mirror of
git://git.gnupg.org/gnupg.git
synced 2025-07-02 22:46:30 +02:00
initially checkin
This commit is contained in:
parent
ada086d0ce
commit
5393dd53c5
105 changed files with 18726 additions and 0 deletions
191
cipher/rsa.c
Normal file
191
cipher/rsa.c
Normal file
|
@ -0,0 +1,191 @@
|
|||
/* rsa.c - RSA function
|
||||
* Copyright (c) 1997 by Werner Koch (dd9jn)
|
||||
*
|
||||
* ATTENTION: This code should not be exported from the United States
|
||||
* nor should it be used their without a license agreement with PKP.
|
||||
* The RSA alorithm is protected by U.S. Patent #4,405,829 which
|
||||
* expires on September 20, 2000!
|
||||
*
|
||||
* For a description of the algorithm, see:
|
||||
* Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996.
|
||||
* ISBN 0-471-11709-9. Pages 466 ff.
|
||||
*
|
||||
* This file is part of G10.
|
||||
*
|
||||
* G10 is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* G10 is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "util.h"
|
||||
#include "mpi.h"
|
||||
#include "cipher.h"
|
||||
|
||||
|
||||
void
|
||||
rsa_free_public_key( RSA_public_key *pk )
|
||||
{
|
||||
mpi_free( pk->n ); pk->n = NULL;
|
||||
mpi_free( pk->e ); pk->e = NULL;
|
||||
}
|
||||
|
||||
void
|
||||
rsa_free_secret_key( RSA_secret_key *sk )
|
||||
{
|
||||
mpi_free( sk->e ); sk->e = NULL;
|
||||
mpi_free( sk->n ); sk->n = NULL;
|
||||
mpi_free( sk->p ); sk->p = NULL;
|
||||
mpi_free( sk->q ); sk->q = NULL;
|
||||
mpi_free( sk->d ); sk->d = NULL;
|
||||
mpi_free( sk->u ); sk->u = NULL;
|
||||
}
|
||||
|
||||
|
||||
static void
|
||||
test_keys( RSA_public_key *pk, RSA_secret_key *sk, unsigned nbits )
|
||||
{
|
||||
MPI test = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
|
||||
MPI out1 = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
|
||||
MPI out2 = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
|
||||
|
||||
mpi_set_bytes( test, nbits, get_random_byte, 0 );
|
||||
|
||||
rsa_public( out1, test, pk );
|
||||
rsa_secret( out2, out1, sk );
|
||||
if( mpi_cmp( test, out2 ) )
|
||||
log_fatal("RSA operation: public, secret failed\n");
|
||||
rsa_secret( out1, test, sk );
|
||||
rsa_public( out2, out1, pk );
|
||||
if( mpi_cmp( test, out2 ) )
|
||||
log_fatal("RSA operation: secret, public failed\n");
|
||||
mpi_free( test );
|
||||
mpi_free( out1 );
|
||||
mpi_free( out2 );
|
||||
}
|
||||
|
||||
/****************
|
||||
* Generate a key pair with a key of size NBITS
|
||||
* Returns: 2 structures filles with all needed values
|
||||
*/
|
||||
void
|
||||
rsa_generate( RSA_public_key *pk, RSA_secret_key *sk, unsigned nbits )
|
||||
{
|
||||
MPI p, q; /* the two primes */
|
||||
MPI d; /* the private key */
|
||||
MPI u;
|
||||
MPI t1, t2;
|
||||
MPI n; /* the public key */
|
||||
MPI e; /* the exponent */
|
||||
MPI phi; /* helper: (p-a)(q-1) */
|
||||
|
||||
/* select two (very secret) primes */
|
||||
p = generate_random_prime( nbits / 2 );
|
||||
q = generate_random_prime( nbits / 2 );
|
||||
if( mpi_cmp( p, q ) > 0 ) /* p shall be smaller than q */
|
||||
mpi_swap(p,q);
|
||||
/* calculate phi = (p-1)(q-1) */
|
||||
t1 = mpi_alloc_secure( mpi_get_nlimbs(p) );
|
||||
t2 = mpi_alloc_secure( mpi_get_nlimbs(p) );
|
||||
phi = mpi_alloc_secure( nbits / BITS_PER_MPI_LIMB );
|
||||
mpi_sub_ui( t1, p, 1 );
|
||||
mpi_sub_ui( t2, q, 1 );
|
||||
mpi_mul( phi, t1, t2 );
|
||||
/* multiply them to make the private key */
|
||||
n = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
|
||||
mpi_mul( n, p, q );
|
||||
/* find a public exponent */
|
||||
e = mpi_alloc(1);
|
||||
mpi_set_ui( e, 17); /* start with 17 */
|
||||
while( !mpi_gcd(t1, e, phi) ) { /* (while gcd is not 1) */
|
||||
if( DBG_CIPHER )
|
||||
log_mpidump("trying e=", e);
|
||||
mpi_add_ui( e, e, 2);
|
||||
}
|
||||
/* calculate the secret key d = e^1 mod phi */
|
||||
d = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
|
||||
mpi_inv_mod(d, e, phi );
|
||||
/* calculate the inverse of p and q (used for chinese remainder theorem)*/
|
||||
u = mpi_alloc( nbits / BITS_PER_MPI_LIMB );
|
||||
mpi_inv_mod(u, p, q );
|
||||
|
||||
if( DBG_CIPHER ) {
|
||||
log_mpidump("p=", p );
|
||||
log_mpidump("q=", q );
|
||||
log_mpidump("phi=", phi );
|
||||
log_mpidump("n=", n );
|
||||
log_mpidump("e=", e );
|
||||
log_mpidump("d=", d );
|
||||
log_mpidump("u=", u );
|
||||
}
|
||||
|
||||
mpi_free(t1);
|
||||
mpi_free(t2);
|
||||
mpi_free(phi);
|
||||
|
||||
pk->n = mpi_copy(n);
|
||||
pk->e = mpi_copy(e);
|
||||
sk->n = n;
|
||||
sk->e = e;
|
||||
sk->p = p;
|
||||
sk->q = q;
|
||||
sk->d = d;
|
||||
sk->u = u;
|
||||
|
||||
/* now we can test our keys (this should never fail!) */
|
||||
test_keys( pk, sk, nbits - 16 );
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/****************
|
||||
* Public key operation. Encrypt INPUT with PKEY and put result into OUTPUT.
|
||||
*
|
||||
* c = m^e mod n
|
||||
*
|
||||
* Where c is OUTPUT, m is INPUT and e,n are elements of PKEY.
|
||||
*/
|
||||
void
|
||||
rsa_public(MPI output, MPI input, RSA_public_key *pkey )
|
||||
{
|
||||
if( output == input ) { /* powm doesn't like output and input the same */
|
||||
MPI x = mpi_alloc( mpi_get_nlimbs(input)*2 );
|
||||
mpi_powm( x, input, pkey->e, pkey->n );
|
||||
mpi_set(output, x);
|
||||
mpi_free(x);
|
||||
}
|
||||
else
|
||||
mpi_powm( output, input, pkey->e, pkey->n );
|
||||
}
|
||||
|
||||
/****************
|
||||
* Secret key operation. Encrypt INPUT with SKEY and put result into OUTPUT.
|
||||
*
|
||||
* m = c^d mod n
|
||||
*
|
||||
* Where m is OUTPUT, c is INPUT and d,n are elements of PKEY.
|
||||
*
|
||||
* FIXME: We should better use the Chinese Remainder Theorem
|
||||
*/
|
||||
void
|
||||
rsa_secret(MPI output, MPI input, RSA_secret_key *skey )
|
||||
{
|
||||
mpi_powm( output, input, skey->d, skey->n );
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue