mirror of
git://git.gnupg.org/gnupg.git
synced 2025-07-02 22:46:30 +02:00
Integrating http://code.google.com/p/gnupg-ecc/source/detail?r=15 .
The following works: gpg2 --gen-key (ECC) gpg2 --list-keys gpg2 --list-packets ~/.gnupg/pubring.gpg gpg2 --list-packets <private key from http://sites.google.com/site/brainhub/pgpecckeys> ECDH doesn't work yet as the code must be re-written to adjust for gpg-agent refactoring.
This commit is contained in:
parent
7bbc07fde0
commit
e0972d3d96
34 changed files with 1497 additions and 176 deletions
477
g10/ecdh.c
Normal file
477
g10/ecdh.c
Normal file
|
@ -0,0 +1,477 @@
|
|||
/* ecdh.c - ECDH public key operations used in public key glue code
|
||||
* Copyright (C) 2000, 2003 Free Software Foundation, Inc.
|
||||
*
|
||||
* This file is part of GnuPG.
|
||||
*
|
||||
* GnuPG is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GnuPG is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <errno.h>
|
||||
#include <assert.h>
|
||||
|
||||
#include "gpg.h"
|
||||
#include "util.h"
|
||||
#include "pkglue.h"
|
||||
#include "main.h"
|
||||
#include "options.h"
|
||||
|
||||
gcry_mpi_t
|
||||
pk_ecdh_default_params_to_mpi( int qbits ) {
|
||||
gpg_error_t err;
|
||||
gcry_mpi_t result;
|
||||
/* Defaults are the strongest possible choices. Performance is not an issue here, only interoperability. */
|
||||
byte kek_params[4] = {
|
||||
3 /*size of following field*/,
|
||||
1 /*fixed version for KDF+AESWRAP*/,
|
||||
DIGEST_ALGO_SHA512 /* KEK MD */,
|
||||
CIPHER_ALGO_AES256 /*KEK AESWRAP alg*/
|
||||
};
|
||||
int i;
|
||||
|
||||
static const struct {
|
||||
int qbits;
|
||||
int openpgp_hash_id;
|
||||
int openpgp_cipher_id;
|
||||
} kek_params_table[] = {
|
||||
{ 256, DIGEST_ALGO_SHA256, CIPHER_ALGO_AES },
|
||||
{ 384, DIGEST_ALGO_SHA384, CIPHER_ALGO_AES256 },
|
||||
{ 528, DIGEST_ALGO_SHA512, CIPHER_ALGO_AES256 } // 528 is 521 rounded to the 8 bit boundary
|
||||
};
|
||||
|
||||
for( i=0; i<sizeof(kek_params_table)/sizeof(kek_params_table[0]); i++ ) {
|
||||
if( kek_params_table[i].qbits >= qbits ) {
|
||||
kek_params[2] = kek_params_table[i].openpgp_hash_id;
|
||||
kek_params[3] = kek_params_table[i].openpgp_cipher_id;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if( DBG_CIPHER )
|
||||
log_printhex ("ecdh kek params are", kek_params, sizeof(kek_params) );
|
||||
|
||||
err = gcry_mpi_scan (&result, GCRYMPI_FMT_USG, kek_params, sizeof(kek_params), NULL);
|
||||
if (err)
|
||||
log_fatal ("mpi_scan failed: %s\n", gpg_strerror (err));
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
/* returns allocated (binary) KEK parameters; the size is returned in sizeout.
|
||||
* The caller must free returned value with xfree.
|
||||
* Returns NULL on error
|
||||
*/
|
||||
byte *
|
||||
pk_ecdh_default_params( int qbits, size_t *sizeout ) {
|
||||
gpg_error_t err;
|
||||
gcry_mpi_t result;
|
||||
/* Defaults are the strongest possible choices. Performance is not an issue here, only interoperability. */
|
||||
byte kek_params[4] = {
|
||||
3 /*size of following field*/,
|
||||
1 /*fixed version for KDF+AESWRAP*/,
|
||||
DIGEST_ALGO_SHA512 /* KEK MD */,
|
||||
CIPHER_ALGO_AES256 /*KEK AESWRAP alg*/
|
||||
};
|
||||
int i;
|
||||
|
||||
static const struct {
|
||||
int qbits;
|
||||
int openpgp_hash_id;
|
||||
int openpgp_cipher_id;
|
||||
} kek_params_table[] = {
|
||||
{ 256, DIGEST_ALGO_SHA256, CIPHER_ALGO_AES },
|
||||
{ 384, DIGEST_ALGO_SHA384, CIPHER_ALGO_AES256 },
|
||||
{ 528, DIGEST_ALGO_SHA512, CIPHER_ALGO_AES256 } // 528 is 521 rounded to the 8 bit boundary
|
||||
};
|
||||
|
||||
byte *p;
|
||||
|
||||
*sizeout = 0;
|
||||
|
||||
for( i=0; i<sizeof(kek_params_table)/sizeof(kek_params_table[0]); i++ ) {
|
||||
if( kek_params_table[i].qbits >= qbits ) {
|
||||
kek_params[2] = kek_params_table[i].openpgp_hash_id;
|
||||
kek_params[3] = kek_params_table[i].openpgp_cipher_id;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if( DBG_CIPHER )
|
||||
log_printhex ("ecdh kek params are", kek_params, sizeof(kek_params) );
|
||||
|
||||
p = xtrymalloc( sizeof(kek_params) );
|
||||
if( p == NULL )
|
||||
return NULL;
|
||||
memcpy( p, kek_params, sizeof(kek_params) );
|
||||
*sizeout = sizeof(kek_params);
|
||||
return p;
|
||||
}
|
||||
|
||||
/* Encrypts/decrypts 'data' with a key derived from shared_mpi ECC point using FIPS SP 800-56A compliant method, which is
|
||||
* key derivation + key wrapping. The direction is determined by the first parameter (is_encrypt=1 --> this is encryption).
|
||||
* The result is returned in out as a size+value MPI.
|
||||
* TODO: memory leaks (x_secret).
|
||||
*/
|
||||
static int
|
||||
pk_ecdh_encrypt_with_shared_point ( int is_encrypt, gcry_mpi_t shared_mpi,
|
||||
const byte pk_fp[MAX_FINGERPRINT_LEN], gcry_mpi_t data, gcry_mpi_t * pkey, gcry_mpi_t *out)
|
||||
{
|
||||
byte *secret_x;
|
||||
int secret_x_size;
|
||||
byte kdf_params[256];
|
||||
int kdf_params_size=0;
|
||||
int nbits;
|
||||
int kdf_hash_algo;
|
||||
int kdf_encr_algo;
|
||||
int rc;
|
||||
|
||||
*out = NULL;
|
||||
|
||||
nbits = pubkey_nbits( PUBKEY_ALGO_ECDH, pkey );
|
||||
|
||||
{
|
||||
size_t nbytes;
|
||||
/* extract x component of the shared point: this is the actual shared secret */
|
||||
nbytes = (mpi_get_nbits (pkey[1] /* public point */)+7)/8;
|
||||
secret_x = xmalloc_secure( nbytes );
|
||||
rc = gcry_mpi_print (GCRYMPI_FMT_USG, secret_x, nbytes, &nbytes, shared_mpi);
|
||||
if( rc ) {
|
||||
xfree( secret_x );
|
||||
log_error ("ec ephemeral export of shared point failed: %s\n", gpg_strerror (rc) );
|
||||
return rc;
|
||||
}
|
||||
secret_x_size = (nbits+7)/8;
|
||||
assert( nbytes > secret_x_size );
|
||||
memmove( secret_x, secret_x+1, secret_x_size );
|
||||
memset( secret_x+secret_x_size, 0, nbytes-secret_x_size );
|
||||
|
||||
if( DBG_CIPHER )
|
||||
log_printhex ("ecdh shared secret X is:", secret_x, secret_x_size );
|
||||
}
|
||||
|
||||
/*** We have now the shared secret bytes in secret_x ***/
|
||||
|
||||
/* At this point we are done with PK encryption and the rest of the function uses symmetric
|
||||
* key encryption techniques to protect the input 'data'. The following two sections will
|
||||
* simply replace current secret_x with a value derived from it. This will become a KEK.
|
||||
*/
|
||||
{
|
||||
IOBUF obuf = iobuf_temp();
|
||||
rc = iobuf_write_size_body_mpi ( obuf, pkey[2] ); /* KEK params */
|
||||
|
||||
kdf_params_size = iobuf_temp_to_buffer( obuf, kdf_params, sizeof(kdf_params) );
|
||||
|
||||
if( DBG_CIPHER )
|
||||
log_printhex ("ecdh KDF public key params are:", kdf_params, kdf_params_size );
|
||||
|
||||
if( kdf_params_size != 4 || kdf_params[0] != 3 || kdf_params[1] != 1 ) /* expect 4 bytes 03 01 hash_alg symm_alg */
|
||||
return GPG_ERR_BAD_PUBKEY;
|
||||
|
||||
kdf_hash_algo = kdf_params[2];
|
||||
kdf_encr_algo = kdf_params[3];
|
||||
|
||||
if( DBG_CIPHER )
|
||||
log_debug ("ecdh KDF algorithms %s+%s with aeswrap\n", gcry_md_algo_name (kdf_hash_algo), openpgp_cipher_algo_name (kdf_encr_algo) );
|
||||
|
||||
if( kdf_hash_algo != GCRY_MD_SHA256 && kdf_hash_algo != GCRY_MD_SHA384 && kdf_hash_algo != GCRY_MD_SHA512 )
|
||||
return GPG_ERR_BAD_PUBKEY;
|
||||
if( kdf_encr_algo != GCRY_CIPHER_AES128 && kdf_encr_algo != GCRY_CIPHER_AES192 && kdf_encr_algo != GCRY_CIPHER_AES256 )
|
||||
return GPG_ERR_BAD_PUBKEY;
|
||||
}
|
||||
|
||||
/* build kdf_params */
|
||||
{
|
||||
IOBUF obuf;
|
||||
|
||||
obuf = iobuf_temp();
|
||||
/* variable-length field 1, curve name OID */
|
||||
rc = iobuf_write_size_body_mpi ( obuf, pkey[0] );
|
||||
/* fixed-length field 2 */
|
||||
iobuf_put (obuf, PUBKEY_ALGO_ECDH);
|
||||
/* variable-length field 3, KDF params */
|
||||
rc = (rc ? rc : iobuf_write_size_body_mpi ( obuf, pkey[2] ));
|
||||
/* fixed-length field 4 */
|
||||
iobuf_write (obuf, "Anonymous Sender ", 20);
|
||||
/* fixed-length field 5, recipient fp */
|
||||
iobuf_write (obuf, pk_fp, 20);
|
||||
|
||||
kdf_params_size = iobuf_temp_to_buffer( obuf, kdf_params, sizeof(kdf_params) );
|
||||
iobuf_close( obuf );
|
||||
if( rc ) {
|
||||
return rc;
|
||||
}
|
||||
if( DBG_CIPHER )
|
||||
log_printhex ("ecdh KDF message params are:", kdf_params, kdf_params_size );
|
||||
}
|
||||
|
||||
/* Derive a KEK (key wrapping key) using kdf_params and secret_x. */
|
||||
{
|
||||
gcry_md_hd_t h;
|
||||
int old_size;
|
||||
|
||||
rc = gcry_md_open (&h, kdf_hash_algo, 0);
|
||||
if(rc)
|
||||
log_bug ("gcry_md_open failed for algo %d: %s",
|
||||
kdf_hash_algo, gpg_strerror (gcry_error(rc)));
|
||||
gcry_md_write(h, "\x00\x00\x00\x01", 4); /* counter = 1 */
|
||||
gcry_md_write(h, secret_x, secret_x_size); /* x of the point X */
|
||||
gcry_md_write(h, kdf_params, kdf_params_size); /* KDF parameters */
|
||||
|
||||
gcry_md_final (h);
|
||||
|
||||
assert( gcry_md_get_algo_dlen (kdf_hash_algo) >= 32 );
|
||||
|
||||
memcpy (secret_x, gcry_md_read (h, kdf_hash_algo), gcry_md_get_algo_dlen (kdf_hash_algo));
|
||||
gcry_md_close (h);
|
||||
|
||||
old_size = secret_x_size;
|
||||
assert( old_size >= gcry_cipher_get_algo_keylen( kdf_encr_algo ) );
|
||||
secret_x_size = gcry_cipher_get_algo_keylen( kdf_encr_algo );
|
||||
assert( secret_x_size <= gcry_md_get_algo_dlen (kdf_hash_algo) );
|
||||
|
||||
memset( secret_x+secret_x_size, old_size-secret_x_size, 0 ); /* we could have allocated more, so clean the tail before returning */
|
||||
if( DBG_CIPHER )
|
||||
log_printhex ("ecdh KEK is:", secret_x, secret_x_size );
|
||||
}
|
||||
|
||||
/* And, finally, aeswrap with key secret_x */
|
||||
{
|
||||
gcry_cipher_hd_t hd;
|
||||
size_t nbytes;
|
||||
|
||||
byte *data_buf;
|
||||
int data_buf_size;
|
||||
|
||||
gcry_mpi_t result;
|
||||
|
||||
rc = gcry_cipher_open (&hd, kdf_encr_algo, GCRY_CIPHER_MODE_AESWRAP, 0);
|
||||
if (rc)
|
||||
{
|
||||
log_error( "ecdh failed to initialize AESWRAP: %s\n", gpg_strerror (rc));
|
||||
return rc;
|
||||
}
|
||||
|
||||
rc = gcry_cipher_setkey (hd, secret_x, secret_x_size);
|
||||
xfree( secret_x );
|
||||
if (rc)
|
||||
{
|
||||
gcry_cipher_close (hd);
|
||||
log_error("ecdh failed in gcry_cipher_setkey: %s\n", gpg_strerror (rc));
|
||||
return rc;
|
||||
}
|
||||
|
||||
data_buf_size = (gcry_mpi_get_nbits(data)+7)/8;
|
||||
assert( (data_buf_size & 7) == (is_encrypt ? 0 : 1) );
|
||||
|
||||
data_buf = xmalloc_secure( 1 + 2*data_buf_size + 8 );
|
||||
if( !data_buf ) {
|
||||
gcry_cipher_close (hd);
|
||||
return GPG_ERR_ENOMEM;
|
||||
}
|
||||
|
||||
if( is_encrypt ) {
|
||||
byte *in = data_buf+1+data_buf_size+8;
|
||||
|
||||
/* write data MPI into the end of data_buf. data_buf is size aeswrap data */
|
||||
rc = gcry_mpi_print (GCRYMPI_FMT_USG, in, data_buf_size, &nbytes, data/*in*/);
|
||||
if( rc ) {
|
||||
log_error("ecdh failed to export DEK: %s\n", gpg_strerror (rc));
|
||||
gcry_cipher_close (hd);
|
||||
xfree( data_buf );
|
||||
return rc;
|
||||
}
|
||||
|
||||
if( DBG_CIPHER )
|
||||
log_printhex ("ecdh encrypting :", in, data_buf_size );
|
||||
|
||||
rc = gcry_cipher_encrypt (hd, data_buf+1, data_buf_size+8, in, data_buf_size);
|
||||
memset( in, 0, data_buf_size);
|
||||
gcry_cipher_close (hd);
|
||||
if(rc)
|
||||
{
|
||||
log_error("ecdh failed in gcry_cipher_encrypt: %s\n", gpg_strerror (rc));
|
||||
xfree( data_buf );
|
||||
return rc;
|
||||
}
|
||||
data_buf[0] = data_buf_size+8;
|
||||
|
||||
if( DBG_CIPHER )
|
||||
log_printhex ("ecdh encrypted to:", data_buf+1, data_buf[0] );
|
||||
|
||||
rc = gcry_mpi_scan ( &result, GCRYMPI_FMT_USG, data_buf, 1+data_buf[0], NULL); /* (byte)size + aeswrap of DEK */
|
||||
xfree( data_buf );
|
||||
if(rc)
|
||||
{
|
||||
log_error("ecdh failed to create an MPI: %s\n", gpg_strerror (rc));
|
||||
return rc;
|
||||
}
|
||||
|
||||
*out = result;
|
||||
}
|
||||
else {
|
||||
byte *in;
|
||||
|
||||
rc = gcry_mpi_print (GCRYMPI_FMT_USG, data_buf, data_buf_size, &nbytes, data/*in*/);
|
||||
if( nbytes != data_buf_size || data_buf[0] != data_buf_size-1 ) {
|
||||
log_error("ecdh inconsistent size\n");
|
||||
xfree( data_buf );
|
||||
return GPG_ERR_BAD_MPI;
|
||||
}
|
||||
in = data_buf+data_buf_size;
|
||||
data_buf_size = data_buf[0];
|
||||
|
||||
if( DBG_CIPHER )
|
||||
log_printhex ("ecdh decrypting :", data_buf+1, data_buf_size );
|
||||
|
||||
rc = gcry_cipher_decrypt (hd, in, data_buf_size, data_buf+1, data_buf_size );
|
||||
gcry_cipher_close (hd);
|
||||
if(rc)
|
||||
{
|
||||
log_error("ecdh failed in gcry_cipher_decrypt: %s\n", gpg_strerror (rc));
|
||||
xfree( data_buf );
|
||||
return rc;
|
||||
}
|
||||
|
||||
data_buf_size-=8;
|
||||
|
||||
if( DBG_CIPHER )
|
||||
log_printhex ("ecdh decrypted to :", in, data_buf_size );
|
||||
|
||||
/* padding is removed later */
|
||||
//if( in[data_buf_size-1] > 8 ) {
|
||||
// log_error("ecdh failed at decryption: invalid padding. %02x > 8\n", in[data_buf_size-1] );
|
||||
// return GPG_ERR_BAD_KEY;
|
||||
//}
|
||||
|
||||
rc = gcry_mpi_scan ( &result, GCRYMPI_FMT_USG, in, data_buf_size, NULL);
|
||||
xfree( data_buf );
|
||||
if(rc)
|
||||
{
|
||||
log_error("ecdh failed to create a plain text MPI: %s\n", gpg_strerror (rc));
|
||||
return rc;
|
||||
}
|
||||
|
||||
*out = result;
|
||||
}
|
||||
}
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
/* Perform ECDH encryption, which involves ECDH key generation.
|
||||
*/
|
||||
int
|
||||
pk_ecdh_encrypt (gcry_mpi_t * resarr, const byte pk_fp[MAX_FINGERPRINT_LEN], gcry_mpi_t data, gcry_mpi_t * pkey)
|
||||
{
|
||||
gcry_sexp_t s_ciph, s_data, s_pkey;
|
||||
|
||||
PKT_public_key *pk_eph;
|
||||
int nbits;
|
||||
int rc;
|
||||
|
||||
nbits = pubkey_nbits( PUBKEY_ALGO_ECDH, pkey );
|
||||
|
||||
/*** Generate an ephemeral key ***/
|
||||
|
||||
rc = pk_ecc_keypair_gen( &pk_eph, PUBKEY_ALGO_ECDH, KEYGEN_FLAG_TRANSIENT_KEY | KEYGEN_FLAG_NO_PROTECTION /*this is ephemeral*/, "", nbits );
|
||||
if( rc )
|
||||
return rc;
|
||||
if( DBG_CIPHER ) {
|
||||
unsigned char *buffer;
|
||||
if (gcry_mpi_aprint (GCRYMPI_FMT_HEX, &buffer, NULL, pk_eph->pkey[1]))
|
||||
BUG ();
|
||||
log_debug("ephemeral key MPI #0: %s\n", buffer);
|
||||
gcry_free( buffer );
|
||||
}
|
||||
free_public_key (pk_eph);
|
||||
|
||||
/*** Done with ephemeral key generation.
|
||||
* Now use ephemeral secret to get the shared secret. ***/
|
||||
|
||||
rc = gcry_sexp_build (&s_pkey, NULL,
|
||||
"(public-key(ecdh(c%m)(q%m)(p%m)))", pkey[0], pkey[1], pkey[2]);
|
||||
if (rc)
|
||||
BUG ();
|
||||
|
||||
/* put the data into a simple list */
|
||||
if (gcry_sexp_build (&s_data, NULL, "%m", pk_eph->pkey[3])) /* ephemeral scalar goes as data */
|
||||
BUG ();
|
||||
|
||||
/* pass it to libgcrypt */
|
||||
rc = gcry_pk_encrypt (&s_ciph, s_data, s_pkey);
|
||||
gcry_sexp_release (s_data);
|
||||
gcry_sexp_release (s_pkey);
|
||||
if (rc)
|
||||
return rc;
|
||||
|
||||
/* finally, perform encryption */
|
||||
|
||||
{
|
||||
gcry_mpi_t shared = mpi_from_sexp (s_ciph, "a"); /* ... and get the shared point */
|
||||
gcry_sexp_release (s_ciph);
|
||||
resarr[0] = pk_eph->pkey[1]; /* ephemeral public key */
|
||||
|
||||
if( DBG_CIPHER ) {
|
||||
unsigned char *buffer;
|
||||
if (gcry_mpi_aprint (GCRYMPI_FMT_HEX, &buffer, NULL, resarr[0]))
|
||||
BUG ();
|
||||
log_debug("ephemeral key MPI: %s\n", buffer);
|
||||
gcry_free( buffer );
|
||||
}
|
||||
|
||||
rc = pk_ecdh_encrypt_with_shared_point ( 1 /*=encrypton*/, shared, pk_fp, data, pkey, resarr+1 );
|
||||
mpi_release( shared );
|
||||
}
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
/* Perform ECDH decryption.
|
||||
*/
|
||||
int
|
||||
pk_ecdh_decrypt (gcry_mpi_t * result, const byte sk_fp[MAX_FINGERPRINT_LEN], gcry_mpi_t *data, gcry_mpi_t * skey) {
|
||||
gcry_sexp_t s_skey, s_data, s_ciph;
|
||||
int rc;
|
||||
|
||||
if (!data[0] || !data[1])
|
||||
return gpg_error (GPG_ERR_BAD_MPI);
|
||||
|
||||
rc = gcry_sexp_build (&s_skey, NULL,
|
||||
"(public-key(ecdh(c%m)(q%m)(p%m)))",
|
||||
skey[0]/*curve*/, data[0]/*ephemeral key*/, skey[2]/*KDF params*/);
|
||||
if (rc)
|
||||
BUG ();
|
||||
|
||||
/* put the data into a simple list */
|
||||
if (gcry_sexp_build (&s_data, NULL, "%m", skey[3])) /* static private key (scalar) goes as data */
|
||||
BUG ();
|
||||
|
||||
rc = gcry_pk_encrypt (&s_ciph, s_data, s_skey); /* encrypting ephemeral key with our private scalar yields the shared point */
|
||||
gcry_sexp_release (s_skey);
|
||||
gcry_sexp_release (s_data);
|
||||
if (rc)
|
||||
return rc;
|
||||
|
||||
{
|
||||
gcry_mpi_t shared = mpi_from_sexp (s_ciph, "a"); /* get the shared point */
|
||||
gcry_sexp_release (s_ciph);
|
||||
rc = pk_ecdh_encrypt_with_shared_point ( 0 /*=decryption*/, shared, sk_fp, data[1]/*encr data as an MPI*/, skey, result );
|
||||
mpi_release( shared );
|
||||
}
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue