1
0
mirror of git://git.gnupg.org/gnupg.git synced 2025-01-14 13:37:04 +01:00
gnupg/cipher/sha512.c

430 lines
12 KiB
C
Raw Normal View History

/* sha512.c - SHA384 and SHA512 hash functions
* Copyright (C) 2003 Free Software Foundation, Inc.
*
* Please see below for more legal information!
*
* This file is part of GnuPG.
*
* GnuPG is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* GnuPG is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
/* Test vectors from FIPS-180-2:
*
* "abc"
* 384:
* CB00753F 45A35E8B B5A03D69 9AC65007 272C32AB 0EDED163
* 1A8B605A 43FF5BED 8086072B A1E7CC23 58BAECA1 34C825A7
* 512:
* DDAF35A1 93617ABA CC417349 AE204131 12E6FA4E 89A97EA2 0A9EEEE6 4B55D39A
* 2192992A 274FC1A8 36BA3C23 A3FEEBBD 454D4423 643CE80E 2A9AC94F A54CA49F
*
* "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"
* 384:
* 09330C33 F71147E8 3D192FC7 82CD1B47 53111B17 3B3B05D2
* 2FA08086 E3B0F712 FCC7C71A 557E2DB9 66C3E9FA 91746039
* 512:
* 8E959B75 DAE313DA 8CF4F728 14FC143F 8F7779C6 EB9F7FA1 7299AEAD B6889018
* 501D289E 4900F7E4 331B99DE C4B5433A C7D329EE B6DD2654 5E96E55B 874BE909
*
* "a" x 1000000
* 384:
* 9D0E1809 716474CB 086E834E 310A4A1C ED149E9C 00F24852
* 7972CEC5 704C2A5B 07B8B3DC 38ECC4EB AE97DDD8 7F3D8985
* 512:
* E718483D 0CE76964 4E2E42C7 BC15B463 8E1F98B1 3B204428 5632A803 AFA973EB
* DE0FF244 877EA60A 4CB0432C E577C31B EB009C5C 2C49AA2E 4EADB217 AD8CC09B
*/
#include <config.h>
#include <string.h>
#include "util.h"
#include "algorithms.h"
typedef struct {
u64 h0,h1,h2,h3,h4,h5,h6,h7;
u64 nblocks;
byte buf[128];
int count;
} SHA512_CONTEXT;
static void
burn_stack (int bytes)
{
char buf[128];
wipememory(buf,sizeof buf);
bytes -= sizeof buf;
if (bytes > 0)
burn_stack (bytes);
}
void
sha512_init( SHA512_CONTEXT *hd )
{
hd->h0 = U64_C(0x6a09e667f3bcc908);
hd->h1 = U64_C(0xbb67ae8584caa73b);
hd->h2 = U64_C(0x3c6ef372fe94f82b);
hd->h3 = U64_C(0xa54ff53a5f1d36f1);
hd->h4 = U64_C(0x510e527fade682d1);
hd->h5 = U64_C(0x9b05688c2b3e6c1f);
hd->h6 = U64_C(0x1f83d9abfb41bd6b);
hd->h7 = U64_C(0x5be0cd19137e2179);
hd->nblocks = 0;
hd->count = 0;
}
void
sha384_init( SHA512_CONTEXT *hd )
{
hd->h0 = U64_C(0xcbbb9d5dc1059ed8);
hd->h1 = U64_C(0x629a292a367cd507);
hd->h2 = U64_C(0x9159015a3070dd17);
hd->h3 = U64_C(0x152fecd8f70e5939);
hd->h4 = U64_C(0x67332667ffc00b31);
hd->h5 = U64_C(0x8eb44a8768581511);
hd->h6 = U64_C(0xdb0c2e0d64f98fa7);
hd->h7 = U64_C(0x47b5481dbefa4fa4);
hd->nblocks = 0;
hd->count = 0;
}
/****************
* Transform the message W which consists of 16 64-bit-words
*/
static void
transform( SHA512_CONTEXT *hd, byte *data )
{
u64 a,b,c,d,e,f,g,h;
u64 w[80];
int t;
static const u64 k[]=
{
U64_C(0x428a2f98d728ae22), U64_C(0x7137449123ef65cd),
U64_C(0xb5c0fbcfec4d3b2f), U64_C(0xe9b5dba58189dbbc),
U64_C(0x3956c25bf348b538), U64_C(0x59f111f1b605d019),
U64_C(0x923f82a4af194f9b), U64_C(0xab1c5ed5da6d8118),
U64_C(0xd807aa98a3030242), U64_C(0x12835b0145706fbe),
U64_C(0x243185be4ee4b28c), U64_C(0x550c7dc3d5ffb4e2),
U64_C(0x72be5d74f27b896f), U64_C(0x80deb1fe3b1696b1),
U64_C(0x9bdc06a725c71235), U64_C(0xc19bf174cf692694),
U64_C(0xe49b69c19ef14ad2), U64_C(0xefbe4786384f25e3),
U64_C(0x0fc19dc68b8cd5b5), U64_C(0x240ca1cc77ac9c65),
U64_C(0x2de92c6f592b0275), U64_C(0x4a7484aa6ea6e483),
U64_C(0x5cb0a9dcbd41fbd4), U64_C(0x76f988da831153b5),
U64_C(0x983e5152ee66dfab), U64_C(0xa831c66d2db43210),
U64_C(0xb00327c898fb213f), U64_C(0xbf597fc7beef0ee4),
U64_C(0xc6e00bf33da88fc2), U64_C(0xd5a79147930aa725),
U64_C(0x06ca6351e003826f), U64_C(0x142929670a0e6e70),
U64_C(0x27b70a8546d22ffc), U64_C(0x2e1b21385c26c926),
U64_C(0x4d2c6dfc5ac42aed), U64_C(0x53380d139d95b3df),
U64_C(0x650a73548baf63de), U64_C(0x766a0abb3c77b2a8),
U64_C(0x81c2c92e47edaee6), U64_C(0x92722c851482353b),
U64_C(0xa2bfe8a14cf10364), U64_C(0xa81a664bbc423001),
U64_C(0xc24b8b70d0f89791), U64_C(0xc76c51a30654be30),
U64_C(0xd192e819d6ef5218), U64_C(0xd69906245565a910),
U64_C(0xf40e35855771202a), U64_C(0x106aa07032bbd1b8),
U64_C(0x19a4c116b8d2d0c8), U64_C(0x1e376c085141ab53),
U64_C(0x2748774cdf8eeb99), U64_C(0x34b0bcb5e19b48a8),
U64_C(0x391c0cb3c5c95a63), U64_C(0x4ed8aa4ae3418acb),
U64_C(0x5b9cca4f7763e373), U64_C(0x682e6ff3d6b2b8a3),
U64_C(0x748f82ee5defb2fc), U64_C(0x78a5636f43172f60),
U64_C(0x84c87814a1f0ab72), U64_C(0x8cc702081a6439ec),
U64_C(0x90befffa23631e28), U64_C(0xa4506cebde82bde9),
U64_C(0xbef9a3f7b2c67915), U64_C(0xc67178f2e372532b),
U64_C(0xca273eceea26619c), U64_C(0xd186b8c721c0c207),
U64_C(0xeada7dd6cde0eb1e), U64_C(0xf57d4f7fee6ed178),
U64_C(0x06f067aa72176fba), U64_C(0x0a637dc5a2c898a6),
U64_C(0x113f9804bef90dae), U64_C(0x1b710b35131c471b),
U64_C(0x28db77f523047d84), U64_C(0x32caab7b40c72493),
U64_C(0x3c9ebe0a15c9bebc), U64_C(0x431d67c49c100d4c),
U64_C(0x4cc5d4becb3e42b6), U64_C(0x597f299cfc657e2a),
U64_C(0x5fcb6fab3ad6faec), U64_C(0x6c44198c4a475817)
};
/* get values from the chaining vars */
a = hd->h0;
b = hd->h1;
c = hd->h2;
d = hd->h3;
e = hd->h4;
f = hd->h5;
g = hd->h6;
h = hd->h7;
#ifdef BIG_ENDIAN_HOST
memcpy( w, data, 128 );
#else
{
int i;
byte *p2;
for(i=0, p2=(byte*)w; i < 16; i++, p2 += 8 )
{
p2[7] = *data++;
p2[6] = *data++;
p2[5] = *data++;
p2[4] = *data++;
p2[3] = *data++;
p2[2] = *data++;
p2[1] = *data++;
p2[0] = *data++;
}
}
#endif
#define ROTR(x,n) (((x)>>(n)) | ((x)<<(64-(n))))
#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define Sum0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
#define Sum1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
#define S0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
#define S1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
for(t=16;t<80;t++)
w[t] = S1(w[t-2]) + w[t-7] + S0(w[t-15]) + w[t-16];
for(t=0;t<80;t++)
{
u64 t1,t2;
t1=h+Sum1(e)+Ch(e,f,g)+k[t]+w[t];
t2=Sum0(a)+Maj(a,b,c);
h=g;
g=f;
f=e;
e=d+t1;
d=c;
c=b;
b=a;
a=t1+t2;
/* printf("t=%d a=%016llX b=%016llX c=%016llX d=%016llX e=%016llX f=%016llX g=%016llX h=%016llX\n",t,a,b,c,d,e,f,g,h); */
}
/* update chaining vars */
hd->h0 += a;
hd->h1 += b;
hd->h2 += c;
hd->h3 += d;
hd->h4 += e;
hd->h5 += f;
hd->h6 += g;
hd->h7 += h;
}
/* Update the message digest with the contents
* of INBUF with length INLEN.
*/
static void
sha512_write( SHA512_CONTEXT *hd, byte *inbuf, size_t inlen)
{
if( hd->count == 128 ) { /* flush the buffer */
transform( hd, hd->buf );
burn_stack (768);
hd->count = 0;
hd->nblocks++;
}
if( !inbuf )
return;
if( hd->count ) {
for( ; inlen && hd->count < 128; inlen-- )
hd->buf[hd->count++] = *inbuf++;
sha512_write( hd, NULL, 0 );
if( !inlen )
return;
}
while( inlen >= 128 ) {
transform( hd, inbuf );
hd->count = 0;
hd->nblocks++;
inlen -= 128;
inbuf += 128;
}
burn_stack (768);
for( ; inlen && hd->count < 128; inlen-- )
hd->buf[hd->count++] = *inbuf++;
}
/* The routine final terminates the computation and
* returns the digest.
* The handle is prepared for a new cycle, but adding bytes to the
* handle will the destroy the returned buffer.
* Returns: 64 bytes representing the digest. When used for sha384,
* we take the leftmost 48 of those bytes.
*/
static void
sha512_final(SHA512_CONTEXT *hd)
{
u64 t, msb, lsb;
byte *p;
sha512_write(hd, NULL, 0); /* flush */;
t = hd->nblocks;
/* multiply by 128 to make a byte count */
lsb = t << 7;
msb = t >> 57;
/* add the count */
t = lsb;
if( (lsb += hd->count) < t )
msb++;
/* multiply by 8 to make a bit count */
t = lsb;
lsb <<= 3;
msb <<= 3;
msb |= t >> 61;
if( hd->count < 112 ) { /* enough room */
hd->buf[hd->count++] = 0x80; /* pad */
while( hd->count < 112 )
hd->buf[hd->count++] = 0; /* pad */
}
else { /* need one extra block */
hd->buf[hd->count++] = 0x80; /* pad character */
while( hd->count < 128 )
hd->buf[hd->count++] = 0;
sha512_write(hd, NULL, 0); /* flush */;
memset(hd->buf, 0, 112 ); /* fill next block with zeroes */
}
/* append the 128 bit count */
hd->buf[112] = msb >> 56;
hd->buf[113] = msb >> 48;
hd->buf[114] = msb >> 40;
hd->buf[115] = msb >> 32;
hd->buf[116] = msb >> 24;
hd->buf[117] = msb >> 16;
hd->buf[118] = msb >> 8;
hd->buf[119] = msb ;
hd->buf[120] = lsb >> 56;
hd->buf[121] = lsb >> 48;
hd->buf[122] = lsb >> 40;
hd->buf[123] = lsb >> 32;
hd->buf[124] = lsb >> 24;
hd->buf[125] = lsb >> 16;
hd->buf[126] = lsb >> 8;
hd->buf[127] = lsb ;
transform( hd, hd->buf );
burn_stack (768);
p = hd->buf;
#ifdef BIG_ENDIAN_HOST
#define X(a) do { *(u64*)p = hd->h##a ; p += 8; } while(0)
#else /* little endian */
#define X(a) do { *p++ = hd->h##a >> 56; *p++ = hd->h##a >> 48; \
*p++ = hd->h##a >> 40; *p++ = hd->h##a >> 32; \
*p++ = hd->h##a >> 24; *p++ = hd->h##a >> 16; \
*p++ = hd->h##a >> 8; *p++ = hd->h##a; } while(0)
#endif
X(0);
X(1);
X(2);
X(3);
X(4);
X(5);
/* Note that these last two chunks are included even for SHA384.
We just ignore them. */
X(6);
X(7);
#undef X
}
static byte *
sha512_read( SHA512_CONTEXT *hd )
{
return hd->buf;
}
/****************
* Return some information about the algorithm. We need algo here to
* distinguish different flavors of the algorithm.
* Returns: A pointer to string describing the algorithm or NULL if
* the ALGO is invalid.
*/
const char *
sha512_get_info( int algo, size_t *contextsize,
byte **r_asnoid, int *r_asnlen, int *r_mdlen,
void (**r_init)( void *c ),
void (**r_write)( void *c, byte *buf, size_t nbytes ),
void (**r_final)( void *c ),
byte *(**r_read)( void *c )
)
{
static byte asn[] = /* Object ID is 2.16.840.1.101.3.4.2.3 */
{
0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05,
0x00, 0x04, 0x40
};
if( algo != 10 )
return NULL;
*contextsize = sizeof(SHA512_CONTEXT);
*r_asnoid = asn;
*r_asnlen = DIM(asn);
*r_mdlen = 64;
*(void (**)(SHA512_CONTEXT *))r_init = sha512_init;
*(void (**)(SHA512_CONTEXT *, byte*, size_t))r_write = sha512_write;
*(void (**)(SHA512_CONTEXT *))r_final = sha512_final;
*(byte *(**)(SHA512_CONTEXT *))r_read = sha512_read;
return "SHA512";
}
/* SHA384 is really a truncated SHA512 with a different
initialization */
const char *
sha384_get_info( int algo, size_t *contextsize,
byte **r_asnoid, int *r_asnlen, int *r_mdlen,
void (**r_init)( void *c ),
void (**r_write)( void *c, byte *buf, size_t nbytes ),
void (**r_final)( void *c ),
byte *(**r_read)( void *c )
)
{
static byte asn[] = /* Object ID is 2.16.840.1.101.3.4.2.2 */
{
0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05,
0x00, 0x04, 0x30
};
if( algo != 9 )
return NULL;
*contextsize = sizeof(SHA512_CONTEXT);
*r_asnoid = asn;
*r_asnlen = DIM(asn);
*r_mdlen = 48;
*(void (**)(SHA512_CONTEXT *))r_init = sha384_init;
*(void (**)(SHA512_CONTEXT *, byte*, size_t))r_write = sha512_write;
*(void (**)(SHA512_CONTEXT *))r_final = sha512_final;
*(byte *(**)(SHA512_CONTEXT *))r_read = sha512_read;
return "SHA384";
}