2024-07-02 16:13:53 +02:00

289 lines
11 KiB
Rust

use std::cmp::Ordering;
use itertools::Itertools;
use roaring::RoaringBitmap;
use crate::score_details::{ScoreDetails, ScoreValue, ScoringStrategy};
use crate::search::SemanticSearch;
use crate::{MatchingWords, Result, Search, SearchResult};
struct ScoreWithRatioResult {
matching_words: MatchingWords,
candidates: RoaringBitmap,
document_scores: Vec<(u32, ScoreWithRatio)>,
degraded: bool,
used_negative_operator: bool,
}
type ScoreWithRatio = (Vec<ScoreDetails>, f32);
#[tracing::instrument(level = "trace", skip_all, target = "search::hybrid")]
fn compare_scores(
&(ref left_scores, left_ratio): &ScoreWithRatio,
&(ref right_scores, right_ratio): &ScoreWithRatio,
) -> Ordering {
let mut left_it = ScoreDetails::score_values(left_scores.iter());
let mut right_it = ScoreDetails::score_values(right_scores.iter());
loop {
let left = left_it.next();
let right = right_it.next();
match (left, right) {
(None, None) => return Ordering::Equal,
(None, Some(_)) => return Ordering::Less,
(Some(_), None) => return Ordering::Greater,
(Some(ScoreValue::Score(left)), Some(ScoreValue::Score(right))) => {
let left = left * left_ratio as f64;
let right = right * right_ratio as f64;
if (left - right).abs() <= f64::EPSILON {
continue;
}
return left.partial_cmp(&right).unwrap();
}
(Some(ScoreValue::Sort(left)), Some(ScoreValue::Sort(right))) => {
match left.partial_cmp(right).unwrap() {
Ordering::Equal => continue,
order => return order,
}
}
(Some(ScoreValue::GeoSort(left)), Some(ScoreValue::GeoSort(right))) => {
match left.partial_cmp(right).unwrap() {
Ordering::Equal => continue,
order => return order,
}
}
(Some(ScoreValue::Score(x)), Some(_)) => {
return if x == 0. { Ordering::Less } else { Ordering::Greater }
}
(Some(_), Some(ScoreValue::Score(x))) => {
return if x == 0. { Ordering::Greater } else { Ordering::Less }
}
// if we have this, we're bad
(Some(ScoreValue::GeoSort(_)), Some(ScoreValue::Sort(_)))
| (Some(ScoreValue::Sort(_)), Some(ScoreValue::GeoSort(_))) => {
unreachable!("Unexpected geo and sort comparison")
}
}
}
}
impl ScoreWithRatioResult {
fn new(results: SearchResult, ratio: f32) -> Self {
let document_scores = results
.documents_ids
.into_iter()
.zip(results.document_scores.into_iter().map(|scores| (scores, ratio)))
.collect();
Self {
matching_words: results.matching_words,
candidates: results.candidates,
document_scores,
degraded: results.degraded,
used_negative_operator: results.used_negative_operator,
}
}
#[tracing::instrument(level = "trace", skip_all, target = "search::hybrid")]
fn merge(
vector_results: Self,
keyword_results: Self,
from: usize,
length: usize,
) -> (SearchResult, u32) {
#[derive(Clone, Copy)]
enum ResultSource {
Semantic,
Keyword,
}
let mut semantic_hit_count = 0;
let mut documents_ids = Vec::with_capacity(
vector_results.document_scores.len() + keyword_results.document_scores.len(),
);
let mut document_scores = Vec::with_capacity(
vector_results.document_scores.len() + keyword_results.document_scores.len(),
);
let mut documents_seen = RoaringBitmap::new();
for ((docid, (main_score, _sub_score)), source) in vector_results
.document_scores
.into_iter()
.zip(std::iter::repeat(ResultSource::Semantic))
.merge_by(
keyword_results
.document_scores
.into_iter()
.zip(std::iter::repeat(ResultSource::Keyword)),
|((_, left), _), ((_, right), _)| {
// the first value is the one with the greatest score
compare_scores(left, right).is_ge()
},
)
// remove documents we already saw
.filter(|((docid, _), _)| documents_seen.insert(*docid))
// start skipping **after** the filter
.skip(from)
// take **after** skipping
.take(length)
{
if let ResultSource::Semantic = source {
semantic_hit_count += 1;
}
documents_ids.push(docid);
// TODO: pass both scores to documents_score in some way?
document_scores.push(main_score);
}
(
SearchResult {
matching_words: keyword_results.matching_words,
candidates: vector_results.candidates | keyword_results.candidates,
documents_ids,
document_scores,
degraded: vector_results.degraded | keyword_results.degraded,
used_negative_operator: vector_results.used_negative_operator
| keyword_results.used_negative_operator,
},
semantic_hit_count,
)
}
}
impl<'a> Search<'a> {
#[tracing::instrument(level = "trace", skip_all, target = "search::hybrid")]
pub fn execute_hybrid(&self, semantic_ratio: f32) -> Result<(SearchResult, Option<u32>)> {
// TODO: find classier way to achieve that than to reset vector and query params
// create separate keyword and semantic searches
let mut search = Search {
query: self.query.clone(),
filter: self.filter.clone(),
offset: 0,
limit: self.limit + self.offset,
sort_criteria: self.sort_criteria.clone(),
distinct: self.distinct.clone(),
searchable_attributes: self.searchable_attributes,
geo_strategy: self.geo_strategy,
terms_matching_strategy: self.terms_matching_strategy,
scoring_strategy: ScoringStrategy::Detailed,
words_limit: self.words_limit,
exhaustive_number_hits: self.exhaustive_number_hits,
rtxn: self.rtxn,
index: self.index,
semantic: self.semantic.clone(),
time_budget: self.time_budget.clone(),
ranking_score_threshold: self.ranking_score_threshold,
};
let semantic = search.semantic.take();
let keyword_results = search.execute()?;
// completely skip semantic search if the results of the keyword search are good enough
if self.results_good_enough(&keyword_results, semantic_ratio) {
return Ok(return_keyword_results(self.limit, self.offset, keyword_results));
}
// no vector search against placeholder search
let Some(query) = search.query.take() else {
return Ok(return_keyword_results(self.limit, self.offset, keyword_results));
};
// no embedder, no semantic search
let Some(SemanticSearch { vector, embedder_name, embedder }) = semantic else {
return Ok(return_keyword_results(self.limit, self.offset, keyword_results));
};
let vector_query = match vector {
Some(vector_query) => vector_query,
None => {
// attempt to embed the vector
let span = tracing::trace_span!(target: "search::hybrid", "embed_one");
let _entered = span.enter();
match embedder.embed_one(query) {
Ok(embedding) => embedding,
Err(error) => {
tracing::error!(error=%error, "Embedding failed");
return Ok((keyword_results, Some(0)));
}
}
}
};
search.semantic =
Some(SemanticSearch { vector: Some(vector_query), embedder_name, embedder });
// TODO: would be better to have two distinct functions at this point
let vector_results = search.execute()?;
let keyword_results = ScoreWithRatioResult::new(keyword_results, 1.0 - semantic_ratio);
let vector_results = ScoreWithRatioResult::new(vector_results, semantic_ratio);
let (merge_results, semantic_hit_count) =
ScoreWithRatioResult::merge(vector_results, keyword_results, self.offset, self.limit);
assert!(merge_results.documents_ids.len() <= self.limit);
Ok((merge_results, Some(semantic_hit_count)))
}
fn results_good_enough(&self, keyword_results: &SearchResult, semantic_ratio: f32) -> bool {
// A result is good enough if its keyword score is > 0.9 with a semantic ratio of 0.5 => 0.9 * 0.5
const GOOD_ENOUGH_SCORE: f64 = 0.45;
// 1. we check that we got a sufficient number of results
if keyword_results.document_scores.len() < self.limit + self.offset {
return false;
}
// 2. and that all results have a good enough score.
// we need to check all results because due to sort like rules, they're not necessarily in relevancy order
for score in &keyword_results.document_scores {
let score = ScoreDetails::global_score(score.iter());
if score * ((1.0 - semantic_ratio) as f64) < GOOD_ENOUGH_SCORE {
return false;
}
}
true
}
}
fn return_keyword_results(
limit: usize,
offset: usize,
SearchResult {
matching_words,
candidates,
mut documents_ids,
mut document_scores,
degraded,
used_negative_operator,
}: SearchResult,
) -> (SearchResult, Option<u32>) {
let (documents_ids, document_scores) = if offset >= documents_ids.len() ||
// technically redudant because documents_ids.len() == document_scores.len(),
// defensive programming
offset >= document_scores.len()
{
(vec![], vec![])
} else {
// PANICS: offset < len
documents_ids.rotate_left(offset);
documents_ids.truncate(limit);
// PANICS: offset < len
document_scores.rotate_left(offset);
document_scores.truncate(limit);
(documents_ids, document_scores)
};
(
SearchResult {
matching_words,
candidates,
documents_ids,
document_scores,
degraded,
used_negative_operator,
},
Some(0),
)
}