1
0
mirror of git://git.gnupg.org/gnupg.git synced 2025-01-09 12:54:23 +01:00
gnupg/agent/keyformat.txt

138 lines
3.8 KiB
Plaintext
Raw Normal View History

2001-12-19 15:03:35 +00:00
keyformat.txt (wk 2001-12-18)
-----------------------------
Some notes on the format of the secret keys used with gpg-agent.
The secret[1] keys are store one per file in a directory below
the .gnupg homedirectory. This directory is named
private-keys-v1.d
and should have permissions 700.
The secret keys are stored in files with a name matching the
hexadecimal representation of the keygrip[2]. The content of the file
is an S-Expression like tyhe ones used with Libgcrypt. Here is the
example of an unprotected file:
(private-key
(rsa
(n #00e0ce9..[some bytes not shown]..51#)
(e #010001#)
(d #046129F..[some bytes not shown]..81#)
(p #00e861b..[some bytes not shown]..f1#)
(q #00f7a7c..[some bytes not shown]..61#)
(u #304559a..[some bytes not shown]..9b#)
)
)
Actually this form should not be used for regular purposes and only
accepted by gpg-agent with the configuration option:
--allow-non-canonical-key-format.
The regular way to represent the keys is in canonical representation
with the additional requirement of an extra object around it[3]:
(oid.1.3.6.1.4.1.11591.2.2.2
(keyinfo human_readable_information_to_decribe_this_key)
(private-key
(rsa
(n #00e0ce9..[some bytes not shown]..51#)
(e #010001#)
(d #046129F..[some bytes not shown]..81#)
(p #00e861b..[some bytes not shown]..f1#)
(q #00f7a7c..[some bytes not shown]..61#)
(u #304559a..[some bytes not shown]..9b#)
)
)
)
This describes an unprotected key; a protected key is like this:
(oid.1.3.6.1.4.1.11591.2.2.3
(keyinfo human_readable_information_to_decribe_this_key)
(private-key
(rsa
(n #00e0ce9..[some bytes not shown]..51#)
(e #010001#)
(oid.1.3.6.1.4.1.11591.2.1.1.1 (parms) encrypted_octet_string)
)
)
)
In this scheme the encrypted_octet_string is encrypted according to
the scheme identifier by the OID, most protection algorithms need
some parameters, which are given in a list before the
encrypted_octet_string. The result of the decryption process is a
list of the secret key parameters.
Defined protection methods are:
1.3.6.1.4.1.gnu(11591).aegypten(2)
.algorithms(1).keyprotection(1).s2k3-sha1-aes-cbc(1)
This uses AES in CBS mode for encryption, SHA-1 fro integrity
protecion and the String to Key algorithm 3 from OpenPGP (rfc2440).
Example:
(oid.1.3.6.1.4.1.11591.2.1.1.1
((salt iterations) iv)
encrypted_octet_string
)
The encrypted_octet string should yield this S-Exp (in canonical
representation) after decryption:
(sha1_hash
(d #046129F..[some bytes not shown]..81#)
(p #00e861b..[some bytes not shown]..f1#)
(q #00f7a7c..[some bytes not shown]..61#)
(u #304559a..[some bytes not shown]..9b#)
)
The first element is the SHA-1 hash calculated on the concatenation of the
public key and secret key parameter lists: i.e one has to hash the
concatenatiohn of these 6 canonical encoded lists for RSA, including
the parenthesis.
(n #00e0ce9..[some bytes not shown]..51#)
(e #010001#)
(d #046129F..[some bytes not shown]..81#)
(p #00e861b..[some bytes not shown]..f1#)
(q #00f7a7c..[some bytes not shown]..61#)
(u #304559a..[some bytes not shown]..9b#)
After decryption the hash must be recalculated and compared against
the stored one - If they don't match the integrity of the key is not
given.
Notes:
[1] I usually use the terms private and secret key exchangeable but prefer the
term secret key because it can be visually be better distinguished
from the term public key.
[2] The keygrip is a unique identifier for a key pair, it is
independent of any protocol, so that the same key can be ised with
different protocols. PKCS-15 calls this a subjectKeyHash; it can be
calculate using Libgcrypt's gcry_pk_get_keygrip().
[3] Even when canonical representation is required we will show the
S-expression here in a more readable representation.