mirror of
git://git.gnupg.org/gnupg.git
synced 2024-11-04 20:38:50 +01:00
This commit was manufactured by cvs2svn to create branch
'STABLE-BRANCH-1-0'.
This commit is contained in:
parent
f23da23321
commit
356e909e18
375
cipher/rsa.c
Normal file
375
cipher/rsa.c
Normal file
@ -0,0 +1,375 @@
|
||||
/* rsa.c - RSA function
|
||||
* Copyright (C) 1997, 1998, 1999 by Werner Koch (dd9jn)
|
||||
* Copyright (C) 2000 Free Software Foundation, Inc.
|
||||
***********************************************************************
|
||||
* ATTENTION: This code should not be used in the United States
|
||||
* before the U.S. Patent #4,405,829 expires on September 20, 2000!
|
||||
***********************************************************************
|
||||
*
|
||||
* This file is part of GnuPG.
|
||||
*
|
||||
* GnuPG is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GnuPG is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include "util.h"
|
||||
#include "mpi.h"
|
||||
#include "cipher.h"
|
||||
#include "rsa.h"
|
||||
|
||||
|
||||
typedef struct {
|
||||
MPI n; /* modulus */
|
||||
MPI e; /* exponent */
|
||||
} RSA_public_key;
|
||||
|
||||
|
||||
typedef struct {
|
||||
MPI n; /* public modulus */
|
||||
MPI e; /* public exponent */
|
||||
MPI d; /* exponent */
|
||||
MPI p; /* prime p. */
|
||||
MPI q; /* prime q. */
|
||||
MPI u; /* inverse of p mod q. */
|
||||
} RSA_secret_key;
|
||||
|
||||
|
||||
static void test_keys( RSA_secret_key *sk, unsigned nbits );
|
||||
static void generate( RSA_secret_key *sk, unsigned nbits );
|
||||
static int check_secret_key( RSA_secret_key *sk );
|
||||
static void public(MPI output, MPI input, RSA_public_key *skey );
|
||||
static void secret(MPI output, MPI input, RSA_secret_key *skey );
|
||||
|
||||
|
||||
static void
|
||||
test_keys( RSA_secret_key *sk, unsigned nbits )
|
||||
{
|
||||
RSA_public_key pk;
|
||||
MPI test = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
|
||||
MPI out1 = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
|
||||
MPI out2 = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
|
||||
|
||||
pk.n = sk->n;
|
||||
pk.e = sk->e;
|
||||
{ char *p = get_random_bits( nbits, 0, 0 );
|
||||
mpi_set_buffer( test, p, (nbits+7)/8, 0 );
|
||||
m_free(p);
|
||||
}
|
||||
|
||||
public( out1, test, &pk );
|
||||
secret( out2, out1, sk );
|
||||
if( mpi_cmp( test, out2 ) )
|
||||
log_fatal("RSA operation: public, secret failed\n");
|
||||
secret( out1, test, sk );
|
||||
public( out2, out1, &pk );
|
||||
if( mpi_cmp( test, out2 ) )
|
||||
log_fatal("RSA operation: secret, public failed\n");
|
||||
mpi_free( test );
|
||||
mpi_free( out1 );
|
||||
mpi_free( out2 );
|
||||
}
|
||||
|
||||
/****************
|
||||
* Generate a key pair with a key of size NBITS
|
||||
* Returns: 2 structures filles with all needed values
|
||||
*/
|
||||
static void
|
||||
generate( RSA_secret_key *sk, unsigned nbits )
|
||||
{
|
||||
MPI p, q; /* the two primes */
|
||||
MPI d; /* the private key */
|
||||
MPI u;
|
||||
MPI t1, t2;
|
||||
MPI n; /* the public key */
|
||||
MPI e; /* the exponent */
|
||||
MPI phi; /* helper: (p-a)(q-1) */
|
||||
MPI g;
|
||||
MPI f;
|
||||
|
||||
/* select two (very secret) primes */
|
||||
p = generate_secret_prime( nbits / 2 );
|
||||
q = generate_secret_prime( nbits / 2 );
|
||||
if( mpi_cmp( p, q ) > 0 ) /* p shall be smaller than q (for calc of u)*/
|
||||
mpi_swap(p,q);
|
||||
/* calculate Euler totient: phi = (p-1)(q-1) */
|
||||
t1 = mpi_alloc_secure( mpi_get_nlimbs(p) );
|
||||
t2 = mpi_alloc_secure( mpi_get_nlimbs(p) );
|
||||
phi = mpi_alloc_secure( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
|
||||
g = mpi_alloc_secure( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
|
||||
f = mpi_alloc_secure( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
|
||||
mpi_sub_ui( t1, p, 1 );
|
||||
mpi_sub_ui( t2, q, 1 );
|
||||
mpi_mul( phi, t1, t2 );
|
||||
mpi_gcd(g, t1, t2);
|
||||
mpi_fdiv_q(f, phi, g);
|
||||
/* multiply them to make the private key */
|
||||
n = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
|
||||
mpi_mul( n, p, q );
|
||||
/* find a public exponent */
|
||||
e = mpi_alloc( (6+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
|
||||
mpi_set_ui( e, 17); /* start with 17 */
|
||||
while( !mpi_gcd(t1, e, phi) ) /* (while gcd is not 1) */
|
||||
mpi_add_ui( e, e, 2);
|
||||
/* calculate the secret key d = e^1 mod phi */
|
||||
d = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
|
||||
mpi_invm(d, e, f );
|
||||
/* calculate the inverse of p and q (used for chinese remainder theorem)*/
|
||||
u = mpi_alloc( (nbits+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB );
|
||||
mpi_invm(u, p, q );
|
||||
|
||||
if( DBG_CIPHER ) {
|
||||
log_mpidump(" p= ", p );
|
||||
log_mpidump(" q= ", q );
|
||||
log_mpidump("phi= ", phi );
|
||||
log_mpidump(" g= ", g );
|
||||
log_mpidump(" f= ", f );
|
||||
log_mpidump(" n= ", n );
|
||||
log_mpidump(" e= ", e );
|
||||
log_mpidump(" d= ", d );
|
||||
log_mpidump(" u= ", u );
|
||||
}
|
||||
|
||||
mpi_free(t1);
|
||||
mpi_free(t2);
|
||||
mpi_free(phi);
|
||||
mpi_free(f);
|
||||
mpi_free(g);
|
||||
|
||||
sk->n = n;
|
||||
sk->e = e;
|
||||
sk->p = p;
|
||||
sk->q = q;
|
||||
sk->d = d;
|
||||
sk->u = u;
|
||||
|
||||
/* now we can test our keys (this should never fail!) */
|
||||
test_keys( sk, nbits - 64 );
|
||||
}
|
||||
|
||||
|
||||
/****************
|
||||
* Test wether the secret key is valid.
|
||||
* Returns: true if this is a valid key.
|
||||
*/
|
||||
static int
|
||||
check_secret_key( RSA_secret_key *sk )
|
||||
{
|
||||
int rc;
|
||||
MPI temp = mpi_alloc( mpi_get_nlimbs(sk->p)*2 );
|
||||
|
||||
mpi_mul(temp, sk->p, sk->q );
|
||||
rc = mpi_cmp( temp, sk->n );
|
||||
mpi_free(temp);
|
||||
return !rc;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/****************
|
||||
* Public key operation. Encrypt INPUT with PKEY and put result into OUTPUT.
|
||||
*
|
||||
* c = m^e mod n
|
||||
*
|
||||
* Where c is OUTPUT, m is INPUT and e,n are elements of PKEY.
|
||||
*/
|
||||
static void
|
||||
public(MPI output, MPI input, RSA_public_key *pkey )
|
||||
{
|
||||
if( output == input ) { /* powm doesn't like output and input the same */
|
||||
MPI x = mpi_alloc( mpi_get_nlimbs(input)*2 );
|
||||
mpi_powm( x, input, pkey->e, pkey->n );
|
||||
mpi_set(output, x);
|
||||
mpi_free(x);
|
||||
}
|
||||
else
|
||||
mpi_powm( output, input, pkey->e, pkey->n );
|
||||
}
|
||||
|
||||
/****************
|
||||
* Secret key operation. Encrypt INPUT with SKEY and put result into OUTPUT.
|
||||
*
|
||||
* m = c^d mod n
|
||||
*
|
||||
* Where m is OUTPUT, c is INPUT and d,n are elements of PKEY.
|
||||
*
|
||||
* FIXME: We should better use the Chinese Remainder Theorem
|
||||
*/
|
||||
static void
|
||||
secret(MPI output, MPI input, RSA_secret_key *skey )
|
||||
{
|
||||
mpi_powm( output, input, skey->d, skey->n );
|
||||
}
|
||||
|
||||
|
||||
/*********************************************
|
||||
************** interface ******************
|
||||
*********************************************/
|
||||
|
||||
int
|
||||
rsa_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors )
|
||||
{
|
||||
RSA_secret_key sk;
|
||||
|
||||
if( !is_RSA(algo) )
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
|
||||
generate( &sk, nbits );
|
||||
skey[0] = sk.n;
|
||||
skey[1] = sk.e;
|
||||
skey[2] = sk.d;
|
||||
skey[3] = sk.p;
|
||||
skey[4] = sk.q;
|
||||
skey[5] = sk.u;
|
||||
/* make an empty list of factors */
|
||||
*retfactors = m_alloc_clear( 1 * sizeof **retfactors );
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
rsa_check_secret_key( int algo, MPI *skey )
|
||||
{
|
||||
RSA_secret_key sk;
|
||||
|
||||
if( !is_RSA(algo) )
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
|
||||
sk.n = skey[0];
|
||||
sk.e = skey[1];
|
||||
sk.d = skey[2];
|
||||
sk.p = skey[3];
|
||||
sk.q = skey[4];
|
||||
sk.u = skey[5];
|
||||
if( !check_secret_key( &sk ) )
|
||||
return G10ERR_BAD_SECKEY;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
int
|
||||
rsa_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey )
|
||||
{
|
||||
RSA_public_key pk;
|
||||
|
||||
if( algo != 1 && algo != 2 )
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
|
||||
pk.n = pkey[0];
|
||||
pk.e = pkey[1];
|
||||
resarr[0] = mpi_alloc( mpi_get_nlimbs( pk.n ) );
|
||||
public( resarr[0], data, &pk );
|
||||
return 0;
|
||||
}
|
||||
|
||||
int
|
||||
rsa_decrypt( int algo, MPI *result, MPI *data, MPI *skey )
|
||||
{
|
||||
RSA_secret_key sk;
|
||||
|
||||
if( algo != 1 && algo != 2 )
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
|
||||
sk.n = skey[0];
|
||||
sk.e = skey[1];
|
||||
sk.d = skey[2];
|
||||
sk.p = skey[3];
|
||||
sk.q = skey[4];
|
||||
sk.u = skey[5];
|
||||
*result = mpi_alloc_secure( mpi_get_nlimbs( sk.n ) );
|
||||
secret( *result, data[0], &sk );
|
||||
return 0;
|
||||
}
|
||||
|
||||
int
|
||||
rsa_sign( int algo, MPI *resarr, MPI data, MPI *skey )
|
||||
{
|
||||
RSA_secret_key sk;
|
||||
|
||||
if( algo != 1 && algo != 3 )
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
|
||||
sk.n = skey[0];
|
||||
sk.e = skey[1];
|
||||
sk.d = skey[2];
|
||||
sk.p = skey[3];
|
||||
sk.q = skey[4];
|
||||
sk.u = skey[5];
|
||||
resarr[0] = mpi_alloc( mpi_get_nlimbs( sk.n ) );
|
||||
secret( resarr[0], data, &sk );
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int
|
||||
rsa_verify( int algo, MPI hash, MPI *data, MPI *pkey,
|
||||
int (*cmp)(void *opaque, MPI tmp), void *opaquev )
|
||||
{
|
||||
RSA_public_key pk;
|
||||
MPI result;
|
||||
int rc;
|
||||
|
||||
if( algo != 1 && algo != 3 )
|
||||
return G10ERR_PUBKEY_ALGO;
|
||||
pk.n = pkey[0];
|
||||
pk.e = pkey[1];
|
||||
result = mpi_alloc( (160+BITS_PER_MPI_LIMB-1)/BITS_PER_MPI_LIMB);
|
||||
public( result, data[0], &pk );
|
||||
/*rc = (*cmp)( opaquev, result );*/
|
||||
rc = mpi_cmp( result, hash )? G10ERR_BAD_SIGN:0;
|
||||
mpi_free(result);
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
|
||||
unsigned int
|
||||
rsa_get_nbits( int algo, MPI *pkey )
|
||||
{
|
||||
if( !is_RSA(algo) )
|
||||
return 0;
|
||||
return mpi_get_nbits( pkey[0] );
|
||||
}
|
||||
|
||||
|
||||
/****************
|
||||
* Return some information about the algorithm. We need algo here to
|
||||
* distinguish different flavors of the algorithm.
|
||||
* Returns: A pointer to string describing the algorithm or NULL if
|
||||
* the ALGO is invalid.
|
||||
* Usage: Bit 0 set : allows signing
|
||||
* 1 set : allows encryption
|
||||
*/
|
||||
const char *
|
||||
rsa_get_info( int algo,
|
||||
int *npkey, int *nskey, int *nenc, int *nsig, int *usage )
|
||||
{
|
||||
*npkey = 2;
|
||||
*nskey = 6;
|
||||
*nenc = 1;
|
||||
*nsig = 1;
|
||||
|
||||
switch( algo ) {
|
||||
case 1: *usage = PUBKEY_USAGE_SIG | PUBKEY_USAGE_ENC; return "RSA";
|
||||
case 2: *usage = PUBKEY_USAGE_ENC; return "RSA-E";
|
||||
case 3: *usage = PUBKEY_USAGE_SIG; return "RSA-S";
|
||||
default:*usage = 0; return NULL;
|
||||
}
|
||||
}
|
||||
|
36
cipher/rsa.h
Normal file
36
cipher/rsa.h
Normal file
@ -0,0 +1,36 @@
|
||||
/* rsa.h
|
||||
* Copyright (C) 1997,1998 by Werner Koch (dd9jn)
|
||||
* Copyright (C) 2000 Free Software Foundation, Inc.
|
||||
*
|
||||
* This file is part of GnuPG.
|
||||
*
|
||||
* GnuPG is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* GnuPG is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
||||
*/
|
||||
#ifndef G10_RSA_H
|
||||
#define G10_RSA_H
|
||||
|
||||
int rsa_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors );
|
||||
int rsa_check_secret_key( int algo, MPI *skey );
|
||||
int rsa_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey );
|
||||
int rsa_decrypt( int algo, MPI *result, MPI *data, MPI *skey );
|
||||
int rsa_sign( int algo, MPI *resarr, MPI data, MPI *skey );
|
||||
int rsa_verify( int algo, MPI hash, MPI *data, MPI *pkey,
|
||||
int (*cmp)(void *, MPI), void *opaquev );
|
||||
unsigned rsa_get_nbits( int algo, MPI *pkey );
|
||||
const char *rsa_get_info( int algo, int *npkey, int *nskey,
|
||||
int *nenc, int *nsig, int *use );
|
||||
|
||||
|
||||
#endif /*G10_RSA_H*/
|
Loading…
Reference in New Issue
Block a user