALGO_MD5, 0); p = buf = mpi_get_buffer( pkc->d.rsa.n, &n, NULL ); md_write( md, p, n ); m_free(buf); p = buf = mpi_get_buffer( pkc->d.rsa.e, &n, NULL ); md_write( md, p, n ); m_free(buf); md_final(md); array = m_alloc( 16 ); len = 16; memcpy(array, md_read(md, DIGEST_ALGO_MD5), 16 ); md_close(md); } else { array = m_alloc(1); len = 0; /* ooops */ } *ret_len = len; return array; }