/* pkglue.c - public key operations glue code * Copyright (C) 2000, 2003, 2010 Free Software Foundation, Inc. * Copyright (C) 2014 Werner Koch * * This file is part of GnuPG. * * GnuPG is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * GnuPG is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include #include #include #include #include #include "gpg.h" #include "../common/util.h" #include "pkglue.h" #include "main.h" #include "options.h" /* FIXME: Better change the function name because mpi_ is used by gcrypt macros. */ gcry_mpi_t get_mpi_from_sexp (gcry_sexp_t sexp, const char *item, int mpifmt) { gcry_sexp_t list; gcry_mpi_t data; list = gcry_sexp_find_token (sexp, item, 0); log_assert (list); data = gcry_sexp_nth_mpi (list, 1, mpifmt); log_assert (data); gcry_sexp_release (list); return data; } /* * SOS (Simply, Octet String) is an attempt to handle opaque octet * string in OpenPGP, where well-formed MPI cannot represent octet * string with leading zero octets. * * To retain maximum compatibility to existing MPI handling, SOS * has same structure, but allows leading zero octets. When there * is no leading zero octets, SOS representation is as same as MPI one. * With leading zero octets, NBITS is 8*(length of octets), regardless * of leading zero bits. */ /* Extract SOS representation from SEXP for PARAM, return the result * in R_SOS. It is represented by opaque MPI with GCRYMPI_FLAG_USER2 * flag. */ gpg_error_t sexp_extract_param_sos (gcry_sexp_t sexp, const char *param, gcry_mpi_t *r_sos) { gpg_error_t err; gcry_sexp_t l2 = gcry_sexp_find_token (sexp, param, 0); *r_sos = NULL; if (!l2) err = gpg_error (GPG_ERR_NO_OBJ); else { size_t buflen; void *p0 = gcry_sexp_nth_buffer (l2, 1, &buflen); if (!p0) err = gpg_error_from_syserror (); else { gcry_mpi_t sos; unsigned int nbits = buflen*8; unsigned char *p = p0; if (*p && nbits >= 8 && !(*p & 0x80)) if (--nbits >= 7 && !(*p & 0x40)) if (--nbits >= 6 && !(*p & 0x20)) if (--nbits >= 5 && !(*p & 0x10)) if (--nbits >= 4 && !(*p & 0x08)) if (--nbits >= 3 && !(*p & 0x04)) if (--nbits >= 2 && !(*p & 0x02)) if (--nbits >= 1 && !(*p & 0x01)) --nbits; sos = gcry_mpi_set_opaque (NULL, p0, nbits); if (sos) { gcry_mpi_set_flag (sos, GCRYMPI_FLAG_USER2); *r_sos = sos; err = 0; } else err = gpg_error_from_syserror (); } gcry_sexp_release (l2); } return err; } /* "No leading zero octets" (nlz) version of the function above. * * This routine is used for backward compatibility to existing * implementation with the weird handling of little endian integer * representation with leading zero octets. For the sake of * "well-fomed" MPI, which is designed for big endian integer, leading * zero octets are removed when output, and they are recovered at * input. * * Extract SOS representation from SEXP for PARAM, removing leading * zeros, return the result in R_SOS. */ gpg_error_t sexp_extract_param_sos_nlz (gcry_sexp_t sexp, const char *param, gcry_mpi_t *r_sos) { gpg_error_t err; gcry_sexp_t l2 = gcry_sexp_find_token (sexp, param, 0); *r_sos = NULL; if (!l2) err = gpg_error (GPG_ERR_NO_OBJ); else { size_t buflen; const void *p0 = gcry_sexp_nth_data (l2, 1, &buflen); if (!p0) err = gpg_error_from_syserror (); else { gcry_mpi_t sos; unsigned int nbits = buflen*8; const unsigned char *p = p0; /* Strip leading zero bits. */ for (; nbits >= 8 && !*p; p++, nbits -= 8) ; if (nbits >= 8 && !(*p & 0x80)) if (--nbits >= 7 && !(*p & 0x40)) if (--nbits >= 6 && !(*p & 0x20)) if (--nbits >= 5 && !(*p & 0x10)) if (--nbits >= 4 && !(*p & 0x08)) if (--nbits >= 3 && !(*p & 0x04)) if (--nbits >= 2 && !(*p & 0x02)) if (--nbits >= 1 && !(*p & 0x01)) --nbits; sos = gcry_mpi_set_opaque_copy (NULL, p, nbits); if (sos) { gcry_mpi_set_flag (sos, GCRYMPI_FLAG_USER2); *r_sos = sos; err = 0; } else err = gpg_error_from_syserror (); } gcry_sexp_release (l2); } return err; } static byte * get_data_from_sexp (gcry_sexp_t sexp, const char *item, size_t *r_size) { gcry_sexp_t list; size_t valuelen; const char *value; byte *v; if (DBG_CRYPTO) log_printsexp ("get_data_from_sexp:", sexp); list = gcry_sexp_find_token (sexp, item, 0); log_assert (list); value = gcry_sexp_nth_data (list, 1, &valuelen); log_assert (value); v = xtrymalloc (valuelen); memcpy (v, value, valuelen); gcry_sexp_release (list); *r_size = valuelen; return v; } /**************** * Emulate our old PK interface here - sometime in the future we might * change the internal design to directly fit to libgcrypt. */ int pk_verify (pubkey_algo_t pkalgo, gcry_mpi_t hash, gcry_mpi_t *data, gcry_mpi_t *pkey) { gcry_sexp_t s_sig, s_hash, s_pkey; int rc; /* Make a sexp from pkey. */ if (pkalgo == PUBKEY_ALGO_DSA) { rc = gcry_sexp_build (&s_pkey, NULL, "(public-key(dsa(p%m)(q%m)(g%m)(y%m)))", pkey[0], pkey[1], pkey[2], pkey[3]); } else if (pkalgo == PUBKEY_ALGO_ELGAMAL_E || pkalgo == PUBKEY_ALGO_ELGAMAL) { rc = gcry_sexp_build (&s_pkey, NULL, "(public-key(elg(p%m)(g%m)(y%m)))", pkey[0], pkey[1], pkey[2]); } else if (pkalgo == PUBKEY_ALGO_RSA || pkalgo == PUBKEY_ALGO_RSA_S) { rc = gcry_sexp_build (&s_pkey, NULL, "(public-key(rsa(n%m)(e%m)))", pkey[0], pkey[1]); } else if (pkalgo == PUBKEY_ALGO_ECDSA) { char *curve = openpgp_oid_to_str (pkey[0]); if (!curve) rc = gpg_error_from_syserror (); else { rc = gcry_sexp_build (&s_pkey, NULL, "(public-key(ecdsa(curve %s)(q%m)))", curve, pkey[1]); xfree (curve); } } else if (pkalgo == PUBKEY_ALGO_EDDSA) { char *curve = openpgp_oid_to_str (pkey[0]); if (!curve) rc = gpg_error_from_syserror (); else { const char *fmt; if (openpgp_oid_is_ed25519 (pkey[0])) fmt = "(public-key(ecc(curve %s)(flags eddsa)(q%m)))"; else fmt = "(public-key(ecc(curve %s)(q%m)))"; rc = gcry_sexp_build (&s_pkey, NULL, fmt, curve, pkey[1]); xfree (curve); } } else return GPG_ERR_PUBKEY_ALGO; if (rc) BUG (); /* gcry_sexp_build should never fail. */ /* Put hash into a S-Exp s_hash. */ if (pkalgo == PUBKEY_ALGO_EDDSA) { const char *fmt; if (openpgp_oid_is_ed25519 (pkey[0])) fmt = "(data(flags eddsa)(hash-algo sha512)(value %m))"; else fmt = "(data(value %m))"; if (gcry_sexp_build (&s_hash, NULL, fmt, hash)) BUG (); /* gcry_sexp_build should never fail. */ } else { if (gcry_sexp_build (&s_hash, NULL, "%m", hash)) BUG (); /* gcry_sexp_build should never fail. */ } /* Put data into a S-Exp s_sig. */ s_sig = NULL; if (pkalgo == PUBKEY_ALGO_DSA) { if (!data[0] || !data[1]) rc = gpg_error (GPG_ERR_BAD_MPI); else rc = gcry_sexp_build (&s_sig, NULL, "(sig-val(dsa(r%m)(s%m)))", data[0], data[1]); } else if (pkalgo == PUBKEY_ALGO_ECDSA) { if (!data[0] || !data[1]) rc = gpg_error (GPG_ERR_BAD_MPI); else rc = gcry_sexp_build (&s_sig, NULL, "(sig-val(ecdsa(r%m)(s%m)))", data[0], data[1]); } else if (pkalgo == PUBKEY_ALGO_EDDSA) { gcry_mpi_t r = data[0]; gcry_mpi_t s = data[1]; if (openpgp_oid_is_ed25519 (pkey[0])) { size_t rlen, slen, n; /* (bytes) */ char buf[64]; unsigned int nbits; unsigned int neededfixedlen = 256 / 8; log_assert (neededfixedlen <= sizeof buf); if (!r || !s) rc = gpg_error (GPG_ERR_BAD_MPI); else if ((rlen = (gcry_mpi_get_nbits (r)+7)/8) > neededfixedlen || !rlen) rc = gpg_error (GPG_ERR_BAD_MPI); else if ((slen = (gcry_mpi_get_nbits (s)+7)/8) > neededfixedlen || !slen) rc = gpg_error (GPG_ERR_BAD_MPI); else { /* We need to fixup the length in case of leading zeroes. * OpenPGP does not allow leading zeroes and the parser for * the signature packet has no information on the use curve, * thus we need to do it here. We won't do it for opaque * MPIs under the assumption that they are known to be fine; * we won't see them here anyway but the check is anyway * required. Fixme: A nifty feature for gcry_sexp_build * would be a format to left pad the value (e.g. "%*M"). */ rc = 0; if (rlen < neededfixedlen && !gcry_mpi_get_flag (r, GCRYMPI_FLAG_OPAQUE) && !(rc=gcry_mpi_print (GCRYMPI_FMT_USG, buf, sizeof buf, &n, r))) { log_assert (n < neededfixedlen); memmove (buf + (neededfixedlen - n), buf, n); memset (buf, 0, neededfixedlen - n); r = gcry_mpi_set_opaque_copy (NULL, buf, neededfixedlen * 8); } else if (rlen < neededfixedlen && gcry_mpi_get_flag (r, GCRYMPI_FLAG_OPAQUE)) { const unsigned char *p; p = gcry_mpi_get_opaque (r, &nbits); n = (nbits+7)/8; memcpy (buf + (neededfixedlen - n), p, n); memset (buf, 0, neededfixedlen - n); gcry_mpi_set_opaque_copy (r, buf, neededfixedlen * 8); } if (slen < neededfixedlen && !gcry_mpi_get_flag (s, GCRYMPI_FLAG_OPAQUE) && !(rc=gcry_mpi_print (GCRYMPI_FMT_USG, buf, sizeof buf, &n, s))) { log_assert (n < neededfixedlen); memmove (buf + (neededfixedlen - n), buf, n); memset (buf, 0, neededfixedlen - n); s = gcry_mpi_set_opaque_copy (NULL, buf, neededfixedlen * 8); } else if (slen < neededfixedlen && gcry_mpi_get_flag (s, GCRYMPI_FLAG_OPAQUE)) { const unsigned char *p; p = gcry_mpi_get_opaque (s, &nbits); n = (nbits+7)/8; memcpy (buf + (neededfixedlen - n), p, n); memset (buf, 0, neededfixedlen - n); gcry_mpi_set_opaque_copy (s, buf, neededfixedlen * 8); } } } else rc = 0; if (!rc) rc = gcry_sexp_build (&s_sig, NULL, "(sig-val(eddsa(r%M)(s%M)))", r, s); if (r != data[0]) gcry_mpi_release (r); if (s != data[1]) gcry_mpi_release (s); } else if (pkalgo == PUBKEY_ALGO_ELGAMAL || pkalgo == PUBKEY_ALGO_ELGAMAL_E) { if (!data[0] || !data[1]) rc = gpg_error (GPG_ERR_BAD_MPI); else rc = gcry_sexp_build (&s_sig, NULL, "(sig-val(elg(r%m)(s%m)))", data[0], data[1]); } else if (pkalgo == PUBKEY_ALGO_RSA || pkalgo == PUBKEY_ALGO_RSA_S) { if (!data[0]) rc = gpg_error (GPG_ERR_BAD_MPI); else rc = gcry_sexp_build (&s_sig, NULL, "(sig-val(rsa(s%m)))", data[0]); } else BUG (); if (!rc) rc = gcry_pk_verify (s_sig, s_hash, s_pkey); gcry_sexp_release (s_sig); gcry_sexp_release (s_hash); gcry_sexp_release (s_pkey); return rc; } /**************** * Emulate our old PK interface here - sometime in the future we might * change the internal design to directly fit to libgcrypt. * PK is only required to compute the fingerprint for ECDH. */ int pk_encrypt (pubkey_algo_t algo, gcry_mpi_t *resarr, gcry_mpi_t data, PKT_public_key *pk, gcry_mpi_t *pkey) { gcry_sexp_t s_ciph = NULL; gcry_sexp_t s_data = NULL; gcry_sexp_t s_pkey = NULL; int rc; int with_ecdh_cv25519 = 0; /* Make a sexp from pkey. */ if (algo == PUBKEY_ALGO_ELGAMAL || algo == PUBKEY_ALGO_ELGAMAL_E) { rc = gcry_sexp_build (&s_pkey, NULL, "(public-key(elg(p%m)(g%m)(y%m)))", pkey[0], pkey[1], pkey[2]); /* Put DATA into a simplified S-expression. */ if (!rc) rc = gcry_sexp_build (&s_data, NULL, "%m", data); } else if (algo == PUBKEY_ALGO_RSA || algo == PUBKEY_ALGO_RSA_E) { rc = gcry_sexp_build (&s_pkey, NULL, "(public-key(rsa(n%m)(e%m)))", pkey[0], pkey[1]); /* Put DATA into a simplified S-expression. */ if (!rc) rc = gcry_sexp_build (&s_data, NULL, "%m", data); } else if (algo == PUBKEY_ALGO_ECDH) { with_ecdh_cv25519 = openpgp_oid_is_cv25519 (pkey[0]); if (with_ecdh_cv25519) { unsigned char ephemkey[GCRY_KEM_ECC_X25519_ENCAPS_LEN+1]; unsigned int nbits; const byte *oid; const byte *pubkey; const byte *kek_params; unsigned char kdf_params[256]; size_t oidlen; size_t pubkeylen; size_t kdf_params_size; byte fp[MAX_FINGERPRINT_LEN]; byte *kekkey; size_t kekkeylen; int kdf_encr_algo; gcry_cipher_hd_t hd; /*FIXME use build_kdf_params! */ oid = gcry_mpi_get_opaque (pkey[0], &nbits); oidlen = (nbits + 7) / 8; pubkey = (const byte *)gcry_mpi_get_opaque (pkey[1], &nbits) + 1; pubkeylen = (nbits + 7) / 8 - 1; /*FIXME check pubkeylen == GCRY_KEM_ECC_X25519_PUBKEY_LEN */ (void)pubkeylen; kek_params = gcry_mpi_get_opaque (pkey[2], &nbits); /*FIXME check nbits good: 4-byte long*/ kdf_encr_algo = kek_params[3]; if (kdf_encr_algo != CIPHER_ALGO_AES && kdf_encr_algo != CIPHER_ALGO_AES192 && kdf_encr_algo != CIPHER_ALGO_AES256) return gpg_error (GPG_ERR_BAD_PUBKEY); kekkeylen = gcry_cipher_get_algo_keylen (kdf_encr_algo); kekkey = xtrymalloc_secure (kekkeylen); if (!kekkey) return gpg_error_from_syserror (); fingerprint_from_pk (pk, fp, NULL); memcpy (kdf_params, oid, oidlen); kdf_params_size = oidlen; kdf_params[kdf_params_size++] = PUBKEY_ALGO_ECDH; memcpy (kdf_params + kdf_params_size, kek_params, 4); kdf_params_size += 4; memcpy (kdf_params + kdf_params_size, "Anonymous Sender ", 20); kdf_params_size += 20; memcpy (kdf_params + kdf_params_size, fp, 20); kdf_params_size += 20; rc = gcry_kem_encap (GCRY_KEM_PGP_X25519, pubkey, GCRY_KEM_ECC_X25519_PUBKEY_LEN, ephemkey+1, GCRY_KEM_ECC_X25519_ENCAPS_LEN, kekkey, kekkeylen, kdf_params, kdf_params_size); if (rc) { xfree (kekkey); return rc; } rc = gcry_cipher_open (&hd, kdf_encr_algo, GCRY_CIPHER_MODE_AESWRAP, 0); if (rc) { log_error ("ecdh failed to initialize AESWRAP: %s\n", gpg_strerror (rc)); xfree (kekkey); return rc; } rc = gcry_cipher_setkey (hd, kekkey, kekkeylen); xfree (kekkey); if (rc) { gcry_cipher_close (hd); log_error ("ecdh failed in gcry_cipher_setkey: %s\n", gpg_strerror (rc)); return rc; } { byte *data_buf; int data_buf_size; byte *p = gcry_mpi_get_opaque (data, &nbits); size_t ndata = (nbits + 7)/8; byte *in; gcry_mpi_t result; data_buf_size = ndata; data_buf = xtrymalloc_secure (1 + 2*data_buf_size + 8); if (!data_buf) return gpg_error_from_syserror (); in = data_buf + 1 + data_buf_size + 8; memcpy (in, p, ndata); gcry_cipher_encrypt (hd, data_buf+1, data_buf_size+8, in, data_buf_size); memset (in, 0, data_buf_size); gcry_cipher_close (hd); data_buf[0] = data_buf_size+8; result = gcry_mpi_set_opaque (NULL, data_buf, 8 * (1+data_buf[0])); if (!result) { rc = gpg_error_from_syserror (); xfree (data_buf); return rc; } ephemkey[0] = 0x40; resarr[0] = gcry_mpi_set_opaque_copy (NULL, ephemkey, sizeof (ephemkey) * 8); resarr[1] = result; rc = 0; } return rc; } else { gcry_mpi_t k; rc = pk_ecdh_generate_ephemeral_key (pkey, &k); if (!rc) { char *curve; curve = openpgp_oid_to_str (pkey[0]); if (!curve) rc = gpg_error_from_syserror (); else { int with_djb_tweak_flag = with_ecdh_cv25519; /* Now use the ephemeral secret to compute the shared point. */ rc = gcry_sexp_build (&s_pkey, NULL, with_djb_tweak_flag ? "(public-key(ecdh(curve%s)(flags djb-tweak)(q%m)))" : "(public-key(ecdh(curve%s)(q%m)))", curve, pkey[1]); xfree (curve); /* Put K into a simplified S-expression. */ if (!rc) rc = gcry_sexp_build (&s_data, NULL, "%m", k); } gcry_mpi_release (k); } } } else rc = gpg_error (GPG_ERR_PUBKEY_ALGO); /* Pass it to libgcrypt. */ if (!rc) rc = gcry_pk_encrypt (&s_ciph, s_data, s_pkey); gcry_sexp_release (s_data); gcry_sexp_release (s_pkey); if (rc) ; else if (algo == PUBKEY_ALGO_ECDH) { gcry_mpi_t public, result; byte fp[MAX_FINGERPRINT_LEN]; byte *shared; size_t nshared; /* Get the shared point and the ephemeral public key. */ shared = get_data_from_sexp (s_ciph, "s", &nshared); if (!shared) { rc = gpg_error_from_syserror (); goto leave; } rc = sexp_extract_param_sos (s_ciph, "e", &public); gcry_sexp_release (s_ciph); s_ciph = NULL; if (DBG_CRYPTO) { log_debug ("ECDH ephemeral key:"); gcry_mpi_dump (public); log_printf ("\n"); } result = NULL; fingerprint_from_pk (pk, fp, NULL); if (!rc) { unsigned int nbits; byte *p = gcry_mpi_get_opaque (data, &nbits); rc = pk_ecdh_encrypt_with_shared_point (shared, nshared, fp, p, (nbits+7)/8, pkey, &result); } xfree (shared); if (!rc) { resarr[0] = public; resarr[1] = result; } else { gcry_mpi_release (public); gcry_mpi_release (result); } } else /* Elgamal or RSA case. */ { /* Fixme: Add better error handling or make gnupg use S-expressions directly. */ resarr[0] = get_mpi_from_sexp (s_ciph, "a", GCRYMPI_FMT_USG); if (!is_RSA (algo)) resarr[1] = get_mpi_from_sexp (s_ciph, "b", GCRYMPI_FMT_USG); } leave: gcry_sexp_release (s_ciph); return rc; } /* Check whether SKEY is a suitable secret key. */ int pk_check_secret_key (pubkey_algo_t pkalgo, gcry_mpi_t *skey) { gcry_sexp_t s_skey; int rc; if (pkalgo == PUBKEY_ALGO_DSA) { rc = gcry_sexp_build (&s_skey, NULL, "(private-key(dsa(p%m)(q%m)(g%m)(y%m)(x%m)))", skey[0], skey[1], skey[2], skey[3], skey[4]); } else if (pkalgo == PUBKEY_ALGO_ELGAMAL || pkalgo == PUBKEY_ALGO_ELGAMAL_E) { rc = gcry_sexp_build (&s_skey, NULL, "(private-key(elg(p%m)(g%m)(y%m)(x%m)))", skey[0], skey[1], skey[2], skey[3]); } else if (is_RSA (pkalgo)) { rc = gcry_sexp_build (&s_skey, NULL, "(private-key(rsa(n%m)(e%m)(d%m)(p%m)(q%m)(u%m)))", skey[0], skey[1], skey[2], skey[3], skey[4], skey[5]); } else if (pkalgo == PUBKEY_ALGO_ECDSA || pkalgo == PUBKEY_ALGO_ECDH) { char *curve = openpgp_oid_to_str (skey[0]); if (!curve) rc = gpg_error_from_syserror (); else { rc = gcry_sexp_build (&s_skey, NULL, "(private-key(ecc(curve%s)(q%m)(d%m)))", curve, skey[1], skey[2]); xfree (curve); } } else if (pkalgo == PUBKEY_ALGO_EDDSA) { char *curve = openpgp_oid_to_str (skey[0]); if (!curve) rc = gpg_error_from_syserror (); else { const char *fmt; if (openpgp_oid_is_ed25519 (skey[0])) fmt = "(private-key(ecc(curve %s)(flags eddsa)(q%m)(d%m)))"; else fmt = "(private-key(ecc(curve %s)(q%m)(d%m)))"; rc = gcry_sexp_build (&s_skey, NULL, fmt, curve, skey[1], skey[2]); xfree (curve); } } else return GPG_ERR_PUBKEY_ALGO; if (!rc) { rc = gcry_pk_testkey (s_skey); gcry_sexp_release (s_skey); } return rc; }