mirror of
https://github.com/meilisearch/MeiliSearch
synced 2025-01-09 21:14:30 +01:00
237 lines
8.9 KiB
Rust
237 lines
8.9 KiB
Rust
use candle_core::Tensor;
|
|
use candle_nn::VarBuilder;
|
|
use candle_transformers::models::bert::{BertModel, Config, DTYPE};
|
|
// FIXME: currently we'll be using the hub to retrieve model, in the future we might want to embed it into Meilisearch itself
|
|
use hf_hub::api::sync::Api;
|
|
use hf_hub::{Repo, RepoType};
|
|
use tokenizers::{PaddingParams, Tokenizer};
|
|
|
|
pub use super::error::{EmbedError, Error, NewEmbedderError};
|
|
use super::{DistributionShift, Embedding};
|
|
|
|
#[derive(
|
|
Debug,
|
|
Clone,
|
|
Copy,
|
|
Default,
|
|
Hash,
|
|
PartialEq,
|
|
Eq,
|
|
serde::Deserialize,
|
|
serde::Serialize,
|
|
deserr::Deserr,
|
|
)]
|
|
#[serde(deny_unknown_fields, rename_all = "camelCase")]
|
|
#[deserr(rename_all = camelCase, deny_unknown_fields)]
|
|
enum WeightSource {
|
|
#[default]
|
|
Safetensors,
|
|
Pytorch,
|
|
}
|
|
|
|
#[derive(Debug, Clone, Hash, PartialEq, Eq, serde::Deserialize, serde::Serialize)]
|
|
pub struct EmbedderOptions {
|
|
pub model: String,
|
|
pub revision: Option<String>,
|
|
pub distribution: Option<DistributionShift>,
|
|
}
|
|
|
|
impl EmbedderOptions {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
model: "BAAI/bge-base-en-v1.5".to_string(),
|
|
revision: Some("617ca489d9e86b49b8167676d8220688b99db36e".into()),
|
|
distribution: None,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Default for EmbedderOptions {
|
|
fn default() -> Self {
|
|
Self::new()
|
|
}
|
|
}
|
|
|
|
/// Perform embedding of documents and queries
|
|
pub struct Embedder {
|
|
model: BertModel,
|
|
tokenizer: Tokenizer,
|
|
options: EmbedderOptions,
|
|
dimensions: usize,
|
|
}
|
|
|
|
impl std::fmt::Debug for Embedder {
|
|
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
f.debug_struct("Embedder")
|
|
.field("model", &self.options.model)
|
|
.field("tokenizer", &self.tokenizer)
|
|
.field("options", &self.options)
|
|
.finish()
|
|
}
|
|
}
|
|
|
|
impl Embedder {
|
|
pub fn new(options: EmbedderOptions) -> std::result::Result<Self, NewEmbedderError> {
|
|
let device = match candle_core::Device::cuda_if_available(0) {
|
|
Ok(device) => device,
|
|
Err(error) => {
|
|
tracing::warn!("could not initialize CUDA device for Hugging Face embedder, defaulting to CPU: {}", error);
|
|
candle_core::Device::Cpu
|
|
}
|
|
};
|
|
let repo = match options.revision.clone() {
|
|
Some(revision) => Repo::with_revision(options.model.clone(), RepoType::Model, revision),
|
|
None => Repo::model(options.model.clone()),
|
|
};
|
|
let (config_filename, tokenizer_filename, weights_filename, weight_source) = {
|
|
let api = Api::new().map_err(NewEmbedderError::new_api_fail)?;
|
|
let api = api.repo(repo);
|
|
let config = api.get("config.json").map_err(NewEmbedderError::api_get)?;
|
|
let tokenizer = api.get("tokenizer.json").map_err(NewEmbedderError::api_get)?;
|
|
let (weights, source) = {
|
|
api.get("model.safetensors")
|
|
.map(|filename| (filename, WeightSource::Safetensors))
|
|
.or_else(|_| {
|
|
api.get("pytorch_model.bin")
|
|
.map(|filename| (filename, WeightSource::Pytorch))
|
|
})
|
|
.map_err(NewEmbedderError::api_get)?
|
|
};
|
|
(config, tokenizer, weights, source)
|
|
};
|
|
|
|
let config = std::fs::read_to_string(&config_filename)
|
|
.map_err(|inner| NewEmbedderError::open_config(config_filename.clone(), inner))?;
|
|
let config: Config = serde_json::from_str(&config).map_err(|inner| {
|
|
NewEmbedderError::deserialize_config(
|
|
options.model.clone(),
|
|
config,
|
|
config_filename,
|
|
inner,
|
|
)
|
|
})?;
|
|
let mut tokenizer = Tokenizer::from_file(&tokenizer_filename)
|
|
.map_err(|inner| NewEmbedderError::open_tokenizer(tokenizer_filename, inner))?;
|
|
|
|
let vb = match weight_source {
|
|
WeightSource::Pytorch => VarBuilder::from_pth(&weights_filename, DTYPE, &device)
|
|
.map_err(NewEmbedderError::pytorch_weight)?,
|
|
WeightSource::Safetensors => unsafe {
|
|
VarBuilder::from_mmaped_safetensors(&[weights_filename], DTYPE, &device)
|
|
.map_err(NewEmbedderError::safetensor_weight)?
|
|
},
|
|
};
|
|
|
|
let model = BertModel::load(vb, &config).map_err(NewEmbedderError::load_model)?;
|
|
|
|
if let Some(pp) = tokenizer.get_padding_mut() {
|
|
pp.strategy = tokenizers::PaddingStrategy::BatchLongest
|
|
} else {
|
|
let pp = PaddingParams {
|
|
strategy: tokenizers::PaddingStrategy::BatchLongest,
|
|
..Default::default()
|
|
};
|
|
tokenizer.with_padding(Some(pp));
|
|
}
|
|
|
|
let mut this = Self { model, tokenizer, options, dimensions: 0 };
|
|
|
|
let embeddings = this
|
|
.embed(vec!["test".into()])
|
|
.map_err(NewEmbedderError::could_not_determine_dimension)?;
|
|
this.dimensions = embeddings.first().unwrap().len();
|
|
|
|
Ok(this)
|
|
}
|
|
|
|
pub fn embed(&self, mut texts: Vec<String>) -> std::result::Result<Vec<Embedding>, EmbedError> {
|
|
let tokens = match texts.len() {
|
|
1 => vec![self
|
|
.tokenizer
|
|
.encode(texts.pop().unwrap(), true)
|
|
.map_err(EmbedError::tokenize)?],
|
|
_ => self.tokenizer.encode_batch(texts, true).map_err(EmbedError::tokenize)?,
|
|
};
|
|
let token_ids = tokens
|
|
.iter()
|
|
.map(|tokens| {
|
|
let mut tokens = tokens.get_ids().to_vec();
|
|
tokens.truncate(512);
|
|
Tensor::new(tokens.as_slice(), &self.model.device).map_err(EmbedError::tensor_shape)
|
|
})
|
|
.collect::<Result<Vec<_>, EmbedError>>()?;
|
|
|
|
let token_ids = Tensor::stack(&token_ids, 0).map_err(EmbedError::tensor_shape)?;
|
|
let token_type_ids = token_ids.zeros_like().map_err(EmbedError::tensor_shape)?;
|
|
let embeddings =
|
|
self.model.forward(&token_ids, &token_type_ids).map_err(EmbedError::model_forward)?;
|
|
|
|
// Apply some avg-pooling by taking the mean embedding value for all tokens (including padding)
|
|
let (_n_sentence, n_tokens, _hidden_size) =
|
|
embeddings.dims3().map_err(EmbedError::tensor_shape)?;
|
|
|
|
let embeddings = (embeddings.sum(1).map_err(EmbedError::tensor_value)? / (n_tokens as f64))
|
|
.map_err(EmbedError::tensor_shape)?;
|
|
|
|
let embeddings: Vec<Embedding> = embeddings.to_vec2().map_err(EmbedError::tensor_shape)?;
|
|
Ok(embeddings)
|
|
}
|
|
|
|
pub fn embed_one(&self, text: &str) -> std::result::Result<Embedding, EmbedError> {
|
|
let tokens = self.tokenizer.encode(text, true).map_err(EmbedError::tokenize)?;
|
|
let token_ids = tokens.get_ids();
|
|
let token_ids = if token_ids.len() > 512 { &token_ids[..512] } else { token_ids };
|
|
let token_ids =
|
|
Tensor::new(token_ids, &self.model.device).map_err(EmbedError::tensor_shape)?;
|
|
let token_ids = Tensor::stack(&[token_ids], 0).map_err(EmbedError::tensor_shape)?;
|
|
let token_type_ids = token_ids.zeros_like().map_err(EmbedError::tensor_shape)?;
|
|
let embeddings =
|
|
self.model.forward(&token_ids, &token_type_ids).map_err(EmbedError::model_forward)?;
|
|
|
|
// Apply some avg-pooling by taking the mean embedding value for all tokens (including padding)
|
|
let (_n_sentence, n_tokens, _hidden_size) =
|
|
embeddings.dims3().map_err(EmbedError::tensor_shape)?;
|
|
let embedding = (embeddings.sum(1).map_err(EmbedError::tensor_value)? / (n_tokens as f64))
|
|
.map_err(EmbedError::tensor_shape)?;
|
|
let embedding = embedding.squeeze(0).map_err(EmbedError::tensor_shape)?;
|
|
let embedding: Embedding = embedding.to_vec1().map_err(EmbedError::tensor_shape)?;
|
|
Ok(embedding)
|
|
}
|
|
|
|
pub fn embed_chunks(
|
|
&self,
|
|
text_chunks: Vec<Vec<String>>,
|
|
) -> std::result::Result<Vec<Vec<Embedding>>, EmbedError> {
|
|
text_chunks.into_iter().map(|prompts| self.embed(prompts)).collect()
|
|
}
|
|
|
|
pub fn chunk_count_hint(&self) -> usize {
|
|
1
|
|
}
|
|
|
|
pub fn prompt_count_in_chunk_hint(&self) -> usize {
|
|
std::thread::available_parallelism().map(|x| x.get()).unwrap_or(8)
|
|
}
|
|
|
|
pub fn dimensions(&self) -> usize {
|
|
self.dimensions
|
|
}
|
|
|
|
pub fn distribution(&self) -> Option<DistributionShift> {
|
|
self.options.distribution.or_else(|| {
|
|
if self.options.model == "BAAI/bge-base-en-v1.5" {
|
|
Some(DistributionShift {
|
|
current_mean: ordered_float::OrderedFloat(0.85),
|
|
current_sigma: ordered_float::OrderedFloat(0.1),
|
|
})
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
}
|
|
|
|
pub(crate) fn embed_chunks_ref(&self, texts: &[&str]) -> Result<Vec<Embedding>, EmbedError> {
|
|
texts.iter().map(|text| self.embed_one(text)).collect()
|
|
}
|
|
}
|