gpg: Improve function documentation and some comments.

* g10/main.h: Improve function documentation.
* g10/packet.h.h: Improve function documentation.
* g10/sig-check.c: Improve function documentation and some comments.

--
Signed-off-by: Neal H. Walfield <neal@g10code.com>
This commit is contained in:
Neal H. Walfield 2015-10-19 11:15:00 +02:00
parent 0433e66702
commit a608ee750d
3 changed files with 222 additions and 47 deletions

View File

@ -181,7 +181,7 @@ int mpi_print (estream_t stream, gcry_mpi_t a, int mode);
unsigned int ecdsa_qbits_from_Q (unsigned int qbits);
/*-- status.c --*/
/*-- cpr.c --*/
void set_status_fd ( int fd );
int is_status_enabled ( void );
void write_status ( int no );
@ -239,10 +239,22 @@ int clearsign_file( const char *fname, strlist_t locusr, const char *outfile );
int sign_symencrypt_file (const char *fname, strlist_t locusr);
/*-- sig-check.c --*/
/* SIG is a revocation signature. Check if any of PK's designated
revokers generated it. If so, return 0. Note: this function
(correctly) doesn't care if the designated revoker is revoked. */
int check_revocation_keys (PKT_public_key *pk, PKT_signature *sig);
/* Check that the backsig BACKSIG from the subkey SUB_PK to its
primary key MAIN_PK is valid. */
int check_backsig(PKT_public_key *main_pk,PKT_public_key *sub_pk,
PKT_signature *backsig);
int check_key_signature( KBNODE root, KBNODE node, int *is_selfsig );
/* Check that the signature SIG over a key (e.g., a key binding or a
key revocation) is valid. (To check signatures over data, use
check_signature.) */
int check_key_signature( KBNODE root, KBNODE sig, int *is_selfsig );
/* Like check_key_signature, but with the ability to specify some
additional parameters and get back additional information. See the
documentation for the implementation for details. */
int check_key_signature2( KBNODE root, KBNODE node, PKT_public_key *check_pk,
PKT_public_key *ret_pk, int *is_selfsig,
u32 *r_expiredate, int *r_expired );

View File

@ -638,9 +638,18 @@ int cmp_user_ids( PKT_user_id *a, PKT_user_id *b );
/*-- sig-check.c --*/
int check_signature( PKT_signature *sig, gcry_md_hd_t digest );
int check_signature2( PKT_signature *sig, gcry_md_hd_t digest, u32 *r_expiredate,
int *r_expired, int *r_revoked, PKT_public_key *ret_pk );
/* Check a signature. This is shorthand for check_signature2 with
the unnamed arguments passed as NULL. */
int check_signature (PKT_signature *sig, gcry_md_hd_t digest);
/* Check a signature. Looks up the public key from the key db. (If
RET_PK is not NULL, it is returned in *RET_PK.) DIGEST contains a
valid hash context that already includes the signed data. This
function adds the relevant meta-data to the hash before finalizing
it and verifying the signature. */
int check_signature2 (PKT_signature *sig, gcry_md_hd_t digest,
u32 *r_expiredate, int *r_expired, int *r_revoked,
PKT_public_key *ret_pk);
/*-- pubkey-enc.c --*/

View File

@ -40,18 +40,50 @@ static int check_signature_end (PKT_public_key *pk, PKT_signature *sig,
int *r_expired, int *r_revoked,
PKT_public_key *ret_pk);
/****************
* Check the signature which is contained in SIG.
* The MD_HANDLE should be currently open, so that this function
* is able to append some data, before finalizing the digest.
*/
/* Check a signature. This is shorthand for check_signature2 with
the unnamed arguments passed as NULL. */
int
check_signature (PKT_signature *sig, gcry_md_hd_t digest)
{
return check_signature2 (sig, digest, NULL, NULL, NULL, NULL);
}
/* Check a signature.
Looks up the public key that created the signature (SIG->KEYID)
from the key db. Makes sure that the signature is valid (it was
not created prior to the key, the public key was created in the
past, and the signature does not include any unsupported critical
features), finishes computing the hash of the signature data, and
checks that the signature verifies the digest. If the key that
generated the signature is a subkey, this function also verifies
that there is a valid backsig from the subkey to the primary key.
Finally, if status fd is enabled and the signature class is 0x00 or
0x01, then a STATUS_SIG_ID is emitted on the status fd.
SIG is the signature to check.
DIGEST contains a valid hash context that already includes the
signed data. This function adds the relevant meta-data from the
signature packet to compute the final hash. (See Section 5.2 of
RFC 4880: "The concatenation of the data being signed and the
signature data from the version number through the hashed subpacket
data (inclusive) is hashed.")
If R_EXPIREDATE is not NULL, R_EXPIREDATE is set to the key's
expiry.
If R_EXPIRED is not NULL, *R_EXPIRED is set to 1 if PK has expired
(0 otherwise). Note: PK being expired does not cause this function
to fail.
If R_REVOKED is not NULL, *R_REVOKED is set to 1 if PK has been
revoked (0 otherwise). Note: PK being revoked does not cause this
function to fail.
If PK is not NULL, the public key is saved in *PK on success.
Returns 0 on success. An error code otherwise. */
int
check_signature2 (PKT_signature *sig, gcry_md_hd_t digest, u32 *r_expiredate,
int *r_expired, int *r_revoked, PKT_public_key *pk )
@ -204,6 +236,23 @@ check_signature2 (PKT_signature *sig, gcry_md_hd_t digest, u32 *r_expiredate,
}
/* The signature SIG was generated with the public key PK. Check
whether the signature is valid in the following sense:
- Make sure the public key was created before the signature was
generated.
- Make sure the public key was created in the past
- Check whether PK has expired (set *R_EXPIRED to 1 if so and 0
otherwise)
- Check whether PK has been revoked (set *R_REVOKED to 1 if so
and 0 otherwise).
If either of the first two tests fail, returns an error code.
Otherwise returns 0. (Thus, this function doesn't fail if the
public key is expired or revoked.) */
static int
check_signature_metadata_validity (PKT_public_key *pk, PKT_signature *sig,
int *r_expired, int *r_revoked)
@ -268,6 +317,35 @@ check_signature_metadata_validity (PKT_public_key *pk, PKT_signature *sig,
}
/* Finish generating a signature and check it. Concretely: make sure
that the signature is valid (it was not created prior to the key,
the public key was created in the past, and the signature does not
include any unsupported critical features), finish computing the
digest by adding the relevant data from the signature packet, and
check that the signature verifies the digest.
DIGEST contains a hash context, which has already hashed the signed
data. This function adds the relevant meta-data from the signature
packet to compute the final hash. (See Section 5.2 of RFC 4880:
"The concatenation of the data being signed and the signature data
from the version number through the hashed subpacket data
(inclusive) is hashed.")
SIG is the signature to check.
PK is the public key used to generate the signature.
If R_EXPIRED is not NULL, *R_EXPIRED is set to 1 if PK has expired
(0 otherwise). Note: PK being expired does not cause this function
to fail.
If R_REVOKED is not NULL, *R_REVOKED is set to 1 if PK has been
revoked (0 otherwise). Note: PK being revoked does not cause this
function to fail.
If RET_PK is not NULL, PK is copied into RET_PK on success.
Returns 0 on success. An error code other. */
static int
check_signature_end (PKT_public_key *pk, PKT_signature *sig,
gcry_md_hd_t digest,
@ -330,7 +408,7 @@ check_signature_end (PKT_public_key *pk, PKT_signature *sig,
gcry_md_putc (digest, 0);
n = 6;
}
/* add some magic */
/* add some magic per Section 5.2.4 of RFC 4880. */
buf[0] = sig->version;
buf[1] = 0xff;
buf[2] = n >> 24;
@ -341,9 +419,12 @@ check_signature_end (PKT_public_key *pk, PKT_signature *sig,
}
gcry_md_final( digest );
/* Convert the digest to an MPI. */
result = encode_md_value (pk, digest, sig->digest_algo );
if (!result)
return GPG_ERR_GENERAL;
/* Verify the signature. */
rc = pk_verify( pk->pubkey_algo, result, sig->data, pk->pkey );
gcry_mpi_release (result);
@ -361,7 +442,8 @@ check_signature_end (PKT_public_key *pk, PKT_signature *sig,
}
/* Add a uid node to a hash context. See section 5.2.4, paragraph 4
of RFC 4880. */
static void
hash_uid_node( KBNODE unode, gcry_md_hd_t md, PKT_signature *sig )
{
@ -411,24 +493,37 @@ cache_sig_result ( PKT_signature *sig, int result )
}
}
/* Check the revocation keys to see if any of them have revoked our
pk. sig is the revocation sig. pk is the key it is on. This code
will need to be modified if gpg ever becomes multi-threaded. Note
that this guarantees that a designated revocation sig will never be
considered valid unless it is actually valid, as well as being
issued by a revocation key in a valid direct signature. Note also
that this is written so that a revoked revoker can still issue
revocations: i.e. If A revokes B, but A is revoked, B is still
revoked. I'm not completely convinced this is the proper behavior,
but it matches how PGP does it. -dms */
/* SIG is a key revocation signature. Check if this signature was
generated by any of the public key PK's designated revokers.
/* Returns 0 if sig is valid (i.e. pk is revoked), non-0 if not
revoked. It is important that GPG_ERR_NO_PUBKEY is only returned
when a revocation signature is from a valid revocation key
designated in a revkey subpacket, but the revocation key itself
isn't present. */
PK is the public key that SIG allegedly revokes.
SIG is the revocation signature to check.
This function avoids infinite recursion, which can happen if two
keys are designed revokers for each other and they revoke each
other. This is done by observing that if a key A is revoked by key
B we still consider the revocation to be valid even if B is
revoked. Thus, we don't need to determine whether B is revoked to
determine whether A has been revoked by B, we just need to check
the signature.
Returns 0 if sig is valid (i.e. pk is revoked), non-0 if not
revoked. We are careful to make sure that GPG_ERR_NO_PUBKEY is
only returned when a revocation signature is from a valid
revocation key designated in a revkey subpacket, but the revocation
key itself isn't present. */
/* XXX: This code will need to be modified if gpg ever becomes
multi-threaded. Note that this guarantees that a designated
revocation sig will never be considered valid unless it is actually
valid, as well as being issued by a revocation key in a valid
direct signature. Note also that this is written so that a revoked
revoker can still issue revocations: i.e. If A revokes B, but A is
revoked, B is still revoked. I'm not completely convinced this is
the proper behavior, but it matches how PGP does it. -dms */
int
check_revocation_keys(PKT_public_key *pk,PKT_signature *sig)
check_revocation_keys (PKT_public_key *pk, PKT_signature *sig)
{
static int busy=0;
int i;
@ -437,6 +532,30 @@ check_revocation_keys(PKT_public_key *pk,PKT_signature *sig)
assert(IS_KEY_REV(sig));
assert((sig->keyid[0]!=pk->keyid[0]) || (sig->keyid[0]!=pk->keyid[1]));
/* Avoid infinite recursion. Consider the following:
- We want to check if A is revoked.
- C is a designated revoker for B and has revoked B.
- B is a designated revoker for A and has revoked A.
When checking if A is revoked (in merge_selfsigs_main), we
observe that A has a designed revoker. As such, we call this
function. This function sees that there is a valid revocation
signature, which is signed by B. It then calls check_signature()
to verify that the signature is good. To check the sig, we need
to lookup B. Looking up B means calling merge_selfsigs_main,
which checks whether B is revoked, which calls this function to
see if B was revoked by some key.
In this case, the added level of indirection doesn't hurt. It
just means a bit more work. However, if C == A, then we'd end up
in a loop. But, it doesn't make sense to look up C anyways: even
if B is revoked, we conservatively consider a valid revocation
signed by B to revoke A. Since this is the only place where this
type of recursion can occur, we simply cause this function to
fail if it is entered recursively. */
if (busy)
{
/* Return an error (i.e. not revoked), but mark the pk as
@ -457,17 +576,22 @@ check_revocation_keys(PKT_public_key *pk,PKT_signature *sig)
else
for(i=0;i<pk->numrevkeys;i++)
{
/* The revoker's keyid. */
u32 keyid[2];
keyid_from_fingerprint(pk->revkey[i].fpr,MAX_FINGERPRINT_LEN,keyid);
if(keyid[0]==sig->keyid[0] && keyid[1]==sig->keyid[1])
/* The signature was generated by a designated revoker.
Verify the signature. */
{
gcry_md_hd_t md;
if (gcry_md_open (&md, sig->digest_algo, 0))
BUG ();
hash_public_key(md,pk);
/* Note: check_signature only checks that the signature
is good. It does not fail if the key is revoked. */
rc=check_signature(sig,md);
cache_sig_result(sig,rc);
gcry_md_close (md);
@ -480,21 +604,24 @@ check_revocation_keys(PKT_public_key *pk,PKT_signature *sig)
return rc;
}
/* Backsigs (0x19) have the same format as binding sigs (0x18), but
/* Check that the backsig BACKSIG from the subkey SUB_PK to its
primary key MAIN_PK is valid.
Backsigs (0x19) have the same format as binding sigs (0x18), but
this function is simpler than check_key_signature in a few ways.
For example, there is no support for expiring backsigs since it is
questionable what such a thing actually means. Note also that the
sig cache check here, unlike other sig caches in GnuPG, is not
persistent. */
int
check_backsig(PKT_public_key *main_pk,PKT_public_key *sub_pk,
PKT_signature *backsig)
check_backsig (PKT_public_key *main_pk,PKT_public_key *sub_pk,
PKT_signature *backsig)
{
gcry_md_hd_t md;
int rc;
/* Always check whether the algorithm is available. Although
gcry_md_open woyuld throw an error, some libgcrypt versions will
gcry_md_open would throw an error, some libgcrypt versions will
print a debug message in that case too. */
if ((rc=openpgp_md_test_algo (backsig->digest_algo)))
return rc;
@ -516,27 +643,53 @@ check_backsig(PKT_public_key *main_pk,PKT_public_key *sub_pk,
}
/****************
* check the signature pointed to by NODE. This is a key signature.
* If the function detects a self-signature, it uses the PK from
* ROOT and does not read any public key.
*/
/* Check that a signature over a key is valid. This is a
specialization of check_key_signature2 with the unnamed parameters
passed as NULL. See the documentation for that function for more
details. */
int
check_key_signature( KBNODE root, KBNODE node, int *is_selfsig )
check_key_signature (KBNODE root, KBNODE node, int *is_selfsig)
{
return check_key_signature2(root, node, NULL, NULL, is_selfsig, NULL, NULL );
return check_key_signature2 (root, node, NULL, NULL, is_selfsig, NULL, NULL);
}
/* If check_pk is set, then use it to check the signature in node
rather than getting it from root or the keydb. If ret_pk is set,
fill in the public key that was used to verify the signature.
ret_pk is only meaningful when the verification was successful. */
/* Check that a signature over a key (e.g., a key revocation, key
binding, user id certification, etc.) is valid. If the function
detects a self-signature, it uses the public key from the specified
key block and does not bother looking up the key specified in the
signature packet.
ROOT is a keyblock.
NODE references a signature packet that appears in the keyblock
that should be verified.
If CHECK_PK is set, the specified key is sometimes preferred for
verifying signatures. See the implementation for details.
If RET_PK is not NULL, the public key that successfully verified
the signature is copied into *RET_PK.
If IS_SELFSIG is not NULL, *IS_SELFSIG is set to 1 if NODE is a
self-signature.
If R_EXPIREDATE is not NULL, *R_EXPIREDATE is set to the expiry
date.
If R_EXPIRED is not NULL, *R_EXPIRED is set to 1 if PK has been
expired (0 otherwise). Note: PK being revoked does not cause this
function to fail.
If OPT.NO_SIG_CACHE is not set, this function will first check if
the result of a previous verification is already cached in the
signature packet's data structure. */
/* TODO: add r_revoked here as well. It has the same problems as
r_expiredate and r_expired and the cache. */
int
check_key_signature2( KBNODE root, KBNODE node, PKT_public_key *check_pk,
PKT_public_key *ret_pk, int *is_selfsig,
u32 *r_expiredate, int *r_expired )
check_key_signature2(KBNODE root, KBNODE node, PKT_public_key *check_pk,
PKT_public_key *ret_pk, int *is_selfsig,
u32 *r_expiredate, int *r_expired )
{
gcry_md_hd_t md;
PKT_public_key *pk;
@ -668,6 +821,7 @@ check_key_signature2( KBNODE root, KBNODE node, PKT_public_key *check_pk,
hash_public_key( md, pk );
hash_uid_node( unode, md, sig );
if( keyid[0] == sig->keyid[0] && keyid[1] == sig->keyid[1] )
/* The primary key is the signing key. */
{
if( is_selfsig )
*is_selfsig = 1;