mirror of
git://git.gnupg.org/gnupg.git
synced 2025-07-02 22:46:30 +02:00
gnupg extension are now working
This commit is contained in:
parent
37d2adfe61
commit
e662bf708b
33 changed files with 1411 additions and 713 deletions
|
@ -1,7 +1,15 @@
|
|||
Sat Jun 13 14:16:57 1998 Werner Koch (wk@isil.d.shuttle.de)
|
||||
|
||||
* pubkey.c: Major changes to allow extensions. Changed the inteface
|
||||
of all public key ciphers and added the ability to load extensions
|
||||
on demand.
|
||||
|
||||
* misc.c: Removed.
|
||||
|
||||
Wed Jun 10 07:52:08 1998 Werner Koch,mobil,,, (wk@tobold)
|
||||
|
||||
* dynload.c: New
|
||||
* cipher.c: Major changes to allow extensions.
|
||||
* dynload.c: New.
|
||||
* cipher.c: Major changes to allow extensions.
|
||||
|
||||
Mon Jun 8 22:43:00 1998 Werner Koch (wk@isil.d.shuttle.de)
|
||||
|
||||
|
|
|
@ -35,7 +35,7 @@ libcipher_a_SOURCES = cipher.c \
|
|||
sha1.c \
|
||||
dsa.h \
|
||||
dsa.c \
|
||||
misc.c \
|
||||
g10c.c \
|
||||
smallprime.c
|
||||
|
||||
|
||||
|
|
|
@ -55,9 +55,9 @@ typedef struct {
|
|||
u32 p[BLOWFISH_ROUNDS+2];
|
||||
} BLOWFISH_context;
|
||||
|
||||
static void blowfish_setkey( BLOWFISH_context *c, byte *key, unsigned keylen );
|
||||
static void blowfish_encrypt_block( BLOWFISH_context *bc, byte *outbuf, byte *inbuf );
|
||||
static void blowfish_decrypt_block( BLOWFISH_context *bc, byte *outbuf, byte *inbuf );
|
||||
static void setkey( BLOWFISH_context *c, byte *key, unsigned keylen );
|
||||
static void encrypt_block( BLOWFISH_context *bc, byte *outbuf, byte *inbuf );
|
||||
static void decrypt_block( BLOWFISH_context *bc, byte *outbuf, byte *inbuf );
|
||||
|
||||
|
||||
/* precomputed S boxes */
|
||||
|
@ -414,7 +414,7 @@ decrypt( BLOWFISH_context *bc, u32 *ret_xl, u32 *ret_xr )
|
|||
#undef R
|
||||
|
||||
static void
|
||||
blowfish_encrypt_block( BLOWFISH_context *bc, byte *outbuf, byte *inbuf )
|
||||
encrypt_block( BLOWFISH_context *bc, byte *outbuf, byte *inbuf )
|
||||
{
|
||||
u32 d1, d2;
|
||||
|
||||
|
@ -433,7 +433,7 @@ blowfish_encrypt_block( BLOWFISH_context *bc, byte *outbuf, byte *inbuf )
|
|||
|
||||
|
||||
static void
|
||||
blowfish_decrypt_block( BLOWFISH_context *bc, byte *outbuf, byte *inbuf )
|
||||
decrypt_block( BLOWFISH_context *bc, byte *outbuf, byte *inbuf )
|
||||
{
|
||||
u32 d1, d2;
|
||||
|
||||
|
@ -461,19 +461,19 @@ selftest()
|
|||
byte key3[] = { 0x41, 0x79, 0x6E, 0xA0, 0x52, 0x61, 0x6E, 0xE4 };
|
||||
byte cipher3[] = { 0xE1, 0x13, 0xF4, 0x10, 0x2C, 0xFC, 0xCE, 0x43 };
|
||||
|
||||
blowfish_setkey( &c, "abcdefghijklmnopqrstuvwxyz", 26 );
|
||||
blowfish_encrypt_block( &c, buffer, plain );
|
||||
setkey( &c, "abcdefghijklmnopqrstuvwxyz", 26 );
|
||||
encrypt_block( &c, buffer, plain );
|
||||
if( memcmp( buffer, "\x32\x4E\xD0\xFE\xF4\x13\xA2\x03", 8 ) )
|
||||
log_error("wrong blowfish encryption\n");
|
||||
blowfish_decrypt_block( &c, buffer, buffer );
|
||||
decrypt_block( &c, buffer, buffer );
|
||||
if( memcmp( buffer, plain, 8 ) )
|
||||
log_bug("blowfish failed\n");
|
||||
|
||||
blowfish_setkey( &c, key3, 8 );
|
||||
blowfish_encrypt_block( &c, buffer, plain3 );
|
||||
setkey( &c, key3, 8 );
|
||||
encrypt_block( &c, buffer, plain3 );
|
||||
if( memcmp( buffer, cipher3, 8 ) )
|
||||
log_error("wrong blowfish encryption (3)\n");
|
||||
blowfish_decrypt_block( &c, buffer, buffer );
|
||||
decrypt_block( &c, buffer, buffer );
|
||||
if( memcmp( buffer, plain3, 8 ) )
|
||||
log_bug("blowfish failed (3)\n");
|
||||
}
|
||||
|
@ -481,7 +481,7 @@ selftest()
|
|||
|
||||
|
||||
static void
|
||||
blowfish_setkey( BLOWFISH_context *c, byte *key, unsigned keylen )
|
||||
setkey( BLOWFISH_context *c, byte *key, unsigned keylen )
|
||||
{
|
||||
int i, j;
|
||||
u32 data, datal, datar;
|
||||
|
@ -555,17 +555,17 @@ blowfish_setkey( BLOWFISH_context *c, byte *key, unsigned keylen )
|
|||
const char *
|
||||
blowfish_get_info( int algo, size_t *keylen,
|
||||
size_t *blocksize, size_t *contextsize,
|
||||
void (**setkey)( void *c, byte *key, unsigned keylen ),
|
||||
void (**encrypt)( void *c, byte *outbuf, byte *inbuf ),
|
||||
void (**decrypt)( void *c, byte *outbuf, byte *inbuf )
|
||||
void (**r_setkey)( void *c, byte *key, unsigned keylen ),
|
||||
void (**r_encrypt)( void *c, byte *outbuf, byte *inbuf ),
|
||||
void (**r_decrypt)( void *c, byte *outbuf, byte *inbuf )
|
||||
)
|
||||
{
|
||||
*keylen = algo == CIPHER_ALGO_BLOWFISH ? 128 : 160;
|
||||
*blocksize = BLOWFISH_BLOCKSIZE;
|
||||
*contextsize = sizeof(BLOWFISH_context);
|
||||
*setkey = FNCCAST_SETKEY(blowfish_setkey);
|
||||
*encrypt= FNCCAST_CRYPT(blowfish_encrypt_block);
|
||||
*decrypt= FNCCAST_CRYPT(blowfish_decrypt_block);
|
||||
*r_setkey = FNCCAST_SETKEY(setkey);
|
||||
*r_encrypt= FNCCAST_CRYPT(encrypt_block);
|
||||
*r_decrypt= FNCCAST_CRYPT(decrypt_block);
|
||||
|
||||
if( algo == CIPHER_ALGO_BLOWFISH )
|
||||
return "BLOWFISH";
|
||||
|
|
|
@ -178,7 +178,8 @@ load_cipher_modules()
|
|||
continue;
|
||||
}
|
||||
/* put it into the table */
|
||||
log_info("loaded cipher %d (%s)\n", ct->algo, name);
|
||||
if( g10_opt_verbose > 1 )
|
||||
log_info("loaded cipher %d (%s)\n", ct->algo, name);
|
||||
ct->name = name;
|
||||
ct_idx++;
|
||||
ct++;
|
||||
|
|
192
cipher/dsa.c
192
cipher/dsa.c
|
@ -28,6 +28,30 @@
|
|||
#include "cipher.h"
|
||||
#include "dsa.h"
|
||||
|
||||
typedef struct {
|
||||
MPI p; /* prime */
|
||||
MPI q; /* group order */
|
||||
MPI g; /* group generator */
|
||||
MPI y; /* g^x mod p */
|
||||
} DSA_public_key;
|
||||
|
||||
|
||||
typedef struct {
|
||||
MPI p; /* prime */
|
||||
MPI q; /* group order */
|
||||
MPI g; /* group generator */
|
||||
MPI y; /* g^x mod p */
|
||||
MPI x; /* secret exponent */
|
||||
} DSA_secret_key;
|
||||
|
||||
|
||||
static MPI gen_k( MPI q );
|
||||
static void test_keys( DSA_secret_key *sk, unsigned qbits );
|
||||
static int check_secret_key( DSA_secret_key *sk );
|
||||
static void generate( DSA_secret_key *sk, unsigned nbits, MPI **ret_factors );
|
||||
static void sign(MPI r, MPI s, MPI input, DSA_secret_key *skey);
|
||||
static int verify(MPI r, MPI s, MPI input, DSA_public_key *pkey);
|
||||
|
||||
/****************
|
||||
* Generate a random secret exponent k less than q
|
||||
*/
|
||||
|
@ -55,37 +79,23 @@ gen_k( MPI q )
|
|||
return k;
|
||||
}
|
||||
|
||||
void
|
||||
dsa_free_public_key( DSA_public_key *pk )
|
||||
{
|
||||
mpi_free( pk->p ); pk->p = NULL;
|
||||
mpi_free( pk->q ); pk->q = NULL;
|
||||
mpi_free( pk->g ); pk->g = NULL;
|
||||
mpi_free( pk->y ); pk->y = NULL;
|
||||
}
|
||||
|
||||
void
|
||||
dsa_free_secret_key( DSA_secret_key *sk )
|
||||
{
|
||||
mpi_free( sk->p ); sk->p = NULL;
|
||||
mpi_free( sk->q ); sk->q = NULL;
|
||||
mpi_free( sk->g ); sk->g = NULL;
|
||||
mpi_free( sk->y ); sk->y = NULL;
|
||||
mpi_free( sk->x ); sk->x = NULL;
|
||||
}
|
||||
|
||||
|
||||
static void
|
||||
test_keys( DSA_public_key *pk, DSA_secret_key *sk, unsigned qbits )
|
||||
test_keys( DSA_secret_key *sk, unsigned qbits )
|
||||
{
|
||||
DSA_public_key pk;
|
||||
MPI test = mpi_alloc( qbits / BITS_PER_MPI_LIMB );
|
||||
MPI out1_a = mpi_alloc( qbits / BITS_PER_MPI_LIMB );
|
||||
MPI out1_b = mpi_alloc( qbits / BITS_PER_MPI_LIMB );
|
||||
|
||||
pk.p = sk->p;
|
||||
pk.q = sk->q;
|
||||
pk.g = sk->g;
|
||||
pk.y = sk->y;
|
||||
mpi_set_bytes( test, qbits, get_random_byte, 0 );
|
||||
|
||||
dsa_sign( out1_a, out1_b, test, sk );
|
||||
if( !dsa_verify( out1_a, out1_b, test, pk ) )
|
||||
sign( out1_a, out1_b, test, sk );
|
||||
if( !verify( out1_a, out1_b, test, &pk ) )
|
||||
log_fatal("DSA:: sign, verify failed\n");
|
||||
|
||||
mpi_free( test );
|
||||
|
@ -100,9 +110,8 @@ test_keys( DSA_public_key *pk, DSA_secret_key *sk, unsigned qbits )
|
|||
* Returns: 2 structures filled with all needed values
|
||||
* and an array with the n-1 factors of (p-1)
|
||||
*/
|
||||
void
|
||||
dsa_generate( DSA_public_key *pk, DSA_secret_key *sk,
|
||||
unsigned nbits, MPI **ret_factors )
|
||||
static void
|
||||
generate( DSA_secret_key *sk, unsigned nbits, MPI **ret_factors )
|
||||
{
|
||||
MPI p; /* the prime */
|
||||
MPI q; /* the 160 bit prime factor */
|
||||
|
@ -176,10 +185,6 @@ dsa_generate( DSA_public_key *pk, DSA_secret_key *sk,
|
|||
}
|
||||
|
||||
/* copy the stuff to the key structures */
|
||||
pk->p = mpi_copy(p);
|
||||
pk->q = mpi_copy(q);
|
||||
pk->g = mpi_copy(g);
|
||||
pk->y = mpi_copy(y);
|
||||
sk->p = p;
|
||||
sk->q = q;
|
||||
sk->g = g;
|
||||
|
@ -187,7 +192,7 @@ dsa_generate( DSA_public_key *pk, DSA_secret_key *sk,
|
|||
sk->x = x;
|
||||
|
||||
/* now we can test our keys (this should never fail!) */
|
||||
test_keys( pk, sk, qbits );
|
||||
test_keys( sk, qbits );
|
||||
}
|
||||
|
||||
|
||||
|
@ -196,8 +201,8 @@ dsa_generate( DSA_public_key *pk, DSA_secret_key *sk,
|
|||
* Test whether the secret key is valid.
|
||||
* Returns: if this is a valid key.
|
||||
*/
|
||||
int
|
||||
dsa_check_secret_key( DSA_secret_key *sk )
|
||||
static int
|
||||
check_secret_key( DSA_secret_key *sk )
|
||||
{
|
||||
int rc;
|
||||
MPI y = mpi_alloc( mpi_get_nlimbs(sk->y) );
|
||||
|
@ -214,8 +219,8 @@ dsa_check_secret_key( DSA_secret_key *sk )
|
|||
* Make a DSA signature from HASH and put it into r and s.
|
||||
*/
|
||||
|
||||
void
|
||||
dsa_sign(MPI r, MPI s, MPI hash, DSA_secret_key *skey )
|
||||
static void
|
||||
sign(MPI r, MPI s, MPI hash, DSA_secret_key *skey )
|
||||
{
|
||||
MPI k;
|
||||
MPI kinv;
|
||||
|
@ -247,8 +252,8 @@ dsa_sign(MPI r, MPI s, MPI hash, DSA_secret_key *skey )
|
|||
/****************
|
||||
* Returns true if the signature composed from R and S is valid.
|
||||
*/
|
||||
int
|
||||
dsa_verify(MPI r, MPI s, MPI hash, DSA_public_key *pkey )
|
||||
static int
|
||||
verify(MPI r, MPI s, MPI hash, DSA_public_key *pkey )
|
||||
{
|
||||
int rc;
|
||||
MPI w, u1, u2, v;
|
||||
|
@ -290,3 +295,118 @@ dsa_verify(MPI r, MPI s, MPI hash, DSA_public_key *pkey )
|
|||
return rc;
|
||||
}
|
||||
|
||||
|
||||
/*********************************************
|
||||
************** interface ******************
|
||||
*********************************************/
|
||||
|
||||
int
|
||||
dsa_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors )
|
||||
{
|
||||
DSA_secret_key sk;
|
||||
|
||||
if( algo != PUBKEY_ALGO_DSA )
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
|
||||
generate( &sk, nbits, retfactors );
|
||||
skey[0] = sk.p;
|
||||
skey[1] = sk.q;
|
||||
skey[2] = sk.g;
|
||||
skey[3] = sk.y;
|
||||
skey[4] = sk.x;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
dsa_check_secret_key( int algo, MPI *skey )
|
||||
{
|
||||
DSA_secret_key sk;
|
||||
|
||||
if( algo != PUBKEY_ALGO_DSA )
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
|
||||
sk.p = skey[0];
|
||||
sk.q = skey[1];
|
||||
sk.g = skey[2];
|
||||
sk.y = skey[3];
|
||||
sk.x = skey[4];
|
||||
if( !check_secret_key( &sk ) )
|
||||
return G10ERR_BAD_SECKEY;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
int
|
||||
dsa_sign( int algo, MPI *resarr, MPI data, MPI *skey )
|
||||
{
|
||||
DSA_secret_key sk;
|
||||
|
||||
if( algo != PUBKEY_ALGO_DSA )
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
|
||||
sk.p = skey[0];
|
||||
sk.q = skey[1];
|
||||
sk.g = skey[2];
|
||||
sk.y = skey[3];
|
||||
sk.x = skey[4];
|
||||
resarr[0] = mpi_alloc( mpi_get_nlimbs( sk.p ) );
|
||||
resarr[1] = mpi_alloc( mpi_get_nlimbs( sk.p ) );
|
||||
sign( resarr[0], resarr[1], data, &sk );
|
||||
return 0;
|
||||
}
|
||||
|
||||
int
|
||||
dsa_verify( int algo, MPI hash, MPI *data, MPI *pkey )
|
||||
{
|
||||
DSA_public_key pk;
|
||||
|
||||
if( algo != PUBKEY_ALGO_DSA )
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
|
||||
pk.p = pkey[0];
|
||||
pk.q = pkey[1];
|
||||
pk.g = pkey[2];
|
||||
pk.y = pkey[3];
|
||||
if( !verify( data[0], data[1], hash, &pk ) )
|
||||
return G10ERR_BAD_SIGN;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
unsigned
|
||||
dsa_get_nbits( int algo, MPI *pkey )
|
||||
{
|
||||
if( algo != PUBKEY_ALGO_DSA )
|
||||
return 0;
|
||||
return mpi_get_nbits( pkey[0] );
|
||||
}
|
||||
|
||||
|
||||
/****************
|
||||
* Return some information about the algorithm. We need algo here to
|
||||
* distinguish different flavors of the algorithm.
|
||||
* Returns: A pointer to string describing the algorithm or NULL if
|
||||
* the ALGO is invalid.
|
||||
* Usage: Bit 0 set : allows signing
|
||||
* 1 set : allows encryption
|
||||
*/
|
||||
const char *
|
||||
dsa_get_info( int algo, int *npkey, int *nskey, int *nenc, int *nsig,
|
||||
int *usage )
|
||||
{
|
||||
*npkey = 4;
|
||||
*nskey = 5;
|
||||
*nenc = 0;
|
||||
*nsig = 2;
|
||||
|
||||
switch( algo ) {
|
||||
case PUBKEY_ALGO_DSA: *usage = 1; return "DSA";
|
||||
default: *usage = 0; return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
|
33
cipher/dsa.h
33
cipher/dsa.h
|
@ -20,31 +20,12 @@
|
|||
#ifndef G10_DSA_H
|
||||
#define G10_DSA_H
|
||||
|
||||
#include "mpi.h"
|
||||
|
||||
typedef struct {
|
||||
MPI p; /* prime */
|
||||
MPI q; /* group order */
|
||||
MPI g; /* group generator */
|
||||
MPI y; /* g^x mod p */
|
||||
} DSA_public_key;
|
||||
|
||||
|
||||
typedef struct {
|
||||
MPI p; /* prime */
|
||||
MPI q; /* group order */
|
||||
MPI g; /* group generator */
|
||||
MPI y; /* g^x mod p */
|
||||
MPI x; /* secret exponent */
|
||||
} DSA_secret_key;
|
||||
|
||||
|
||||
void dsa_free_public_key( DSA_public_key *pk );
|
||||
void dsa_free_secret_key( DSA_secret_key *sk );
|
||||
int dsa_check_secret_key( DSA_secret_key *sk );
|
||||
void dsa_generate( DSA_public_key *pk, DSA_secret_key *sk,
|
||||
unsigned nbits, MPI **ret_factors );
|
||||
void dsa_sign(MPI r, MPI s, MPI input, DSA_secret_key *skey);
|
||||
int dsa_verify(MPI r, MPI s, MPI input, DSA_public_key *pkey);
|
||||
int dsa_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors );
|
||||
int dsa_check_secret_key( int algo, MPI *skey );
|
||||
int dsa_sign( int algo, MPI *resarr, MPI data, MPI *skey );
|
||||
int dsa_verify( int algo, MPI hash, MPI *data, MPI *pkey );
|
||||
unsigned dsa_get_nbits( int algo, MPI *pkey );
|
||||
const char *dsa_get_info( int algo, int *npkey, int *nskey,
|
||||
int *nenc, int *nsig, int *usage );
|
||||
|
||||
#endif /*G10_DSA_H*/
|
||||
|
|
120
cipher/dynload.c
120
cipher/dynload.c
|
@ -71,11 +71,12 @@ register_cipher_extension( const char *fname )
|
|||
/* check that it is not already registered */
|
||||
for(r = extensions; r; r = r->next )
|
||||
if( !compare_filenames(r->name, el->name) ) {
|
||||
log_debug("extension '%s' already registered\n", el->name );
|
||||
log_info("extension '%s' already registered\n", el->name );
|
||||
m_free(el);
|
||||
return;
|
||||
}
|
||||
log_debug("extension '%s' registered\n", el->name );
|
||||
if( DBG_CIPHER )
|
||||
log_debug("extension '%s' registered\n", el->name );
|
||||
/* and register */
|
||||
el->next = extensions;
|
||||
extensions = el;
|
||||
|
@ -91,7 +92,7 @@ load_extension( EXTLIST el )
|
|||
int seq = 0;
|
||||
int class, vers;
|
||||
|
||||
el->handle = dlopen(el->name, RTLD_LAZY);
|
||||
el->handle = dlopen(el->name, RTLD_NOW);
|
||||
if( !el->handle ) {
|
||||
log_error("%s: error loading extension: %s\n", el->name, dlerror() );
|
||||
goto failure;
|
||||
|
@ -102,7 +103,8 @@ load_extension( EXTLIST el )
|
|||
goto failure;
|
||||
}
|
||||
|
||||
log_info("%s: version '%s'\n", el->name, *name );
|
||||
if( g10_opt_verbose )
|
||||
log_info("%s: version '%s'\n", el->name, *name );
|
||||
|
||||
sym = dlsym(el->handle, "gnupgext_enum_func");
|
||||
if( (err=dlerror()) ) {
|
||||
|
@ -111,23 +113,26 @@ load_extension( EXTLIST el )
|
|||
}
|
||||
el->enumfunc = (void *(*)(int,int*,int*,int*))sym;
|
||||
|
||||
/* list the contents of the module */
|
||||
while( (sym = (*el->enumfunc)(0, &seq, &class, &vers)) ) {
|
||||
if( vers != 1 ) {
|
||||
log_error("%s: ignoring func with version %d\n", el->name, vers);
|
||||
continue;
|
||||
}
|
||||
switch( class ) {
|
||||
case 11:
|
||||
case 21:
|
||||
case 31:
|
||||
log_info("%s: provides %s algorithm %d\n", el->name,
|
||||
class == 11? "md" :
|
||||
class == 21? "cipher" : "pubkey",
|
||||
*(int*)sym);
|
||||
break;
|
||||
default:
|
||||
log_debug("%s: skipping class %d\n", el->name, class);
|
||||
if( g10_opt_verbose > 1 ) {
|
||||
/* list the contents of the module */
|
||||
while( (sym = (*el->enumfunc)(0, &seq, &class, &vers)) ) {
|
||||
if( vers != 1 ) {
|
||||
log_info("%s: ignoring func with version %d\n",el->name,vers);
|
||||
continue;
|
||||
}
|
||||
switch( class ) {
|
||||
case 11:
|
||||
case 21:
|
||||
case 31:
|
||||
log_info("%s: provides %s algorithm %d\n", el->name,
|
||||
class == 11? "md" :
|
||||
class == 21? "cipher" : "pubkey",
|
||||
*(int*)sym);
|
||||
break;
|
||||
default:
|
||||
/*log_debug("%s: skipping class %d\n", el->name, class);*/
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
|
@ -195,7 +200,78 @@ enum_gnupgext_ciphers( void **enum_context, int *algo,
|
|||
*algo = *(int*)sym;
|
||||
algname = (*finfo)( *algo, keylen, blocksize, contextsize,
|
||||
setkey, encrypt, decrypt );
|
||||
log_debug("found algo %d (%s)\n", *algo, algname );
|
||||
if( algname ) {
|
||||
ctx->r = r;
|
||||
return algname;
|
||||
}
|
||||
}
|
||||
ctx->seq2 = 0;
|
||||
}
|
||||
ctx->seq1 = 0;
|
||||
}
|
||||
ctx->r = r;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
const char *
|
||||
enum_gnupgext_pubkeys( void **enum_context, int *algo,
|
||||
int *npkey, int *nskey, int *nenc, int *nsig, int *usage,
|
||||
int (**generate)( int algo, unsigned nbits, MPI *skey, MPI **retfactors ),
|
||||
int (**check_secret_key)( int algo, MPI *skey ),
|
||||
int (**encrypt)( int algo, MPI *resarr, MPI data, MPI *pkey ),
|
||||
int (**decrypt)( int algo, MPI *result, MPI *data, MPI *skey ),
|
||||
int (**sign)( int algo, MPI *resarr, MPI data, MPI *skey ),
|
||||
int (**verify)( int algo, MPI hash, MPI *data, MPI *pkey ),
|
||||
unsigned (**get_nbits)( int algo, MPI *pkey ) )
|
||||
{
|
||||
EXTLIST r;
|
||||
ENUMCONTEXT *ctx;
|
||||
const char * (*finfo)( int, int *, int *, int *, int *, int *,
|
||||
int (**)( int, unsigned, MPI *, MPI **),
|
||||
int (**)( int, MPI * ),
|
||||
int (**)( int, MPI *, MPI , MPI * ),
|
||||
int (**)( int, MPI *, MPI *, MPI * ),
|
||||
int (**)( int, MPI *, MPI , MPI * ),
|
||||
int (**)( int, MPI , MPI *, MPI * ),
|
||||
unsigned (**)( int , MPI * ) );
|
||||
|
||||
if( !*enum_context ) { /* init context */
|
||||
ctx = m_alloc_clear( sizeof( *ctx ) );
|
||||
ctx->r = extensions;
|
||||
*enum_context = ctx;
|
||||
}
|
||||
else if( !algo ) { /* release the context */
|
||||
m_free(*enum_context);
|
||||
*enum_context = NULL;
|
||||
return NULL;
|
||||
}
|
||||
else
|
||||
ctx = *enum_context;
|
||||
|
||||
for( r = ctx->r; r; r = r->next ) {
|
||||
int class, vers;
|
||||
|
||||
if( r->failed )
|
||||
continue;
|
||||
if( !r->handle && load_extension(r) )
|
||||
continue;
|
||||
/* get a pubkey info function */
|
||||
if( ctx->sym )
|
||||
goto inner_loop;
|
||||
while( (ctx->sym = (*r->enumfunc)(30, &ctx->seq1, &class, &vers)) ) {
|
||||
void *sym;
|
||||
if( vers != 1 || class != 30 )
|
||||
continue;
|
||||
inner_loop:
|
||||
finfo = ctx->sym;
|
||||
while( (sym = (*r->enumfunc)(31, &ctx->seq2, &class, &vers)) ) {
|
||||
const char *algname;
|
||||
if( vers != 1 || class != 31 )
|
||||
continue;
|
||||
*algo = *(int*)sym;
|
||||
algname = (*finfo)( *algo, npkey, nskey, nenc, nsig, usage,
|
||||
generate, check_secret_key, encrypt,
|
||||
decrypt, sign, verify, get_nbits );
|
||||
if( algname ) {
|
||||
ctx->r = r;
|
||||
return algname;
|
||||
|
|
|
@ -28,4 +28,15 @@ enum_gnupgext_ciphers( void **enum_context, int *algo,
|
|||
void (**decrypt)( void *c, byte *outbuf, byte *inbuf )
|
||||
);
|
||||
|
||||
const char *
|
||||
enum_gnupgext_pubkeys( void **enum_context, int *algo,
|
||||
int *npkey, int *nskey, int *nenc, int *nsig, int *usage,
|
||||
int (**generate)( int algo, unsigned nbits, MPI *skey, MPI **retfactors ),
|
||||
int (**check_secret_key)( int algo, MPI *skey ),
|
||||
int (**encrypt)( int algo, MPI *resarr, MPI data, MPI *pkey ),
|
||||
int (**decrypt)( int algo, MPI *result, MPI *data, MPI *skey ),
|
||||
int (**sign)( int algo, MPI *resarr, MPI data, MPI *skey ),
|
||||
int (**verify)( int algo, MPI hash, MPI *data, MPI *pkey ),
|
||||
unsigned (**get_nbits)( int algo, MPI *pkey ) );
|
||||
|
||||
#endif /*G10_CIPHER_DYNLOAD_H*/
|
||||
|
|
229
cipher/elgamal.c
229
cipher/elgamal.c
|
@ -31,42 +31,53 @@
|
|||
#include "cipher.h"
|
||||
#include "elgamal.h"
|
||||
|
||||
typedef struct {
|
||||
MPI p; /* prime */
|
||||
MPI g; /* group generator */
|
||||
MPI y; /* g^x mod p */
|
||||
} ELG_public_key;
|
||||
|
||||
void
|
||||
elg_free_public_key( ELG_public_key *pk )
|
||||
{
|
||||
mpi_free( pk->p ); pk->p = NULL;
|
||||
mpi_free( pk->g ); pk->g = NULL;
|
||||
mpi_free( pk->y ); pk->y = NULL;
|
||||
}
|
||||
|
||||
void
|
||||
elg_free_secret_key( ELG_secret_key *sk )
|
||||
{
|
||||
mpi_free( sk->p ); sk->p = NULL;
|
||||
mpi_free( sk->g ); sk->g = NULL;
|
||||
mpi_free( sk->y ); sk->y = NULL;
|
||||
mpi_free( sk->x ); sk->x = NULL;
|
||||
}
|
||||
typedef struct {
|
||||
MPI p; /* prime */
|
||||
MPI g; /* group generator */
|
||||
MPI y; /* g^x mod p */
|
||||
MPI x; /* secret exponent */
|
||||
} ELG_secret_key;
|
||||
|
||||
|
||||
static void test_keys( ELG_secret_key *sk, unsigned nbits );
|
||||
static MPI gen_k( MPI p );
|
||||
static void generate( ELG_secret_key *sk, unsigned nbits, MPI **factors );
|
||||
static int check_secret_key( ELG_secret_key *sk );
|
||||
static void encrypt(MPI a, MPI b, MPI input, ELG_public_key *pkey );
|
||||
static void decrypt(MPI output, MPI a, MPI b, ELG_secret_key *skey );
|
||||
static void sign(MPI a, MPI b, MPI input, ELG_secret_key *skey);
|
||||
static int verify(MPI a, MPI b, MPI input, ELG_public_key *pkey);
|
||||
|
||||
|
||||
static void
|
||||
test_keys( ELG_public_key *pk, ELG_secret_key *sk, unsigned nbits )
|
||||
test_keys( ELG_secret_key *sk, unsigned nbits )
|
||||
{
|
||||
ELG_public_key pk;
|
||||
MPI test = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
|
||||
MPI out1_a = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
|
||||
MPI out1_b = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
|
||||
MPI out2 = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
|
||||
|
||||
pk.p = sk->p;
|
||||
pk.g = sk->g;
|
||||
pk.y = sk->y;
|
||||
|
||||
mpi_set_bytes( test, nbits, get_random_byte, 0 );
|
||||
|
||||
elg_encrypt( out1_a, out1_b, test, pk );
|
||||
elg_decrypt( out2, out1_a, out1_b, sk );
|
||||
encrypt( out1_a, out1_b, test, &pk );
|
||||
decrypt( out2, out1_a, out1_b, sk );
|
||||
if( mpi_cmp( test, out2 ) )
|
||||
log_fatal("ElGamal operation: encrypt, decrypt failed\n");
|
||||
|
||||
elg_sign( out1_a, out1_b, test, sk );
|
||||
if( !elg_verify( out1_a, out1_b, test, pk ) )
|
||||
sign( out1_a, out1_b, test, sk );
|
||||
if( !verify( out1_a, out1_b, test, &pk ) )
|
||||
log_fatal("ElGamal operation: sign, verify failed\n");
|
||||
|
||||
mpi_free( test );
|
||||
|
@ -115,9 +126,8 @@ gen_k( MPI p )
|
|||
* Returns: 2 structures filles with all needed values
|
||||
* and an array with n-1 factors of (p-1)
|
||||
*/
|
||||
void
|
||||
elg_generate( ELG_public_key *pk, ELG_secret_key *sk,
|
||||
unsigned nbits, MPI **ret_factors )
|
||||
static void
|
||||
generate( ELG_secret_key *sk, unsigned nbits, MPI **ret_factors )
|
||||
{
|
||||
MPI p; /* the prime */
|
||||
MPI p_min1;
|
||||
|
@ -186,16 +196,13 @@ elg_generate( ELG_public_key *pk, ELG_secret_key *sk,
|
|||
}
|
||||
|
||||
/* copy the stuff to the key structures */
|
||||
pk->p = mpi_copy(p);
|
||||
pk->g = mpi_copy(g);
|
||||
pk->y = mpi_copy(y);
|
||||
sk->p = p;
|
||||
sk->g = g;
|
||||
sk->y = y;
|
||||
sk->x = x;
|
||||
|
||||
/* now we can test our keys (this should never fail!) */
|
||||
test_keys( pk, sk, nbits - 64 );
|
||||
test_keys( sk, nbits - 64 );
|
||||
|
||||
mpi_free( p_min1 );
|
||||
mpi_free( temp );
|
||||
|
@ -206,8 +213,8 @@ elg_generate( ELG_public_key *pk, ELG_secret_key *sk,
|
|||
* Test whether the secret key is valid.
|
||||
* Returns: if this is a valid key.
|
||||
*/
|
||||
int
|
||||
elg_check_secret_key( ELG_secret_key *sk )
|
||||
static int
|
||||
check_secret_key( ELG_secret_key *sk )
|
||||
{
|
||||
int rc;
|
||||
MPI y = mpi_alloc( mpi_get_nlimbs(sk->y) );
|
||||
|
@ -219,8 +226,8 @@ elg_check_secret_key( ELG_secret_key *sk )
|
|||
}
|
||||
|
||||
|
||||
void
|
||||
elg_encrypt(MPI a, MPI b, MPI input, ELG_public_key *pkey )
|
||||
static void
|
||||
encrypt(MPI a, MPI b, MPI input, ELG_public_key *pkey )
|
||||
{
|
||||
MPI k;
|
||||
|
||||
|
@ -249,8 +256,8 @@ elg_encrypt(MPI a, MPI b, MPI input, ELG_public_key *pkey )
|
|||
|
||||
|
||||
|
||||
void
|
||||
elg_decrypt(MPI output, MPI a, MPI b, ELG_secret_key *skey )
|
||||
static void
|
||||
decrypt(MPI output, MPI a, MPI b, ELG_secret_key *skey )
|
||||
{
|
||||
MPI t1 = mpi_alloc_secure( mpi_get_nlimbs( skey->p ) );
|
||||
|
||||
|
@ -276,8 +283,8 @@ elg_decrypt(MPI output, MPI a, MPI b, ELG_secret_key *skey )
|
|||
* Make an Elgamal signature out of INPUT
|
||||
*/
|
||||
|
||||
void
|
||||
elg_sign(MPI a, MPI b, MPI input, ELG_secret_key *skey )
|
||||
static void
|
||||
sign(MPI a, MPI b, MPI input, ELG_secret_key *skey )
|
||||
{
|
||||
MPI k;
|
||||
MPI t = mpi_alloc( mpi_get_nlimbs(a) );
|
||||
|
@ -322,8 +329,8 @@ elg_sign(MPI a, MPI b, MPI input, ELG_secret_key *skey )
|
|||
/****************
|
||||
* Returns true if the signature composed of A and B is valid.
|
||||
*/
|
||||
int
|
||||
elg_verify(MPI a, MPI b, MPI input, ELG_public_key *pkey )
|
||||
static int
|
||||
verify(MPI a, MPI b, MPI input, ELG_public_key *pkey )
|
||||
{
|
||||
int rc;
|
||||
MPI t1;
|
||||
|
@ -375,3 +382,151 @@ elg_verify(MPI a, MPI b, MPI input, ELG_public_key *pkey )
|
|||
return rc;
|
||||
}
|
||||
|
||||
/*********************************************
|
||||
************** interface ******************
|
||||
*********************************************/
|
||||
|
||||
int
|
||||
elg_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors )
|
||||
{
|
||||
ELG_secret_key sk;
|
||||
|
||||
if( !is_ELGAMAL(algo) )
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
|
||||
generate( &sk, nbits, retfactors );
|
||||
skey[0] = sk.p;
|
||||
skey[1] = sk.g;
|
||||
skey[2] = sk.y;
|
||||
skey[3] = sk.x;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
elg_check_secret_key( int algo, MPI *skey )
|
||||
{
|
||||
ELG_secret_key sk;
|
||||
|
||||
if( !is_ELGAMAL(algo) )
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
|
||||
sk.p = skey[0];
|
||||
sk.g = skey[1];
|
||||
sk.y = skey[2];
|
||||
sk.x = skey[3];
|
||||
if( !check_secret_key( &sk ) )
|
||||
return G10ERR_BAD_SECKEY;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
int
|
||||
elg_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey )
|
||||
{
|
||||
ELG_public_key pk;
|
||||
|
||||
if( !is_ELGAMAL(algo) )
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
|
||||
pk.p = pkey[0];
|
||||
pk.g = pkey[1];
|
||||
pk.y = pkey[2];
|
||||
resarr[0] = mpi_alloc( mpi_get_nlimbs( pk.p ) );
|
||||
resarr[1] = mpi_alloc( mpi_get_nlimbs( pk.p ) );
|
||||
encrypt( resarr[0], resarr[1], data, &pk );
|
||||
return 0;
|
||||
}
|
||||
|
||||
int
|
||||
elg_decrypt( int algo, MPI *result, MPI *data, MPI *skey )
|
||||
{
|
||||
ELG_secret_key sk;
|
||||
|
||||
if( !is_ELGAMAL(algo) )
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
|
||||
sk.p = skey[0];
|
||||
sk.g = skey[1];
|
||||
sk.y = skey[2];
|
||||
sk.x = skey[3];
|
||||
*result = mpi_alloc_secure( mpi_get_nlimbs( sk.p ) );
|
||||
decrypt( *result, data[0], data[1], &sk );
|
||||
return 0;
|
||||
}
|
||||
|
||||
int
|
||||
elg_sign( int algo, MPI *resarr, MPI data, MPI *skey )
|
||||
{
|
||||
ELG_secret_key sk;
|
||||
|
||||
if( !is_ELGAMAL(algo) )
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
|
||||
sk.p = skey[0];
|
||||
sk.g = skey[1];
|
||||
sk.y = skey[2];
|
||||
sk.x = skey[3];
|
||||
resarr[0] = mpi_alloc( mpi_get_nlimbs( sk.p ) );
|
||||
resarr[1] = mpi_alloc( mpi_get_nlimbs( sk.p ) );
|
||||
sign( resarr[0], resarr[1], data, &sk );
|
||||
return 0;
|
||||
}
|
||||
|
||||
int
|
||||
elg_verify( int algo, MPI hash, MPI *data, MPI *pkey )
|
||||
{
|
||||
ELG_public_key pk;
|
||||
|
||||
if( !is_ELGAMAL(algo) )
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
|
||||
pk.p = pkey[0];
|
||||
pk.g = pkey[1];
|
||||
pk.y = pkey[2];
|
||||
if( !verify( data[0], data[1], hash, &pk ) )
|
||||
return G10ERR_BAD_SIGN;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
unsigned
|
||||
elg_get_nbits( int algo, MPI *pkey )
|
||||
{
|
||||
if( !is_ELGAMAL(algo) )
|
||||
return 0;
|
||||
return mpi_get_nbits( pkey[0] );
|
||||
}
|
||||
|
||||
|
||||
/****************
|
||||
* Return some information about the algorithm. We need algo here to
|
||||
* distinguish different flavors of the algorithm.
|
||||
* Returns: A pointer to string describing the algorithm or NULL if
|
||||
* the ALGO is invalid.
|
||||
* Usage: Bit 0 set : allows signing
|
||||
* 1 set : allows encryption
|
||||
* NOTE: This function allows signing also for ELG-E, chich is not
|
||||
* okay but a bad hack to allow to work with olf gpg keys. The real check
|
||||
* is done in the gnupg ocde depending on the packet version.
|
||||
*/
|
||||
const char *
|
||||
elg_get_info( int algo, int *npkey, int *nskey, int *nenc, int *nsig,
|
||||
int *usage )
|
||||
{
|
||||
*npkey = 3;
|
||||
*nskey = 4;
|
||||
*nenc = 2;
|
||||
*nsig = 2;
|
||||
|
||||
switch( algo ) {
|
||||
case PUBKEY_ALGO_ELGAMAL: *usage = 2|1; return "ELG";
|
||||
case PUBKEY_ALGO_ELGAMAL_E: *usage = 2|1; return "ELG-E";
|
||||
default: *usage = 0; return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -20,31 +20,15 @@
|
|||
#ifndef G10_ELGAMAL_H
|
||||
#define G10_ELGAMAL_H
|
||||
|
||||
#include "mpi.h"
|
||||
int elg_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors );
|
||||
int elg_check_secret_key( int algo, MPI *skey );
|
||||
int elg_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey );
|
||||
int elg_decrypt( int algo, MPI *result, MPI *data, MPI *skey );
|
||||
int elg_sign( int algo, MPI *resarr, MPI data, MPI *skey );
|
||||
int elg_verify( int algo, MPI hash, MPI *data, MPI *pkey );
|
||||
unsigned elg_get_nbits( int algo, MPI *pkey );
|
||||
const char *elg_get_info( int algo, int *npkey, int *nskey,
|
||||
int *nenc, int *nsig, int *usage );
|
||||
|
||||
typedef struct {
|
||||
MPI p; /* prime */
|
||||
MPI g; /* group generator */
|
||||
MPI y; /* g^x mod p */
|
||||
} ELG_public_key;
|
||||
|
||||
|
||||
typedef struct {
|
||||
MPI p; /* prime */
|
||||
MPI g; /* group generator */
|
||||
MPI y; /* g^x mod p */
|
||||
MPI x; /* secret exponent */
|
||||
} ELG_secret_key;
|
||||
|
||||
|
||||
void elg_free_public_key( ELG_public_key *pk );
|
||||
void elg_free_secret_key( ELG_secret_key *sk );
|
||||
void elg_generate( ELG_public_key *pk, ELG_secret_key *sk,
|
||||
unsigned nbits, MPI **factors );
|
||||
int elg_check_secret_key( ELG_secret_key *sk );
|
||||
void elg_encrypt(MPI a, MPI b, MPI input, ELG_public_key *pkey );
|
||||
void elg_decrypt(MPI output, MPI a, MPI b, ELG_secret_key *skey );
|
||||
void elg_sign(MPI a, MPI b, MPI input, ELG_secret_key *skey);
|
||||
int elg_verify(MPI a, MPI b, MPI input, ELG_public_key *pkey);
|
||||
|
||||
#endif /*G10_ELGAMAL_H*/
|
||||
|
|
43
cipher/g10c.c
Normal file
43
cipher/g10c.c
Normal file
|
@ -0,0 +1,43 @@
|
|||
/* g10c.c - Wrapper for cipher functions
|
||||
* Copyright (C) 1998 Free Software Foundation, Inc.
|
||||
*
|
||||
* This file is part of GNUPG.
|
||||
*
|
||||
* GNUPG is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNUPG is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include "mpi.h"
|
||||
#include "random.h"
|
||||
#include "cipher.h"
|
||||
#define _g10lib_INTERNAL 1
|
||||
#include "g10lib.h"
|
||||
|
||||
|
||||
MPI
|
||||
g10c_generate_secret_prime( unsigned nbits )
|
||||
{
|
||||
return generate_secret_prime( nbits );
|
||||
}
|
||||
|
||||
byte
|
||||
g10c_get_random_byte( int level )
|
||||
{
|
||||
return get_random_byte( level );
|
||||
}
|
||||
|
||||
|
70
cipher/md.c
70
cipher/md.c
|
@ -27,6 +27,76 @@
|
|||
#include "cipher.h"
|
||||
#include "errors.h"
|
||||
|
||||
|
||||
|
||||
/* Note: the first string is the one used by ascii armor */
|
||||
static struct { const char *name; int algo;} digest_names[] = {
|
||||
{ "MD5", DIGEST_ALGO_MD5 },
|
||||
{ "SHA1", DIGEST_ALGO_SHA1 },
|
||||
{ "SHA-1", DIGEST_ALGO_SHA1 },
|
||||
{ "RIPEMD160", DIGEST_ALGO_RMD160 },
|
||||
{ "RMD160", DIGEST_ALGO_RMD160 },
|
||||
{ "RMD-160", DIGEST_ALGO_RMD160 },
|
||||
{ "RIPE-MD-160", DIGEST_ALGO_RMD160 },
|
||||
{ "TIGER", DIGEST_ALGO_TIGER },
|
||||
{NULL} };
|
||||
|
||||
|
||||
|
||||
|
||||
/****************
|
||||
* Map a string to the digest algo
|
||||
*/
|
||||
int
|
||||
string_to_digest_algo( const char *string )
|
||||
{
|
||||
int i;
|
||||
const char *s;
|
||||
|
||||
for(i=0; (s=digest_names[i].name); i++ )
|
||||
if( !stricmp( s, string ) )
|
||||
return digest_names[i].algo;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/****************
|
||||
* Map a digest algo to a string
|
||||
*/
|
||||
const char *
|
||||
digest_algo_to_string( int algo )
|
||||
{
|
||||
int i;
|
||||
|
||||
for(i=0; digest_names[i].name; i++ )
|
||||
if( digest_names[i].algo == algo )
|
||||
return digest_names[i].name;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
check_digest_algo( int algo )
|
||||
{
|
||||
switch( algo ) {
|
||||
#ifdef WITH_TIGER_HASH
|
||||
case DIGEST_ALGO_TIGER:
|
||||
#endif
|
||||
case DIGEST_ALGO_MD5:
|
||||
case DIGEST_ALGO_RMD160:
|
||||
case DIGEST_ALGO_SHA1:
|
||||
return 0;
|
||||
default:
|
||||
return G10ERR_DIGEST_ALGO;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/****************
|
||||
* Open a message digest handle for use with algorithm ALGO.
|
||||
* More algorithms may be added by md_enable(). The initial algorithm
|
||||
|
|
|
@ -55,6 +55,9 @@ typedef struct {
|
|||
} while(0)
|
||||
|
||||
/*-- md.c --*/
|
||||
int string_to_digest_algo( const char *string );
|
||||
const char * digest_algo_to_string( int algo );
|
||||
int check_digest_algo( int algo );
|
||||
MD_HANDLE md_open( int algo, int secure );
|
||||
void md_enable( MD_HANDLE hd, int algo );
|
||||
MD_HANDLE md_copy( MD_HANDLE a );
|
||||
|
|
175
cipher/misc.c
175
cipher/misc.c
|
@ -1,175 +0,0 @@
|
|||
/* misc.c - utility functions
|
||||
* Copyright (C) 1998 Free Software Foundation, Inc.
|
||||
*
|
||||
* This file is part of GNUPG.
|
||||
*
|
||||
* GNUPG is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GNUPG is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <errno.h>
|
||||
#include "util.h"
|
||||
#include "cipher.h"
|
||||
|
||||
|
||||
static struct { const char *name; int algo;} pubkey_names[] = {
|
||||
{ "RSA", PUBKEY_ALGO_RSA },
|
||||
{ "RSA-E", PUBKEY_ALGO_RSA_E },
|
||||
{ "RSA-S", PUBKEY_ALGO_RSA_S },
|
||||
{ "ELG", PUBKEY_ALGO_ELGAMAL },
|
||||
{ "ELG-E", PUBKEY_ALGO_ELGAMAL_E },
|
||||
{ "ELGAMAL", PUBKEY_ALGO_ELGAMAL },
|
||||
{ "DSA", PUBKEY_ALGO_DSA },
|
||||
{NULL} };
|
||||
|
||||
/* Note: the first string is the one used by ascii armor */
|
||||
static struct { const char *name; int algo;} digest_names[] = {
|
||||
{ "MD5", DIGEST_ALGO_MD5 },
|
||||
{ "SHA1", DIGEST_ALGO_SHA1 },
|
||||
{ "SHA-1", DIGEST_ALGO_SHA1 },
|
||||
{ "RIPEMD160", DIGEST_ALGO_RMD160 },
|
||||
{ "RMD160", DIGEST_ALGO_RMD160 },
|
||||
{ "RMD-160", DIGEST_ALGO_RMD160 },
|
||||
{ "RIPE-MD-160", DIGEST_ALGO_RMD160 },
|
||||
{ "TIGER", DIGEST_ALGO_TIGER },
|
||||
{NULL} };
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/****************
|
||||
* Map a string to the pubkey algo
|
||||
*/
|
||||
int
|
||||
string_to_pubkey_algo( const char *string )
|
||||
{
|
||||
int i;
|
||||
const char *s;
|
||||
|
||||
for(i=0; (s=pubkey_names[i].name); i++ )
|
||||
if( !stricmp( s, string ) )
|
||||
return pubkey_names[i].algo;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/****************
|
||||
* Map a pubkey algo to a string
|
||||
*/
|
||||
const char *
|
||||
pubkey_algo_to_string( int algo )
|
||||
{
|
||||
int i;
|
||||
|
||||
if( is_ELGAMAL(algo) )
|
||||
algo = PUBKEY_ALGO_ELGAMAL;
|
||||
else if( is_RSA(algo) )
|
||||
algo = PUBKEY_ALGO_RSA;
|
||||
|
||||
for(i=0; pubkey_names[i].name; i++ )
|
||||
if( pubkey_names[i].algo == algo )
|
||||
return pubkey_names[i].name;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/****************
|
||||
* Map a string to the digest algo
|
||||
*/
|
||||
int
|
||||
string_to_digest_algo( const char *string )
|
||||
{
|
||||
int i;
|
||||
const char *s;
|
||||
|
||||
for(i=0; (s=digest_names[i].name); i++ )
|
||||
if( !stricmp( s, string ) )
|
||||
return digest_names[i].algo;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/****************
|
||||
* Map a digest algo to a string
|
||||
*/
|
||||
const char *
|
||||
digest_algo_to_string( int algo )
|
||||
{
|
||||
int i;
|
||||
|
||||
for(i=0; digest_names[i].name; i++ )
|
||||
if( digest_names[i].algo == algo )
|
||||
return digest_names[i].name;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
int
|
||||
check_pubkey_algo( int algo )
|
||||
{
|
||||
return check_pubkey_algo2( algo, 0 );
|
||||
}
|
||||
|
||||
/****************
|
||||
* a usage of 0 means: don't care
|
||||
*/
|
||||
int
|
||||
check_pubkey_algo2( int algo, unsigned usage )
|
||||
{
|
||||
switch( algo ) {
|
||||
case PUBKEY_ALGO_DSA:
|
||||
if( usage & 2 )
|
||||
return G10ERR_WR_PUBKEY_ALGO;
|
||||
return 0;
|
||||
|
||||
case PUBKEY_ALGO_ELGAMAL:
|
||||
case PUBKEY_ALGO_ELGAMAL_E:
|
||||
return 0;
|
||||
|
||||
#ifdef HAVE_RSA_CIPHER
|
||||
case PUBKEY_ALGO_RSA:
|
||||
return 0;
|
||||
#endif
|
||||
default:
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
check_digest_algo( int algo )
|
||||
{
|
||||
switch( algo ) {
|
||||
#ifdef WITH_TIGER_HASH
|
||||
case DIGEST_ALGO_TIGER:
|
||||
#endif
|
||||
case DIGEST_ALGO_MD5:
|
||||
case DIGEST_ALGO_RMD160:
|
||||
case DIGEST_ALGO_SHA1:
|
||||
return 0;
|
||||
default:
|
||||
return G10ERR_DIGEST_ALGO;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
|
@ -112,6 +112,8 @@ generate_elg_prime( int mode, unsigned pbits, unsigned qbits,
|
|||
|
||||
/* make a pool of 3n+5 primes (this is an arbitrary value) */
|
||||
m = n*3+5;
|
||||
if( mode == 1 )
|
||||
m += 5; /* need some more for DSA */
|
||||
if( m < 25 )
|
||||
m = 25;
|
||||
pool = m_alloc_clear( m * sizeof *pool );
|
||||
|
|
645
cipher/pubkey.c
645
cipher/pubkey.c
|
@ -30,18 +30,282 @@
|
|||
#include "cipher.h"
|
||||
#include "dynload.h"
|
||||
|
||||
|
||||
#define TABLE_SIZE 20
|
||||
|
||||
struct pubkey_table_s {
|
||||
const char *name;
|
||||
int algo;
|
||||
int npkey;
|
||||
int nskey;
|
||||
int nenc;
|
||||
int nsig;
|
||||
int usage;
|
||||
int (*generate)( int algo, unsigned nbits, MPI *skey, MPI **retfactors );
|
||||
int (*check_secret_key)( int algo, MPI *skey );
|
||||
int (*encrypt)( int algo, MPI *resarr, MPI data, MPI *pkey );
|
||||
int (*decrypt)( int algo, MPI *result, MPI *data, MPI *skey );
|
||||
int (*sign)( int algo, MPI *resarr, MPI data, MPI *skey );
|
||||
int (*verify)( int algo, MPI hash, MPI *data, MPI *pkey );
|
||||
unsigned (*get_nbits)( int algo, MPI *pkey );
|
||||
};
|
||||
|
||||
static struct pubkey_table_s pubkey_table[TABLE_SIZE];
|
||||
|
||||
|
||||
|
||||
static int
|
||||
dummy_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors )
|
||||
{ log_bug("no generate() for %d\n", algo ); return G10ERR_PUBKEY_ALGO; }
|
||||
|
||||
static int
|
||||
dummy_check_secret_key( int algo, MPI *skey )
|
||||
{ log_bug("no check_secret_key() for %d\n", algo ); return G10ERR_PUBKEY_ALGO; }
|
||||
|
||||
static int
|
||||
dummy_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey )
|
||||
{ log_bug("no encrypt() for %d\n", algo ); return G10ERR_PUBKEY_ALGO; }
|
||||
|
||||
static int
|
||||
dummy_decrypt( int algo, MPI *result, MPI *data, MPI *skey )
|
||||
{ log_bug("no decrypt() for %d\n", algo ); return G10ERR_PUBKEY_ALGO; }
|
||||
|
||||
static int
|
||||
dummy_sign( int algo, MPI *resarr, MPI data, MPI *skey )
|
||||
{ log_bug("no sign() for %d\n", algo ); return G10ERR_PUBKEY_ALGO; }
|
||||
|
||||
static int
|
||||
dummy_verify( int algo, MPI hash, MPI *data, MPI *pkey )
|
||||
{ log_bug("no verify() for %d\n", algo ); return G10ERR_PUBKEY_ALGO; }
|
||||
|
||||
static unsigned
|
||||
dummy_get_nbits( int algo, MPI *pkey )
|
||||
{ log_bug("no get_nbits() for %d\n", algo ); return 0; }
|
||||
|
||||
|
||||
/****************
|
||||
* Put the static entries into the table.
|
||||
*/
|
||||
static void
|
||||
setup_pubkey_table()
|
||||
{
|
||||
|
||||
static int initialized = 0;
|
||||
int i;
|
||||
|
||||
if( initialized )
|
||||
return;
|
||||
|
||||
i = 0;
|
||||
pubkey_table[i].algo = PUBKEY_ALGO_ELGAMAL;
|
||||
pubkey_table[i].name = elg_get_info( pubkey_table[i].algo,
|
||||
&pubkey_table[i].npkey,
|
||||
&pubkey_table[i].nskey,
|
||||
&pubkey_table[i].nenc,
|
||||
&pubkey_table[i].nsig,
|
||||
&pubkey_table[i].usage );
|
||||
pubkey_table[i].generate = elg_generate;
|
||||
pubkey_table[i].check_secret_key = elg_check_secret_key;
|
||||
pubkey_table[i].encrypt = elg_encrypt;
|
||||
pubkey_table[i].decrypt = elg_decrypt;
|
||||
pubkey_table[i].sign = elg_sign;
|
||||
pubkey_table[i].verify = elg_verify;
|
||||
pubkey_table[i].get_nbits = elg_get_nbits;
|
||||
if( !pubkey_table[i].name )
|
||||
BUG();
|
||||
i++;
|
||||
pubkey_table[i].algo = PUBKEY_ALGO_ELGAMAL_E;
|
||||
pubkey_table[i].name = elg_get_info( pubkey_table[i].algo,
|
||||
&pubkey_table[i].npkey,
|
||||
&pubkey_table[i].nskey,
|
||||
&pubkey_table[i].nenc,
|
||||
&pubkey_table[i].nsig,
|
||||
&pubkey_table[i].usage );
|
||||
pubkey_table[i].generate = elg_generate;
|
||||
pubkey_table[i].check_secret_key = elg_check_secret_key;
|
||||
pubkey_table[i].encrypt = elg_encrypt;
|
||||
pubkey_table[i].decrypt = elg_decrypt;
|
||||
pubkey_table[i].sign = elg_sign;
|
||||
pubkey_table[i].verify = elg_verify;
|
||||
pubkey_table[i].get_nbits = elg_get_nbits;
|
||||
if( !pubkey_table[i].name )
|
||||
BUG();
|
||||
i++;
|
||||
pubkey_table[i].algo = PUBKEY_ALGO_DSA;
|
||||
pubkey_table[i].name = dsa_get_info( pubkey_table[i].algo,
|
||||
&pubkey_table[i].npkey,
|
||||
&pubkey_table[i].nskey,
|
||||
&pubkey_table[i].nenc,
|
||||
&pubkey_table[i].nsig,
|
||||
&pubkey_table[i].usage );
|
||||
pubkey_table[i].generate = dsa_generate;
|
||||
pubkey_table[i].check_secret_key = dsa_check_secret_key;
|
||||
pubkey_table[i].encrypt = dummy_encrypt;
|
||||
pubkey_table[i].decrypt = dummy_decrypt;
|
||||
pubkey_table[i].sign = dsa_sign;
|
||||
pubkey_table[i].verify = dsa_verify;
|
||||
pubkey_table[i].get_nbits = dsa_get_nbits;
|
||||
if( !pubkey_table[i].name )
|
||||
BUG();
|
||||
i++;
|
||||
|
||||
for( ; i < TABLE_SIZE; i++ )
|
||||
pubkey_table[i].name = NULL;
|
||||
initialized = 1;
|
||||
}
|
||||
|
||||
|
||||
/****************
|
||||
* Try to load all modules and return true if new modules are available
|
||||
*/
|
||||
static int
|
||||
load_pubkey_modules()
|
||||
{
|
||||
static int done = 0;
|
||||
void *context = NULL;
|
||||
struct pubkey_table_s *ct;
|
||||
int ct_idx;
|
||||
int i;
|
||||
const char *name;
|
||||
int any = 0;
|
||||
|
||||
if( done )
|
||||
return 0;
|
||||
done = 1;
|
||||
for(ct_idx=0, ct = pubkey_table; ct_idx < TABLE_SIZE; ct_idx++,ct++ ) {
|
||||
if( !ct->name )
|
||||
break;
|
||||
}
|
||||
if( ct_idx >= TABLE_SIZE-1 )
|
||||
BUG(); /* table already full */
|
||||
/* now load all extensions */
|
||||
while( (name = enum_gnupgext_pubkeys( &context, &ct->algo,
|
||||
&ct->npkey, &ct->nskey, &ct->nenc,
|
||||
&ct->nsig, &ct->usage,
|
||||
&ct->generate,
|
||||
&ct->check_secret_key,
|
||||
&ct->encrypt,
|
||||
&ct->decrypt,
|
||||
&ct->sign,
|
||||
&ct->verify,
|
||||
&ct->get_nbits )) ) {
|
||||
for(i=0; pubkey_table[i].name; i++ )
|
||||
if( pubkey_table[i].algo == ct->algo )
|
||||
break;
|
||||
if( pubkey_table[i].name ) {
|
||||
log_info("skipping pubkey %d: already loaded\n", ct->algo );
|
||||
continue;
|
||||
}
|
||||
|
||||
if( !ct->generate ) ct->generate = dummy_generate;
|
||||
if( !ct->check_secret_key ) ct->check_secret_key =
|
||||
dummy_check_secret_key;
|
||||
if( !ct->encrypt ) ct->encrypt = dummy_encrypt;
|
||||
if( !ct->decrypt ) ct->decrypt = dummy_decrypt;
|
||||
if( !ct->sign ) ct->sign = dummy_sign;
|
||||
if( !ct->verify ) ct->verify = dummy_verify;
|
||||
if( !ct->get_nbits ) ct->get_nbits= dummy_get_nbits;
|
||||
/* put it into the table */
|
||||
if( g10_opt_verbose > 1 )
|
||||
log_info("loaded pubkey %d (%s)\n", ct->algo, name);
|
||||
ct->name = name;
|
||||
ct_idx++;
|
||||
ct++;
|
||||
any = 1;
|
||||
/* check whether there are more available table slots */
|
||||
if( ct_idx >= TABLE_SIZE-1 ) {
|
||||
log_info("pubkey table full; ignoring other extensions\n");
|
||||
break;
|
||||
}
|
||||
}
|
||||
enum_gnupgext_pubkeys( &context, NULL, NULL, NULL, NULL, NULL, NULL,
|
||||
NULL, NULL, NULL, NULL, NULL, NULL, NULL );
|
||||
return any;
|
||||
}
|
||||
|
||||
|
||||
/****************
|
||||
* Map a string to the pubkey algo
|
||||
*/
|
||||
int
|
||||
string_to_pubkey_algo( const char *string )
|
||||
{
|
||||
int i;
|
||||
const char *s;
|
||||
|
||||
setup_pubkey_table();
|
||||
do {
|
||||
for(i=0; (s=pubkey_table[i].name); i++ )
|
||||
if( !stricmp( s, string ) )
|
||||
return pubkey_table[i].algo;
|
||||
} while( load_pubkey_modules() );
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/****************
|
||||
* Map a pubkey algo to a string
|
||||
*/
|
||||
const char *
|
||||
pubkey_algo_to_string( int algo )
|
||||
{
|
||||
int i;
|
||||
|
||||
setup_pubkey_table();
|
||||
do {
|
||||
for(i=0; pubkey_table[i].name; i++ )
|
||||
if( pubkey_table[i].algo == algo )
|
||||
return pubkey_table[i].name;
|
||||
} while( load_pubkey_modules() );
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
|
||||
int
|
||||
check_pubkey_algo( int algo )
|
||||
{
|
||||
return check_pubkey_algo2( algo, 0 );
|
||||
}
|
||||
|
||||
/****************
|
||||
* a usage of 0 means: don't care
|
||||
*/
|
||||
int
|
||||
check_pubkey_algo2( int algo, unsigned usage )
|
||||
{
|
||||
int i;
|
||||
|
||||
setup_pubkey_table();
|
||||
do {
|
||||
for(i=0; pubkey_table[i].name; i++ )
|
||||
if( pubkey_table[i].algo == algo ) {
|
||||
if( (usage & 1) && !(pubkey_table[i].usage & 1) )
|
||||
return G10ERR_WR_PUBKEY_ALGO;
|
||||
if( (usage & 2) && !(pubkey_table[i].usage & 2) )
|
||||
return G10ERR_WR_PUBKEY_ALGO;
|
||||
return 0; /* okay */
|
||||
}
|
||||
} while( load_pubkey_modules() );
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/****************
|
||||
* Return the number of public key material numbers
|
||||
*/
|
||||
int
|
||||
pubkey_get_npkey( int algo )
|
||||
{
|
||||
if( is_ELGAMAL(algo) )
|
||||
return 3;
|
||||
if( is_RSA(algo) )
|
||||
return 2;
|
||||
if( algo == PUBKEY_ALGO_DSA )
|
||||
return 4;
|
||||
int i;
|
||||
setup_pubkey_table();
|
||||
do {
|
||||
for(i=0; pubkey_table[i].name; i++ )
|
||||
if( pubkey_table[i].algo == algo )
|
||||
return pubkey_table[i].npkey;
|
||||
} while( load_pubkey_modules() );
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -51,12 +315,13 @@ pubkey_get_npkey( int algo )
|
|||
int
|
||||
pubkey_get_nskey( int algo )
|
||||
{
|
||||
if( is_ELGAMAL(algo) )
|
||||
return 4;
|
||||
if( is_RSA(algo) )
|
||||
return 6;
|
||||
if( algo == PUBKEY_ALGO_DSA )
|
||||
return 5;
|
||||
int i;
|
||||
setup_pubkey_table();
|
||||
do {
|
||||
for(i=0; pubkey_table[i].name; i++ )
|
||||
if( pubkey_table[i].algo == algo )
|
||||
return pubkey_table[i].nskey;
|
||||
} while( load_pubkey_modules() );
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -66,12 +331,13 @@ pubkey_get_nskey( int algo )
|
|||
int
|
||||
pubkey_get_nsig( int algo )
|
||||
{
|
||||
if( is_ELGAMAL(algo) )
|
||||
return 2;
|
||||
if( is_RSA(algo) )
|
||||
return 1;
|
||||
if( algo == PUBKEY_ALGO_DSA )
|
||||
return 2;
|
||||
int i;
|
||||
setup_pubkey_table();
|
||||
do {
|
||||
for(i=0; pubkey_table[i].name; i++ )
|
||||
if( pubkey_table[i].algo == algo )
|
||||
return pubkey_table[i].nsig;
|
||||
} while( load_pubkey_modules() );
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -81,10 +347,13 @@ pubkey_get_nsig( int algo )
|
|||
int
|
||||
pubkey_get_nenc( int algo )
|
||||
{
|
||||
if( is_ELGAMAL(algo) )
|
||||
return 2;
|
||||
if( is_RSA(algo) )
|
||||
return 1;
|
||||
int i;
|
||||
setup_pubkey_table();
|
||||
do {
|
||||
for(i=0; pubkey_table[i].name; i++ )
|
||||
if( pubkey_table[i].algo == algo )
|
||||
return pubkey_table[i].nenc;
|
||||
} while( load_pubkey_modules() );
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -94,61 +363,46 @@ pubkey_get_nenc( int algo )
|
|||
unsigned
|
||||
pubkey_nbits( int algo, MPI *pkey )
|
||||
{
|
||||
if( is_ELGAMAL( algo ) )
|
||||
return mpi_get_nbits( pkey[0] );
|
||||
|
||||
if( algo == PUBKEY_ALGO_DSA )
|
||||
return mpi_get_nbits( pkey[0] );
|
||||
|
||||
if( is_RSA( algo) )
|
||||
return mpi_get_nbits( pkey[0] );
|
||||
int i;
|
||||
|
||||
setup_pubkey_table();
|
||||
do {
|
||||
for(i=0; pubkey_table[i].name; i++ )
|
||||
if( pubkey_table[i].algo == algo )
|
||||
return (*pubkey_table[i].get_nbits)( algo, pkey );
|
||||
} while( load_pubkey_modules() );
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
pubkey_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors )
|
||||
{
|
||||
int i;
|
||||
|
||||
setup_pubkey_table();
|
||||
do {
|
||||
for(i=0; pubkey_table[i].name; i++ )
|
||||
if( pubkey_table[i].algo == algo )
|
||||
return (*pubkey_table[i].generate)( algo, nbits,
|
||||
skey, retfactors );
|
||||
} while( load_pubkey_modules() );
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
pubkey_check_secret_key( int algo, MPI *skey )
|
||||
{
|
||||
int rc = 0;
|
||||
int i;
|
||||
|
||||
if( is_ELGAMAL(algo) ) {
|
||||
ELG_secret_key sk;
|
||||
sk.p = skey[0];
|
||||
sk.g = skey[1];
|
||||
sk.y = skey[2];
|
||||
sk.x = skey[3];
|
||||
if( !elg_check_secret_key( &sk ) )
|
||||
rc = G10ERR_BAD_SECKEY;
|
||||
}
|
||||
else if( algo == PUBKEY_ALGO_DSA ) {
|
||||
DSA_secret_key sk;
|
||||
sk.p = skey[0];
|
||||
sk.q = skey[1];
|
||||
sk.g = skey[2];
|
||||
sk.y = skey[3];
|
||||
sk.x = skey[4];
|
||||
if( !dsa_check_secret_key( &sk ) )
|
||||
rc = G10ERR_BAD_SECKEY;
|
||||
}
|
||||
#ifdef HAVE_RSA_CIPHER
|
||||
else if( is_RSA(k->pubkey_algo) ) {
|
||||
/* FIXME */
|
||||
RSA_secret_key sk;
|
||||
assert( ndata == 1 && nskey == 6 );
|
||||
sk.n = skey[0];
|
||||
sk.e = skey[1];
|
||||
sk.d = skey[2];
|
||||
sk.p = skey[3];
|
||||
sk.q = skey[4];
|
||||
sk.u = skey[5];
|
||||
plain = mpi_alloc_secure( mpi_get_nlimbs(sk.n) );
|
||||
rsa_secret( plain, data[0], &sk );
|
||||
}
|
||||
#endif
|
||||
else
|
||||
rc = G10ERR_PUBKEY_ALGO;
|
||||
return rc;
|
||||
setup_pubkey_table();
|
||||
do {
|
||||
for(i=0; pubkey_table[i].name; i++ )
|
||||
if( pubkey_table[i].algo == algo )
|
||||
return (*pubkey_table[i].check_secret_key)( algo, skey );
|
||||
} while( load_pubkey_modules() );
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
}
|
||||
|
||||
|
||||
|
@ -161,41 +415,32 @@ pubkey_check_secret_key( int algo, MPI *skey )
|
|||
int
|
||||
pubkey_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey )
|
||||
{
|
||||
int i, rc;
|
||||
|
||||
/* FIXME: check that data fits into the key (in xxx_encrypt)*/
|
||||
|
||||
setup_pubkey_table();
|
||||
if( DBG_CIPHER ) {
|
||||
int i;
|
||||
log_debug("pubkey_encrypt: algo=%d\n", algo );
|
||||
for(i=0; i < pubkey_get_npkey(algo); i++ )
|
||||
log_mpidump(" pkey:", pkey[i] );
|
||||
log_mpidump(" data:", data );
|
||||
}
|
||||
/* FIXME: check that data fits into the key */
|
||||
if( is_ELGAMAL(algo) ) {
|
||||
ELG_public_key pk;
|
||||
pk.p = pkey[0];
|
||||
pk.g = pkey[1];
|
||||
pk.y = pkey[2];
|
||||
resarr[0] = mpi_alloc( mpi_get_nlimbs( pk.p ) );
|
||||
resarr[1] = mpi_alloc( mpi_get_nlimbs( pk.p ) );
|
||||
elg_encrypt( resarr[0], resarr[1], data, &pk );
|
||||
}
|
||||
#ifdef HAVE_RSA_CIPHER
|
||||
else if( algo == PUBKEY_ALGO_RSA || algo == PUBKEY_ALGO_RSA_E ) {
|
||||
RSA_public_key pk;
|
||||
pk.n = pkey[0];
|
||||
pk.e = pkey[1];
|
||||
resarr[0] = mpi_alloc( mpi_get_nlimbs( pk.p ) );
|
||||
rsa_public( resarr[0], data, &pk );
|
||||
}
|
||||
#endif
|
||||
else
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
|
||||
if( DBG_CIPHER ) {
|
||||
int i;
|
||||
do {
|
||||
for(i=0; pubkey_table[i].name; i++ )
|
||||
if( pubkey_table[i].algo == algo ) {
|
||||
rc = (*pubkey_table[i].encrypt)( algo, resarr, data, pkey );
|
||||
goto ready;
|
||||
}
|
||||
} while( load_pubkey_modules() );
|
||||
rc = G10ERR_PUBKEY_ALGO;
|
||||
ready:
|
||||
if( !rc && DBG_CIPHER ) {
|
||||
for(i=0; i < pubkey_get_nenc(algo); i++ )
|
||||
log_mpidump(" encr:", resarr[i] );
|
||||
}
|
||||
return 0;
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
||||
|
@ -210,44 +455,31 @@ pubkey_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey )
|
|||
int
|
||||
pubkey_decrypt( int algo, MPI *result, MPI *data, MPI *skey )
|
||||
{
|
||||
MPI plain = NULL;
|
||||
int i, rc;
|
||||
|
||||
setup_pubkey_table();
|
||||
*result = NULL; /* so the caller can always do an mpi_free */
|
||||
if( DBG_CIPHER ) {
|
||||
int i;
|
||||
log_debug("pubkey_decrypt: algo=%d\n", algo );
|
||||
for(i=0; i < pubkey_get_nskey(algo); i++ )
|
||||
log_mpidump(" skey:", skey[i] );
|
||||
for(i=0; i < pubkey_get_nenc(algo); i++ )
|
||||
log_mpidump(" data:", data[i] );
|
||||
}
|
||||
if( is_ELGAMAL(algo) ) {
|
||||
ELG_secret_key sk;
|
||||
sk.p = skey[0];
|
||||
sk.g = skey[1];
|
||||
sk.y = skey[2];
|
||||
sk.x = skey[3];
|
||||
plain = mpi_alloc_secure( mpi_get_nlimbs( sk.p ) );
|
||||
elg_decrypt( plain, data[0], data[1], &sk );
|
||||
}
|
||||
#ifdef HAVE_RSA_CIPHER
|
||||
else if( algo == PUBKEY_ALGO_RSA || algo == PUBKEY_ALGO_RSA_E ) {
|
||||
RSA_secret_key sk;
|
||||
sk.n = skey[0];
|
||||
sk.e = skey[1];
|
||||
sk.d = skey[2];
|
||||
sk.p = skey[3];
|
||||
sk.q = skey[4];
|
||||
sk.u = skey[5];
|
||||
plain = mpi_alloc_secure( mpi_get_nlimbs(sk.n) );
|
||||
rsa_secret( plain, data[0], &sk );
|
||||
}
|
||||
#endif
|
||||
else
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
|
||||
*result = plain;
|
||||
return 0;
|
||||
do {
|
||||
for(i=0; pubkey_table[i].name; i++ )
|
||||
if( pubkey_table[i].algo == algo ) {
|
||||
rc = (*pubkey_table[i].decrypt)( algo, result, data, skey );
|
||||
goto ready;
|
||||
}
|
||||
} while( load_pubkey_modules() );
|
||||
rc = G10ERR_PUBKEY_ALGO;
|
||||
ready:
|
||||
if( !rc && DBG_CIPHER ) {
|
||||
log_mpidump(" plain:", *result );
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
||||
|
@ -260,58 +492,30 @@ pubkey_decrypt( int algo, MPI *result, MPI *data, MPI *skey )
|
|||
int
|
||||
pubkey_sign( int algo, MPI *resarr, MPI data, MPI *skey )
|
||||
{
|
||||
int i, rc;
|
||||
|
||||
setup_pubkey_table();
|
||||
if( DBG_CIPHER ) {
|
||||
int i;
|
||||
log_debug("pubkey_sign: algo=%d\n", algo );
|
||||
for(i=0; i < pubkey_get_nskey(algo); i++ )
|
||||
log_mpidump(" skey:", skey[i] );
|
||||
log_mpidump(" data:", data );
|
||||
}
|
||||
|
||||
if( is_ELGAMAL(algo) ) {
|
||||
ELG_secret_key sk;
|
||||
sk.p = skey[0];
|
||||
sk.g = skey[1];
|
||||
sk.y = skey[2];
|
||||
sk.x = skey[3];
|
||||
resarr[0] = mpi_alloc( mpi_get_nlimbs( sk.p ) );
|
||||
resarr[1] = mpi_alloc( mpi_get_nlimbs( sk.p ) );
|
||||
elg_sign( resarr[0], resarr[1], data, &sk );
|
||||
}
|
||||
else if( algo == PUBKEY_ALGO_DSA ) {
|
||||
DSA_secret_key sk;
|
||||
sk.p = skey[0];
|
||||
sk.q = skey[1];
|
||||
sk.g = skey[2];
|
||||
sk.y = skey[3];
|
||||
sk.x = skey[4];
|
||||
resarr[0] = mpi_alloc( mpi_get_nlimbs( sk.p ) );
|
||||
resarr[1] = mpi_alloc( mpi_get_nlimbs( sk.p ) );
|
||||
dsa_sign( resarr[0], resarr[1], data, &sk );
|
||||
}
|
||||
#ifdef HAVE_RSA_CIPHER
|
||||
else if( algo == PUBKEY_ALGO_RSA || algo == PUBKEY_ALGO_RSA_S ) {
|
||||
RSA_secret_key sk;
|
||||
sk.n = skey[0];
|
||||
sk.e = skey[1];
|
||||
sk.d = skey[2];
|
||||
sk.p = skey[3];
|
||||
sk.q = skey[4];
|
||||
sk.u = skey[5];
|
||||
plain = mpi_alloc_secure( mpi_get_nlimbs(sk.n) );
|
||||
rsa_sign( plain, data[0], &sk );
|
||||
}
|
||||
#endif
|
||||
else
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
|
||||
if( DBG_CIPHER ) {
|
||||
int i;
|
||||
do {
|
||||
for(i=0; pubkey_table[i].name; i++ )
|
||||
if( pubkey_table[i].algo == algo ) {
|
||||
rc = (*pubkey_table[i].sign)( algo, resarr, data, skey );
|
||||
goto ready;
|
||||
}
|
||||
} while( load_pubkey_modules() );
|
||||
rc = G10ERR_PUBKEY_ALGO;
|
||||
ready:
|
||||
if( !rc && DBG_CIPHER ) {
|
||||
for(i=0; i < pubkey_get_nsig(algo); i++ )
|
||||
log_mpidump(" sig:", resarr[i] );
|
||||
}
|
||||
|
||||
return 0;
|
||||
return rc;
|
||||
}
|
||||
|
||||
/****************
|
||||
|
@ -321,113 +525,18 @@ pubkey_sign( int algo, MPI *resarr, MPI data, MPI *skey )
|
|||
int
|
||||
pubkey_verify( int algo, MPI hash, MPI *data, MPI *pkey )
|
||||
{
|
||||
int rc = 0;
|
||||
int i, rc;
|
||||
|
||||
if( is_ELGAMAL( algo ) ) {
|
||||
ELG_public_key pk;
|
||||
pk.p = pkey[0];
|
||||
pk.g = pkey[1];
|
||||
pk.y = pkey[2];
|
||||
if( !elg_verify( data[0], data[1], hash, &pk ) )
|
||||
rc = G10ERR_BAD_SIGN;
|
||||
}
|
||||
else if( algo == PUBKEY_ALGO_DSA ) {
|
||||
DSA_public_key pk;
|
||||
pk.p = pkey[0];
|
||||
pk.q = pkey[1];
|
||||
pk.g = pkey[2];
|
||||
pk.y = pkey[3];
|
||||
if( !dsa_verify( data[0], data[1], hash, &pk ) )
|
||||
rc = G10ERR_BAD_SIGN;
|
||||
}
|
||||
#ifdef HAVE_RSA_CIPHER
|
||||
else if( algo == PUBKEY_ALGO_RSA || algo == PUBKEY_ALGO_RSA_S ) {
|
||||
RSA_public_key pk;
|
||||
int i, j, c, old_enc;
|
||||
byte *dp;
|
||||
const byte *asn;
|
||||
size_t mdlen, asnlen;
|
||||
|
||||
pk.e = pkey[0];
|
||||
pk.n = pkey[1];
|
||||
result = mpi_alloc(40);
|
||||
rsa_public( result, data[0], &pk );
|
||||
|
||||
old_enc = 0;
|
||||
for(i=j=0; (c=mpi_getbyte(result, i)) != -1; i++ ) {
|
||||
if( !j ) {
|
||||
if( !i && c != 1 )
|
||||
break;
|
||||
else if( i && c == 0xff )
|
||||
; /* skip the padding */
|
||||
else if( i && !c )
|
||||
j++;
|
||||
else
|
||||
break;
|
||||
setup_pubkey_table();
|
||||
do {
|
||||
for(i=0; pubkey_table[i].name; i++ )
|
||||
if( pubkey_table[i].algo == algo ) {
|
||||
rc = (*pubkey_table[i].verify)( algo, hash, data, pkey );
|
||||
goto ready;
|
||||
}
|
||||
else if( ++j == 18 && c != 1 )
|
||||
break;
|
||||
else if( j == 19 && c == 0 ) {
|
||||
old_enc++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if( old_enc ) {
|
||||
log_error("old encoding scheme is not supported\n");
|
||||
rc = G10ERR_GENERAL;
|
||||
goto leave;
|
||||
}
|
||||
|
||||
if( (rc=check_digest_algo(sig->digest_algo)) )
|
||||
goto leave; /* unsupported algo */
|
||||
md_enable( digest, sig->digest_algo );
|
||||
asn = md_asn_oid( sig->digest_algo, &asnlen, &mdlen );
|
||||
|
||||
for(i=mdlen,j=asnlen-1; (c=mpi_getbyte(result, i)) != -1 && j >= 0;
|
||||
i++, j-- )
|
||||
if( asn[j] != c )
|
||||
break;
|
||||
if( j != -1 || mpi_getbyte(result, i) ) { /* ASN is wrong */
|
||||
rc = G10ERR_BAD_PUBKEY;
|
||||
goto leave;
|
||||
}
|
||||
for(i++; (c=mpi_getbyte(result, i)) != -1; i++ )
|
||||
if( c != 0xff )
|
||||
break;
|
||||
i++;
|
||||
if( c != sig->digest_algo || mpi_getbyte(result, i) ) {
|
||||
/* Padding or leading bytes in signature is wrong */
|
||||
rc = G10ERR_BAD_PUBKEY;
|
||||
goto leave;
|
||||
}
|
||||
if( mpi_getbyte(result, mdlen-1) != sig->digest_start[0]
|
||||
|| mpi_getbyte(result, mdlen-2) != sig->digest_start[1] ) {
|
||||
/* Wrong key used to check the signature */
|
||||
rc = G10ERR_BAD_PUBKEY;
|
||||
goto leave;
|
||||
}
|
||||
|
||||
/* complete the digest */
|
||||
md_putc( digest, sig->sig_class );
|
||||
{ u32 a = sig->timestamp;
|
||||
md_putc( digest, (a >> 24) & 0xff );
|
||||
md_putc( digest, (a >> 16) & 0xff );
|
||||
md_putc( digest, (a >> 8) & 0xff );
|
||||
md_putc( digest, a & 0xff );
|
||||
}
|
||||
md_final( digest );
|
||||
dp = md_read( digest, sig->digest_algo );
|
||||
for(i=mdlen-1; i >= 0; i--, dp++ ) {
|
||||
if( mpi_getbyte( result, i ) != *dp ) {
|
||||
rc = G10ERR_BAD_SIGN;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
else
|
||||
rc = G10ERR_PUBKEY_ALGO;
|
||||
|
||||
} while( load_pubkey_modules() );
|
||||
rc = G10ERR_PUBKEY_ALGO;
|
||||
ready:
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue