/* pkdecrypt.c - public key decryption (well, actually using a secret key) * Copyright (C) 2001, 2003 Free Software Foundation, Inc. * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include #include #include #include "agent.h" #include "../common/openpgpdefs.h" /* Table with parameters for KEM decryption. Use get_ecc_parms to * find an entry. */ struct ecc_params { const char *curve; /* Canonical name of the curve. */ size_t pubkey_len; /* Pubkey in the SEXP representation. */ size_t scalar_len; size_t point_len; size_t shared_len; int hash_algo; int kem_algo; int scalar_reverse; }; static const struct ecc_params ecc_table[] = { { "Curve25519", 33, 32, 32, 32, GCRY_MD_SHA3_256, GCRY_KEM_RAW_X25519, 1 }, { "X448", 56, 56, 56, 64, GCRY_MD_SHA3_512, GCRY_KEM_RAW_X448, 0 }, { "brainpoolP256r1", 65, 32, 65, 32, GCRY_MD_SHA3_256, GCRY_KEM_RAW_BP256, 0 }, { "brainpoolP384r1", 97, 48, 97, 64, GCRY_MD_SHA3_512, GCRY_KEM_RAW_BP384, 0 }, { "brainpoolP512r1", 129, 64, 129, 64, GCRY_MD_SHA3_512, GCRY_KEM_RAW_BP512, 0 }, { NULL, 0, 0, 0, 0, 0, 0, 0 } }; /* Maximum buffer sizes required for ECC KEM. Keep this aligned to * the ecc_table above. */ #define ECC_SCALAR_LEN_MAX 64 #define ECC_POINT_LEN_MAX (1+2*64) #define ECC_HASH_LEN_MAX 64 /* Return the ECC parameters for CURVE. CURVE is expected to be the * canonical name. */ static const struct ecc_params * get_ecc_params (const char *curve) { int i; for (i = 0; ecc_table[i].curve; i++) if (!strcmp (ecc_table[i].curve, curve)) return &ecc_table[i]; return NULL; } /* DECRYPT the stuff in ciphertext which is expected to be a S-Exp. Try to get the key from CTRL and write the decoded stuff back to OUTFP. The padding information is stored at R_PADDING with -1 for not known. */ gpg_error_t agent_pkdecrypt (ctrl_t ctrl, const char *desc_text, const unsigned char *ciphertext, size_t ciphertextlen, membuf_t *outbuf, int *r_padding) { gcry_sexp_t s_skey = NULL, s_cipher = NULL, s_plain = NULL; unsigned char *shadow_info = NULL; gpg_error_t err = 0; char *buf = NULL; size_t len; *r_padding = -1; if (!ctrl->have_keygrip) { log_error ("speculative decryption not yet supported\n"); err = gpg_error (GPG_ERR_NO_SECKEY); goto leave; } err = gcry_sexp_sscan (&s_cipher, NULL, (char*)ciphertext, ciphertextlen); if (err) { log_error ("failed to convert ciphertext: %s\n", gpg_strerror (err)); err = gpg_error (GPG_ERR_INV_DATA); goto leave; } if (DBG_CRYPTO) { log_printhex (ctrl->keygrip, 20, "keygrip:"); log_printhex (ciphertext, ciphertextlen, "cipher: "); } err = agent_key_from_file (ctrl, NULL, desc_text, NULL, &shadow_info, CACHE_MODE_NORMAL, NULL, &s_skey, NULL, NULL); if (err && gpg_err_code (err) != GPG_ERR_NO_SECKEY) { log_error ("failed to read the secret key\n"); } else if (shadow_info || err /* gpg_err_code (err) == GPG_ERR_NO_SECKEY */) { /* divert operation to the smartcard */ if (!gcry_sexp_canon_len (ciphertext, ciphertextlen, NULL, NULL)) { err = gpg_error (GPG_ERR_INV_SEXP); goto leave; } if (s_skey && agent_is_tpm2_key (s_skey)) err = divert_tpm2_pkdecrypt (ctrl, ciphertext, shadow_info, &buf, &len, r_padding); else err = divert_pkdecrypt (ctrl, ctrl->keygrip, ciphertext, &buf, &len, r_padding); if (err) { /* We restore the original error (ie. no seckey) as no card * has been found and we have no shadow key. This avoids a * surprising "card removed" error code. */ if ((gpg_err_code (err) == GPG_ERR_CARD_REMOVED || gpg_err_code (err) == GPG_ERR_CARD_NOT_PRESENT) && !shadow_info) err = gpg_error (GPG_ERR_NO_SECKEY); else log_error ("smartcard decryption failed: %s\n", gpg_strerror (err)); goto leave; } put_membuf_printf (outbuf, "(5:value%u:", (unsigned int)len); put_membuf (outbuf, buf, len); put_membuf (outbuf, ")", 2); } else { /* No smartcard, but a private key */ /* if (DBG_CRYPTO ) */ /* { */ /* log_debug ("skey: "); */ /* gcry_sexp_dump (s_skey); */ /* } */ err = gcry_pk_decrypt (&s_plain, s_cipher, s_skey); if (err) { log_error ("decryption failed: %s\n", gpg_strerror (err)); goto leave; } if (DBG_CRYPTO) { log_debug ("plain: "); gcry_sexp_dump (s_plain); } len = gcry_sexp_sprint (s_plain, GCRYSEXP_FMT_CANON, NULL, 0); log_assert (len); buf = xmalloc (len); len = gcry_sexp_sprint (s_plain, GCRYSEXP_FMT_CANON, buf, len); log_assert (len); if (*buf == '(') put_membuf (outbuf, buf, len); else { /* Old style libgcrypt: This is only an S-expression part. Turn it into a complete S-expression. */ put_membuf (outbuf, "(5:value", 8); put_membuf (outbuf, buf, len); put_membuf (outbuf, ")", 2); } } leave: gcry_sexp_release (s_skey); gcry_sexp_release (s_plain); gcry_sexp_release (s_cipher); xfree (buf); xfree (shadow_info); return err; } /* Reverse BUFFER to change the endianness. */ static void reverse_buffer (unsigned char *buffer, unsigned int length) { unsigned int tmp, i; for (i=0; i < length/2; i++) { tmp = buffer[i]; buffer[i] = buffer[length-1-i]; buffer[length-1-i] = tmp; } } static gpg_error_t ecc_extract_pk_from_key (const struct ecc_params *ecc, gcry_sexp_t s_skey, unsigned char *ecc_pk) { gpg_error_t err; unsigned int nbits; const unsigned char *p; size_t len; gcry_mpi_t ecc_pk_mpi = NULL; err = gcry_sexp_extract_param (s_skey, NULL, "/q", &ecc_pk_mpi, NULL); if (err) { if (opt.verbose) log_info ("%s: extracting q and d from ECC key failed\n", __func__); return err; } p = gcry_mpi_get_opaque (ecc_pk_mpi, &nbits); len = (nbits+7)/8; if (len != ecc->pubkey_len) { if (opt.verbose) log_info ("%s: ECC public key length invalid (%zu)\n", __func__, len); err = gpg_error (GPG_ERR_INV_DATA); goto leave; } else if (len == ecc->point_len) memcpy (ecc_pk, p, ecc->point_len); else if (len == ecc->point_len + 1 && p[0] == 0x40) /* Remove the 0x40 prefix (for Curve25519) */ memcpy (ecc_pk, p+1, ecc->point_len); else { err = gpg_error (GPG_ERR_BAD_SECKEY); goto leave; } if (DBG_CRYPTO) log_printhex (ecc_pk, ecc->pubkey_len, "ECC pubkey:"); leave: mpi_release (ecc_pk_mpi); return err; } static gpg_error_t ecc_extract_sk_from_key (const struct ecc_params *ecc, gcry_sexp_t s_skey, unsigned char *ecc_sk) { gpg_error_t err; unsigned int nbits; const unsigned char *p; size_t len; gcry_mpi_t ecc_sk_mpi = NULL; err = gcry_sexp_extract_param (s_skey, NULL, "/d", &ecc_sk_mpi, NULL); if (err) { if (opt.verbose) log_info ("%s: extracting d from ECC key failed\n", __func__); return err; } p = gcry_mpi_get_opaque (ecc_sk_mpi, &nbits); len = (nbits+7)/8; if (len > ecc->scalar_len) { if (opt.verbose) log_info ("%s: ECC secret key too long (%zu)\n", __func__, len); err = gpg_error (GPG_ERR_INV_DATA); goto leave; } memset (ecc_sk, 0, ecc->scalar_len - len); memcpy (ecc_sk + ecc->scalar_len - len, p, len); if (ecc->scalar_reverse) reverse_buffer (ecc_sk, ecc->scalar_len); mpi_release (ecc_sk_mpi); ecc_sk_mpi = NULL; if (DBG_CRYPTO) log_printhex (ecc_sk, ecc->scalar_len, "ECC seckey:"); leave: mpi_release (ecc_sk_mpi); return err; } static gpg_error_t ecc_raw_kem (const struct ecc_params *ecc, gcry_sexp_t s_skey, const unsigned char *ecc_ct, unsigned char *ecc_ecdh) { gpg_error_t err = 0; unsigned char ecc_sk[ECC_SCALAR_LEN_MAX]; if (ecc->scalar_len > ECC_SCALAR_LEN_MAX) { if (opt.verbose) log_info ("%s: ECC scalar length invalid (%zu)\n", __func__, ecc->scalar_len); err = gpg_error (GPG_ERR_INV_DATA); goto leave; } err = ecc_extract_sk_from_key (ecc, s_skey, ecc_sk); if (err) goto leave; err = gcry_kem_decap (ecc->kem_algo, ecc_sk, ecc->scalar_len, ecc_ct, ecc->point_len, ecc_ecdh, ecc->point_len, NULL, 0); if (err) { if (opt.verbose) log_info ("%s: gcry_kem_decap for ECC failed\n", __func__); } leave: wipememory (ecc_sk, sizeof ecc_sk); return err; } static gpg_error_t get_cardkey (ctrl_t ctrl, const char *keygrip, gcry_sexp_t *r_s_pk) { gpg_error_t err; unsigned char *pkbuf; size_t pkbuflen; err = agent_card_readkey (ctrl, keygrip, &pkbuf, NULL); if (err) return err; pkbuflen = gcry_sexp_canon_len (pkbuf, 0, NULL, NULL); err = gcry_sexp_sscan (r_s_pk, NULL, (char*)pkbuf, pkbuflen); if (err) log_error ("failed to build S-Exp from received card key: %s\n", gpg_strerror (err)); xfree (pkbuf); return err; } static gpg_error_t ecc_get_curve (ctrl_t ctrl, gcry_sexp_t s_skey, const char **r_curve) { gpg_error_t err = 0; gcry_sexp_t s_skey_card = NULL; const char *curve = NULL; gcry_sexp_t key; *r_curve = NULL; if (!s_skey) { err = get_cardkey (ctrl, ctrl->keygrip, &s_skey_card); if (err) goto leave; key = s_skey_card; } else key = s_skey; curve = get_ecc_curve_from_key (key); if (!curve) { err = gpg_error (GPG_ERR_BAD_SECKEY); goto leave; } *r_curve = curve; leave: gcry_sexp_release (s_skey_card); return err; } /* Given a private key in SEXP by S_SKEY0 and a cipher text by ECC_CT * with length ECC_POINT_LEN, do ECC-KEM operation. Result is * returned in the memory referred by ECC_SS. Shared secret length is * returned in the memory referred by R_SHARED_LEN. CTRL is used to * access smartcard, internally. */ static gpg_error_t ecc_pgp_kem_decrypt (ctrl_t ctrl, gcry_sexp_t s_skey0, unsigned char *shadow_info0, const unsigned char *ecc_ct, size_t ecc_point_len, unsigned char *ecc_ss, size_t *r_shared_len) { gpg_error_t err; unsigned char ecc_ecdh[ECC_POINT_LEN_MAX]; unsigned char ecc_pk[ECC_POINT_LEN_MAX]; const char *curve; const struct ecc_params *ecc = NULL; if (ecc_point_len > ECC_POINT_LEN_MAX) return gpg_error (GPG_ERR_INV_DATA); err = ecc_get_curve (ctrl, s_skey0, &curve); if (err) { if ((gpg_err_code (err) == GPG_ERR_CARD_REMOVED || gpg_err_code (err) == GPG_ERR_CARD_NOT_PRESENT) && !s_skey0) err = gpg_error (GPG_ERR_NO_SECKEY); return err; } ecc = get_ecc_params (curve); if (!ecc) { if (opt.verbose) log_info ("%s: curve '%s' not supported\n", __func__, curve); return gpg_error (GPG_ERR_BAD_SECKEY); } *r_shared_len = ecc->shared_len; if (DBG_CRYPTO) log_debug ("ECC curve: %s\n", curve); if (ecc->point_len != ecc_point_len) { if (opt.verbose) log_info ("%s: ECC cipher text length invalid (%zu != %zu)\n", __func__, ecc->point_len, ecc_point_len); return gpg_error (GPG_ERR_INV_DATA); } err = ecc_extract_pk_from_key (ecc, s_skey0, ecc_pk); if (err) return err; if (DBG_CRYPTO) log_printhex (ecc_ct, ecc->point_len, "ECC ephem:"); if (shadow_info0 || !s_skey0) { if (s_skey0 && agent_is_tpm2_key (s_skey0)) { log_error ("TPM decryption failed: %s\n", gpg_strerror (err)); return gpg_error (GPG_ERR_NOT_IMPLEMENTED); } else { err = agent_card_ecc_kem (ctrl, ecc_ct, ecc->point_len, ecc_ecdh); if (err) { log_error ("smartcard decryption failed: %s\n", gpg_strerror (err)); return err; } } } else err = ecc_raw_kem (ecc, s_skey0, ecc_ct, ecc_ecdh); if (err) return err; if (DBG_CRYPTO) log_printhex (ecc_ecdh, ecc_point_len, "ECC ecdh:"); err = gnupg_ecc_kem_kdf (ecc_ss, ecc->shared_len, ecc->hash_algo, ecc_ecdh, ecc->point_len, ecc_ct, ecc->point_len, ecc_pk, ecc->point_len); wipememory (ecc_ecdh, sizeof ecc_ecdh); if (err) { if (opt.verbose) log_info ("%s: kdf for ECC failed\n", __func__); return err; } if (DBG_CRYPTO) log_printhex (ecc_ss, ecc->shared_len, "ECC shared:"); return 0; } /* For composite PGP KEM (ECC+ML-KEM), decrypt CIPHERTEXT using KEM API. First keygrip is for ECC, second keygrip is for PQC. CIPHERTEXT should follow the format of: (enc-val(pqc(c%d)(e%m)(k%m)(s%m)(fixed-info&))) c: cipher identifier (symmetric) e: ECDH ciphertext k: ML-KEM ciphertext s: encrypted session key fixed-info: A buffer with the fixed info. FIXME: For now, possible keys on smartcard are not supported. */ static gpg_error_t composite_pgp_kem_decrypt (ctrl_t ctrl, const char *desc_text, gcry_sexp_t s_cipher, membuf_t *outbuf) { gcry_sexp_t s_skey0 = NULL; gcry_sexp_t s_skey1 = NULL; unsigned char *shadow_info0 = NULL; unsigned char *shadow_info1 = NULL; gpg_error_t err = 0; unsigned int nbits; size_t len; int algo; gcry_mpi_t encrypted_sessionkey_mpi = NULL; const unsigned char *encrypted_sessionkey; size_t encrypted_sessionkey_len; gcry_mpi_t ecc_ct_mpi = NULL; const unsigned char *ecc_ct; size_t ecc_ct_len; unsigned char ecc_ss[ECC_HASH_LEN_MAX]; size_t ecc_shared_len, ecc_point_len; enum gcry_kem_algos mlkem_kem_algo; gcry_mpi_t mlkem_sk_mpi = NULL; gcry_mpi_t mlkem_ct_mpi = NULL; const unsigned char *mlkem_sk; size_t mlkem_sk_len; const unsigned char *mlkem_ct; size_t mlkem_ct_len; unsigned char mlkem_ss[GCRY_KEM_MLKEM1024_SHARED_LEN]; size_t mlkem_ss_len; unsigned char kek[32]; size_t kek_len = 32; /* AES-256 is mandatory */ gcry_cipher_hd_t hd; unsigned char sessionkey[256]; size_t sessionkey_len; gcry_buffer_t fixed_info = { 0, 0, 0, NULL }; err = agent_key_from_file (ctrl, NULL, desc_text, ctrl->keygrip, &shadow_info0, CACHE_MODE_NORMAL, NULL, &s_skey0, NULL, NULL); if (err && gpg_err_code (err) != GPG_ERR_NO_SECKEY) { log_error ("failed to read the secret key\n"); goto leave; } err = agent_key_from_file (ctrl, NULL, desc_text, ctrl->keygrip1, &shadow_info1, CACHE_MODE_NORMAL, NULL, &s_skey1, NULL, NULL); /* Here assumes no smartcard for ML-KEM, but private key in a file. */ if (err) { log_error ("failed to read the another secret key\n"); goto leave; } err = gcry_sexp_extract_param (s_cipher, NULL, "%dc/eks&'fixed-info'", &algo, &ecc_ct_mpi, &mlkem_ct_mpi, &encrypted_sessionkey_mpi, &fixed_info, NULL); if (err) { if (opt.verbose) log_info ("%s: extracting parameters failed\n", __func__); goto leave; } ecc_ct = gcry_mpi_get_opaque (ecc_ct_mpi, &nbits); ecc_ct_len = (nbits+7)/8; len = gcry_cipher_get_algo_keylen (algo); encrypted_sessionkey = gcry_mpi_get_opaque (encrypted_sessionkey_mpi, &nbits); encrypted_sessionkey_len = (nbits+7)/8; if (len == 0 || encrypted_sessionkey_len != len + 8) { if (opt.verbose) log_info ("%s: encrypted session key length %zu" " does not match the length for algo %d\n", __func__, encrypted_sessionkey_len, algo); err = gpg_error (GPG_ERR_INV_DATA); goto leave; } /* Firstly, ECC part. */ ecc_point_len = ecc_ct_len; err = ecc_pgp_kem_decrypt (ctrl, s_skey0, shadow_info0, ecc_ct, ecc_point_len, ecc_ss, &ecc_shared_len); if (err) goto leave; /* Secondly, PQC part. For now, we assume ML-KEM. */ err = gcry_sexp_extract_param (s_skey1, NULL, "/s", &mlkem_sk_mpi, NULL); if (err) { if (opt.verbose) log_info ("%s: extracting s from PQ key failed\n", __func__); goto leave; } mlkem_sk = gcry_mpi_get_opaque (mlkem_sk_mpi, &nbits); mlkem_sk_len = (nbits+7)/8; if (mlkem_sk_len == GCRY_KEM_MLKEM512_SECKEY_LEN) { mlkem_kem_algo = GCRY_KEM_MLKEM512; mlkem_ss_len = GCRY_KEM_MLKEM512_SHARED_LEN; mlkem_ct_len = GCRY_KEM_MLKEM512_CIPHER_LEN; } else if (mlkem_sk_len == GCRY_KEM_MLKEM768_SECKEY_LEN) { mlkem_kem_algo = GCRY_KEM_MLKEM768; mlkem_ss_len = GCRY_KEM_MLKEM768_SHARED_LEN; mlkem_ct_len = GCRY_KEM_MLKEM768_CIPHER_LEN; } else if (mlkem_sk_len == GCRY_KEM_MLKEM1024_SECKEY_LEN) { mlkem_kem_algo = GCRY_KEM_MLKEM1024; mlkem_ss_len = GCRY_KEM_MLKEM1024_SHARED_LEN; mlkem_ct_len = GCRY_KEM_MLKEM1024_CIPHER_LEN; } else { if (opt.verbose) log_info ("%s: PQ key length invalid (%zu)\n", __func__, mlkem_sk_len); err = gpg_error (GPG_ERR_INV_DATA); goto leave; } mlkem_ct = gcry_mpi_get_opaque (mlkem_ct_mpi, &nbits); len = (nbits+7)/8; if (len != mlkem_ct_len) { if (opt.verbose) log_info ("%s: PQ cipher text length invalid (%zu)\n", __func__, mlkem_ct_len); err = gpg_error (GPG_ERR_INV_DATA); goto leave; } err = gcry_kem_decap (mlkem_kem_algo, mlkem_sk, mlkem_sk_len, mlkem_ct, mlkem_ct_len, mlkem_ss, mlkem_ss_len, NULL, 0); if (err) { if (opt.verbose) log_info ("%s: gcry_kem_decap for PQ failed\n", __func__); goto leave; } mpi_release (mlkem_sk_mpi); mlkem_sk_mpi = NULL; /* Then, combine two shared secrets and ciphertexts into one KEK */ err = gnupg_kem_combiner (kek, kek_len, ecc_ss, ecc_shared_len, ecc_ct, ecc_point_len, mlkem_ss, mlkem_ss_len, mlkem_ct, mlkem_ct_len, fixed_info.data, fixed_info.size); if (err) { if (opt.verbose) log_info ("%s: KEM combiner failed\n", __func__); goto leave; } mpi_release (ecc_ct_mpi); ecc_ct_mpi = NULL; mpi_release (mlkem_ct_mpi); mlkem_ct_mpi = NULL; if (DBG_CRYPTO) { log_printhex (kek, kek_len, "KEK key: "); } err = gcry_cipher_open (&hd, GCRY_CIPHER_AES256, GCRY_CIPHER_MODE_AESWRAP, 0); if (err) { if (opt.verbose) log_error ("ecdh failed to initialize AESWRAP: %s\n", gpg_strerror (err)); goto leave; } err = gcry_cipher_setkey (hd, kek, kek_len); sessionkey_len = encrypted_sessionkey_len - 8; err = gcry_cipher_decrypt (hd, sessionkey, sessionkey_len, encrypted_sessionkey, encrypted_sessionkey_len); gcry_cipher_close (hd); mpi_release (encrypted_sessionkey_mpi); encrypted_sessionkey_mpi = NULL; if (err) { log_error ("KEM decrypt failed: %s\n", gpg_strerror (err)); goto leave; } put_membuf_printf (outbuf, "(5:value%u:", (unsigned int)sessionkey_len); put_membuf (outbuf, sessionkey, sessionkey_len); put_membuf (outbuf, ")", 2); leave: wipememory (ecc_ss, sizeof ecc_ss); wipememory (mlkem_ss, sizeof mlkem_ss); wipememory (kek, sizeof kek); wipememory (sessionkey, sizeof sessionkey); mpi_release (ecc_ct_mpi); mpi_release (mlkem_sk_mpi); mpi_release (mlkem_ct_mpi); mpi_release (encrypted_sessionkey_mpi); gcry_free (fixed_info.data); gcry_sexp_release (s_skey0); gcry_sexp_release (s_skey1); xfree (shadow_info0); xfree (shadow_info1); return err; } /* DECRYPT the encrypted stuff (like encrypted session key) in CIPHERTEXT using KEM API, with KEMID. Keys (or a key) are specified in CTRL. DESC_TEXT is used to retrieve private key. OPTION can be specified for upper layer option for KEM. Decrypted stuff (like session key) is written to OUTBUF. */ gpg_error_t agent_kem_decrypt (ctrl_t ctrl, const char *desc_text, int kemid, const unsigned char *ciphertext, size_t ciphertextlen, const unsigned char *option, size_t optionlen, membuf_t *outbuf) { gcry_sexp_t s_cipher = NULL; gpg_error_t err = 0; /* For now, only PQC-PGP is supported. */ if (kemid != KEM_PQC_PGP) return gpg_error (GPG_ERR_UNSUPPORTED_ALGORITHM); (void)optionlen; if (kemid == KEM_PQC_PGP && option) { log_error ("PQC-PGP requires no option\n"); return gpg_error (GPG_ERR_INV_ARG); } if (!ctrl->have_keygrip) { log_error ("speculative decryption not yet supported\n"); return gpg_error (GPG_ERR_NO_SECKEY); } if (!ctrl->have_keygrip1) { log_error ("Composite KEM requires two KEYGRIPs\n"); return gpg_error (GPG_ERR_NO_SECKEY); } err = gcry_sexp_sscan (&s_cipher, NULL, (char*)ciphertext, ciphertextlen); if (err) { log_error ("failed to convert ciphertext: %s\n", gpg_strerror (err)); return gpg_error (GPG_ERR_INV_DATA); } if (DBG_CRYPTO) { log_printhex (ctrl->keygrip, 20, "keygrip0:"); log_printhex (ctrl->keygrip1, 20, "keygrip1:"); gcry_log_debugsxp ("cipher", s_cipher); } err = composite_pgp_kem_decrypt (ctrl, desc_text, s_cipher, outbuf); gcry_sexp_release (s_cipher); return err; }