1
0
mirror of git://git.gnupg.org/gnupg.git synced 2025-01-09 12:54:23 +01:00
gnupg/doc/scdaemon.texi

308 lines
7.9 KiB
Plaintext
Raw Normal View History

2003-01-09 13:24:01 +00:00
@c Copyright (C) 2002 Free Software Foundation, Inc.
@c This is part of the GnuPG manual.
@c For copying conditions, see the file gnupg.texi.
@node Invoking SCDAEMON
@chapter Invoking the SCDAEMON
@cindex SCDAEMON command options
@cindex command options
@cindex options, SCDAEMON command
@c man begin DESCRIPTION
The @sc{scdaeon} is a daemon to manage smartcards. It is usually
invoked by gpg-agent and in general not used directly.
@c man end
@xref{Option Index}, for an index to GPG-AGENTS's commands and options.
@menu
* Scdaemon Commands:: List of all commands.
* Scdaemon Options:: List of all options.
* Scdaemon Examples:: Some usage examples.
* Scdaemon Protocol:: The protocol the daemon uses.
@end menu
@c man begin COMMANDS
@node Scdaemon Commands
@section Commands
Commands are not distinguished from options execpt for the fact that
only one one command is allowed.
@table @gnupgtabopt
@item --version
@opindex version
Print the program version and licensing information. Not that you can
abbreviate this command.
@item --help, -h
@opindex help
Print a usage message summarizing the most usefule command-line options.
Not that you can abbreviate this command.
@item --dump-options
@opindex dump-options
Print a list of all available options and commands. Not that you can
abbreviate this command.
@item --server
@opindex server
Run in server mode and wait for commands on the @code{stdin}. This is
default mode is to create a socket and listen for commands there.
@item --daemon
@opindex daemon
Run the program in the background. This option is required to prevent
it from being accidently running in the background.
@item --print-atr
@opindex print-atr
This is mainly a debugging command, used to print the ATR
(Answer-To-Reset) of a card and exit immediately.
2003-01-09 13:24:01 +00:00
@end table
@c man begin OPTIONS
@node Scdaemon Options
@section Option Summary
@table @gnupgtabopt
@item --options @var{file}
@opindex options
Reads configuration from @var{file} instead of from the default
per-user configuration file.
@item -v
@item --verbose
@opindex v
@opindex verbose
Outputs additional information while running.
You can increase the verbosity by giving several
verbose commands to @sc{gpgsm}, such as @samp{-vv}.
@item --debug @var{flags}
@opindex debug
This option is only useful for debugging and the behaviour may change at
any time without notice. FLAGS are bit encoded and may be given in
usual C-Syntax. The currently defined bits are:
@table @code
@item 0 (1)
X.509 or OpenPGP protocol related data
@item 1 (2)
values of big number integers
@item 2 (4)
low level crypto operations
@item 5 (32)
memory allocation
@item 6 (64)
caching
@item 7 (128)
show memory statistics.
@item 9 (512)
write hashed data to files named @code{dbgmd-000*}
@item 10 (1024)
trace Assuan protocol
@item 12 (4096)
bypass all certificate validation
@end table
@item --debug-all
@opindex debug-all
Same as @code{--debug=0xffffffff}
@item --debug-wait @var{n}
@opindex debug-wait
When running in server mode, wait @var{n} seconds before entering the
actual processing loop and print the pid. This gives time to attach a
debugger.
@item --debug-sc @var{n}
@opindex debug-sc
Set the debug level of the OpenSC library to @var{n}.
@item --no-detach
@opindex no-detach
Don't detach the process from the console. This is manly usefule for
debugging.
@item --log-file @var{file}
@opindex log-file
Append all logging output to @var{file}. This is very helpful in
seeing what the agent actually does.
@item --reader-port @var{number}
When the program has been build without OpenSC support, this option must
be used to specify the port of the card terminal. A value of 0 refers
to the first serial device; add 32768 to access USB devices. The
default is 32768 (first USB device).
2003-01-09 13:24:01 +00:00
@end table
All the long options may also be given in the configuration file after
stripping off the two leading dashes.
@c
@c Examples
@c
@node Scdaemon Examples
@section Examples
@c man begin EXAMPLES
@example
$ scdaemon --server -v
@end example
@c man end
@c
@c Assuan Protocol
@c
@node Scdaemon Protocol
@section Scdaemon's Assuan Protocol
The SC-Daemon should be started by the system to provide access to
external tokens. Using Smartcards on a multi-user system does not
make much sense expcet for system services, but in this case no
regular user accounts are hosted on the machine.
A client connects to the SC-Daemon by connecting to the socket named
@file{/var/run/scdaemon/socket}, configuration information is read from
@var{/etc/scdaemon.conf}
Each connection acts as one session, SC-Daemon takes care of
syncronizing access to a token between sessions.
@menu
* Scdaemon SERIALNO:: Return the serial number.
* Scdaemon LEARN:: Read all useful information from the card.
* Scdaemon READCERT:: Return a certificate.
* Scdaemon READKEY:: Return a public key.
* Scdaemon PKSIGN:: Signing data with a Smartcard.
* Scdaemon PKDECRYPT:: Decrypting data with a Smartcard.
@end menu
@node Scdaemon SERIALNO
@subsection Return the serial number
This command should be used to check for the presence of a card. It is
special in that it can be used to reset the card. Most other commands
will return an error when a card change has been detected and the use of
this function is therefore required.
Background: We want to keep the client clear of handling card changes
between operations; i.e. the client can assume that all operations are
done on the same card unless he call this function.
@example
SERIALNO
@end example
Return the serial number of the card using a status reponse like:
@example
S SERIALNO D27600000000000000000000 0
@end example
The trailing 0 should be ignored for now, it is reserved for a future
extension. The serial number is the hex encoded value identified by
the @code{0x5A} tag in the GDO file (FIX=0x2F02).
@node Scdaemon LEARN
@subsection Read all useful information from the card
@example
LEARN [--force]
@end example
Learn all useful information of the currently inserted card. When
used without the force options, the command might do an INQUIRE
like this:
@example
INQUIRE KNOWNCARDP <hexstring_with_serialNumber> <timestamp>
@end example
The client should just send an @code{END} if the processing should go on
or a @code{CANCEL} to force the function to terminate with a cancel
error message. The response of this command is a list of status lines
formatted as this:
@example
S KEYPAIRINFO @var{hexstring_with_keygrip} @var{hexstring_with_id}
@end example
If there is no certificate yet stored on the card a single "X" is
returned in @var{hexstring_with_keygrip}.
@node Scdaemon READCERT
@subsection Return a certificate
@example
READCERT @var{hexified_certid}
@end example
This function is used to read a certificate identified by
@var{hexified_certid} from the card.
@node Scdaemon READKEY
@subsection Return a public key
@example
READKEY @var{hexified_certid}
@end example
Return the public key for the given cert or key ID as an standard
S-Expression.
@node Scdaemon PKSIGN
@subsection Signing data with a Smartcard
To sign some data the caller should use the command
@example
SETDATA @var{hexstring}
@end example
to tell scdaemon about the data to be signed. The data must be given in
hex notation. The actual signing is done using the command
@example
PKSIGN @var{keyid}
@end example
where @var{keyid} is the hexified ID of the key to be used. The key id
may have been retrieved using the command @code{LEARN}.
@node Scdaemon PKDECRYPT
@subsection Decrypting data with a Smartcard
To decrypt some data the caller should use the command
@example
SETDATA @var{hexstring}
@end example
to tell scdaemon about the data to be decrypted. The data must be given in
hex notation. The actual decryption is then done using the command
@example
PKDECRYPT @var{keyid}
@end example
where @var{keyid} is the hexified ID of the key to be used.