mirror of
https://github.com/meilisearch/MeiliSearch
synced 2024-12-23 13:10:06 +01:00
350 lines
13 KiB
Rust
350 lines
13 KiB
Rust
use std::cmp::Reverse;
|
|
use std::collections::HashSet;
|
|
use std::io::Cursor;
|
|
|
|
use big_s::S;
|
|
use either::{Either, Left, Right};
|
|
use heed::EnvOpenOptions;
|
|
use maplit::{btreemap, hashset};
|
|
use milli::documents::{DocumentsBatchBuilder, DocumentsBatchReader};
|
|
use milli::update::{IndexDocuments, IndexDocumentsConfig, IndexerConfig, Settings};
|
|
use milli::{AscDesc, Criterion, DocumentId, Index, Member, Object, TermsMatchingStrategy};
|
|
use serde::{Deserialize, Deserializer};
|
|
use slice_group_by::GroupBy;
|
|
|
|
mod distinct;
|
|
mod facet_distribution;
|
|
mod filters;
|
|
mod phrase_search;
|
|
mod query_criteria;
|
|
mod sort;
|
|
mod typo_tolerance;
|
|
|
|
pub const TEST_QUERY: &str = "hello world america";
|
|
|
|
pub const EXTERNAL_DOCUMENTS_IDS: &[&str; 17] =
|
|
&["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q"];
|
|
|
|
pub const CONTENT: &str = include_str!("../assets/test_set.ndjson");
|
|
|
|
pub fn setup_search_index_with_criteria(criteria: &[Criterion]) -> Index {
|
|
let path = tempfile::tempdir().unwrap();
|
|
let mut options = EnvOpenOptions::new();
|
|
options.map_size(10 * 1024 * 1024); // 10 MB
|
|
let index = Index::new(options, &path).unwrap();
|
|
|
|
let mut wtxn = index.write_txn().unwrap();
|
|
let config = IndexerConfig::default();
|
|
|
|
let mut builder = Settings::new(&mut wtxn, &index, &config);
|
|
|
|
builder.set_criteria(criteria.to_vec());
|
|
builder.set_filterable_fields(hashset! {
|
|
S("tag"),
|
|
S("asc_desc_rank"),
|
|
S("_geo"),
|
|
S("opt1"),
|
|
S("opt1.opt2"),
|
|
S("tag_in")
|
|
});
|
|
builder.set_sortable_fields(hashset! {
|
|
S("tag"),
|
|
S("asc_desc_rank"),
|
|
});
|
|
builder.set_synonyms(btreemap! {
|
|
S("hello") => vec![S("good morning")],
|
|
S("world") => vec![S("earth")],
|
|
S("america") => vec![S("the united states")],
|
|
});
|
|
builder.set_searchable_fields(vec![S("title"), S("description")]);
|
|
builder.execute(|_| (), || false).unwrap();
|
|
|
|
// index documents
|
|
let config = IndexerConfig { max_memory: Some(10 * 1024 * 1024), ..Default::default() };
|
|
let indexing_config = IndexDocumentsConfig::default();
|
|
|
|
let builder =
|
|
IndexDocuments::new(&mut wtxn, &index, &config, indexing_config, |_| (), || false).unwrap();
|
|
let mut documents_builder = DocumentsBatchBuilder::new(Vec::new());
|
|
let reader = Cursor::new(CONTENT.as_bytes());
|
|
|
|
for result in serde_json::Deserializer::from_reader(reader).into_iter::<Object>() {
|
|
let object = result.unwrap();
|
|
documents_builder.append_json_object(&object).unwrap();
|
|
}
|
|
|
|
let vector = documents_builder.into_inner().unwrap();
|
|
|
|
// index documents
|
|
let content = DocumentsBatchReader::from_reader(Cursor::new(vector)).unwrap();
|
|
let (builder, user_error) = builder.add_documents(content).unwrap();
|
|
user_error.unwrap();
|
|
builder.execute().unwrap();
|
|
|
|
wtxn.commit().unwrap();
|
|
|
|
index
|
|
}
|
|
|
|
pub fn internal_to_external_ids(index: &Index, internal_ids: &[DocumentId]) -> Vec<String> {
|
|
let rtxn = index.read_txn().unwrap();
|
|
let docid_map = index.external_documents_ids(&rtxn).unwrap();
|
|
let docid_map: std::collections::HashMap<_, _> =
|
|
EXTERNAL_DOCUMENTS_IDS.iter().map(|id| (docid_map.get(id).unwrap(), id)).collect();
|
|
internal_ids.iter().map(|id| docid_map.get(id).unwrap().to_string()).collect()
|
|
}
|
|
|
|
pub fn expected_order(
|
|
criteria: &[Criterion],
|
|
optional_words: TermsMatchingStrategy,
|
|
sort_by: &[AscDesc],
|
|
) -> Vec<TestDocument> {
|
|
let dataset =
|
|
serde_json::Deserializer::from_str(CONTENT).into_iter().map(|r| r.unwrap()).collect();
|
|
let mut groups: Vec<Vec<TestDocument>> = vec![dataset];
|
|
|
|
for criterion in criteria {
|
|
let mut new_groups = Vec::new();
|
|
for group in groups.iter_mut() {
|
|
match criterion {
|
|
Criterion::Attribute => {
|
|
group.sort_by_key(|d| d.attribute_rank);
|
|
new_groups
|
|
.extend(group.linear_group_by_key(|d| d.attribute_rank).map(Vec::from));
|
|
}
|
|
Criterion::Exactness => {
|
|
group.sort_by_key(|d| d.exact_rank);
|
|
new_groups.extend(group.linear_group_by_key(|d| d.exact_rank).map(Vec::from));
|
|
}
|
|
Criterion::Proximity => {
|
|
group.sort_by_key(|d| d.proximity_rank);
|
|
new_groups
|
|
.extend(group.linear_group_by_key(|d| d.proximity_rank).map(Vec::from));
|
|
}
|
|
Criterion::Sort if sort_by == [AscDesc::Asc(Member::Field(S("tag")))] => {
|
|
group.sort_by_key(|d| d.sort_by_rank);
|
|
new_groups.extend(group.linear_group_by_key(|d| d.sort_by_rank).map(Vec::from));
|
|
}
|
|
Criterion::Sort if sort_by == [AscDesc::Desc(Member::Field(S("tag")))] => {
|
|
group.sort_by_key(|d| Reverse(d.sort_by_rank));
|
|
new_groups.extend(group.linear_group_by_key(|d| d.sort_by_rank).map(Vec::from));
|
|
}
|
|
Criterion::Typo => {
|
|
group.sort_by_key(|d| d.typo_rank);
|
|
new_groups.extend(group.linear_group_by_key(|d| d.typo_rank).map(Vec::from));
|
|
}
|
|
Criterion::Words => {
|
|
group.sort_by_key(|d| d.word_rank);
|
|
new_groups.extend(group.linear_group_by_key(|d| d.word_rank).map(Vec::from));
|
|
}
|
|
Criterion::Asc(field_name) if field_name == "asc_desc_rank" => {
|
|
group.sort_by_key(|d| d.asc_desc_rank);
|
|
new_groups
|
|
.extend(group.linear_group_by_key(|d| d.asc_desc_rank).map(Vec::from));
|
|
}
|
|
Criterion::Desc(field_name) if field_name == "asc_desc_rank" => {
|
|
group.sort_by_key(|d| Reverse(d.asc_desc_rank));
|
|
new_groups
|
|
.extend(group.linear_group_by_key(|d| d.asc_desc_rank).map(Vec::from));
|
|
}
|
|
Criterion::Asc(_) | Criterion::Desc(_) | Criterion::Sort => {
|
|
new_groups.push(group.clone())
|
|
}
|
|
}
|
|
}
|
|
groups = std::mem::take(&mut new_groups);
|
|
}
|
|
|
|
match optional_words {
|
|
TermsMatchingStrategy::Last => groups.into_iter().flatten().collect(),
|
|
TermsMatchingStrategy::All => {
|
|
groups.into_iter().flatten().filter(|d| d.word_rank == 0).collect()
|
|
}
|
|
}
|
|
}
|
|
|
|
fn execute_filter(filter: &str, document: &TestDocument) -> Option<String> {
|
|
let mut id = None;
|
|
if let Some((field, filter)) = filter.split_once("!=") {
|
|
if field == "tag" && document.tag != filter
|
|
|| (field == "asc_desc_rank"
|
|
&& Ok(&document.asc_desc_rank) != filter.parse::<u32>().as_ref())
|
|
{
|
|
id = Some(document.id.clone())
|
|
}
|
|
} else if let Some((field, filter)) = filter.split_once('=') {
|
|
if field == "tag" && document.tag == filter
|
|
|| (field == "asc_desc_rank"
|
|
&& document.asc_desc_rank == filter.parse::<u32>().unwrap())
|
|
{
|
|
id = Some(document.id.clone())
|
|
}
|
|
} else if let Some(("asc_desc_rank", filter)) = filter.split_once('<') {
|
|
if document.asc_desc_rank < filter.parse().unwrap() {
|
|
id = Some(document.id.clone())
|
|
}
|
|
} else if let Some(("asc_desc_rank", filter)) = filter.split_once('>') {
|
|
if document.asc_desc_rank > filter.parse().unwrap() {
|
|
id = Some(document.id.clone())
|
|
}
|
|
} else if filter.starts_with("_geoRadius") {
|
|
id = (document.geo_rank < 100000).then(|| document.id.clone());
|
|
} else if filter.starts_with("NOT _geoRadius") {
|
|
id = (document.geo_rank > 1000000).then(|| document.id.clone());
|
|
} else if matches!(filter, "opt1 EXISTS" | "NOT opt1 NOT EXISTS") {
|
|
id = document.opt1.is_some().then(|| document.id.clone());
|
|
} else if matches!(filter, "NOT opt1 EXISTS" | "opt1 NOT EXISTS") {
|
|
id = document.opt1.is_none().then(|| document.id.clone());
|
|
} else if matches!(filter, "opt1.opt2 EXISTS") {
|
|
if document.opt1opt2.is_some() {
|
|
id = Some(document.id.clone());
|
|
} else if let Some(opt1) = &document.opt1 {
|
|
id = contains_key_rec(opt1, "opt2").then(|| document.id.clone());
|
|
}
|
|
} else if matches!(filter, "opt1 IS NULL" | "NOT opt1 IS NOT NULL") {
|
|
id = document.opt1.as_ref().map_or(false, |v| v.is_null()).then(|| document.id.clone());
|
|
} else if matches!(filter, "NOT opt1 IS NULL" | "opt1 IS NOT NULL") {
|
|
id = document.opt1.as_ref().map_or(true, |v| !v.is_null()).then(|| document.id.clone());
|
|
} else if matches!(filter, "opt1.opt2 IS NULL") {
|
|
if document.opt1opt2.as_ref().map_or(false, |v| v.is_null()) {
|
|
id = Some(document.id.clone());
|
|
} else if let Some(opt1) = &document.opt1 {
|
|
if !opt1.is_null() {
|
|
id = contains_null_rec(opt1, "opt2").then(|| document.id.clone());
|
|
}
|
|
}
|
|
} else if matches!(filter, "opt1 IS EMPTY" | "NOT opt1 IS NOT EMPTY") {
|
|
id = document.opt1.as_ref().map_or(false, is_empty_value).then(|| document.id.clone());
|
|
} else if matches!(filter, "NOT opt1 IS EMPTY" | "opt1 IS NOT EMPTY") {
|
|
id = document
|
|
.opt1
|
|
.as_ref()
|
|
.map_or(true, |v| !is_empty_value(v))
|
|
.then(|| document.id.clone());
|
|
} else if matches!(filter, "opt1.opt2 IS EMPTY") {
|
|
if document.opt1opt2.as_ref().map_or(false, is_empty_value) {
|
|
id = Some(document.id.clone());
|
|
}
|
|
} else if matches!(
|
|
filter,
|
|
"tag_in IN[1, 2, 3, four, five]" | "NOT tag_in NOT IN[1, 2, 3, four, five]"
|
|
) {
|
|
id = matches!(document.id.as_str(), "A" | "B" | "C" | "D" | "E")
|
|
.then(|| document.id.clone());
|
|
} else if matches!(filter, "tag_in NOT IN[1, 2, 3, four, five]") {
|
|
id = (!matches!(document.id.as_str(), "A" | "B" | "C" | "D" | "E"))
|
|
.then(|| document.id.clone());
|
|
}
|
|
id
|
|
}
|
|
|
|
pub fn is_empty_value(v: &serde_json::Value) -> bool {
|
|
match v {
|
|
serde_json::Value::String(s) => s.is_empty(),
|
|
serde_json::Value::Array(a) => a.is_empty(),
|
|
serde_json::Value::Object(o) => o.is_empty(),
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
pub fn contains_key_rec(v: &serde_json::Value, key: &str) -> bool {
|
|
match v {
|
|
serde_json::Value::Array(v) => {
|
|
for v in v.iter() {
|
|
if contains_key_rec(v, key) {
|
|
return true;
|
|
}
|
|
}
|
|
false
|
|
}
|
|
serde_json::Value::Object(v) => {
|
|
for (k, v) in v.iter() {
|
|
if k == key || contains_key_rec(v, key) {
|
|
return true;
|
|
}
|
|
}
|
|
false
|
|
}
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
pub fn contains_null_rec(v: &serde_json::Value, key: &str) -> bool {
|
|
match v {
|
|
serde_json::Value::Object(v) => {
|
|
for (k, v) in v.iter() {
|
|
if k == key && v.is_null() || contains_null_rec(v, key) {
|
|
return true;
|
|
}
|
|
}
|
|
false
|
|
}
|
|
serde_json::Value::Array(v) => {
|
|
for v in v.iter() {
|
|
if contains_null_rec(v, key) {
|
|
return true;
|
|
}
|
|
}
|
|
false
|
|
}
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
pub fn expected_filtered_ids(filters: Vec<Either<Vec<&str>, &str>>) -> HashSet<String> {
|
|
let dataset: Vec<TestDocument> =
|
|
serde_json::Deserializer::from_str(CONTENT).into_iter().map(|r| r.unwrap()).collect();
|
|
|
|
let mut filtered_ids: HashSet<_> = dataset.iter().map(|d| d.id.clone()).collect();
|
|
for either in filters {
|
|
let ids = match either {
|
|
Left(array) => array
|
|
.into_iter()
|
|
.map(|f| {
|
|
let ids: HashSet<String> =
|
|
dataset.iter().filter_map(|d| execute_filter(f, d)).collect();
|
|
ids
|
|
})
|
|
.reduce(|a, b| a.union(&b).cloned().collect())
|
|
.unwrap(),
|
|
Right(filter) => {
|
|
let ids: HashSet<String> =
|
|
dataset.iter().filter_map(|d| execute_filter(filter, d)).collect();
|
|
ids
|
|
}
|
|
};
|
|
|
|
filtered_ids = filtered_ids.intersection(&ids).cloned().collect();
|
|
}
|
|
|
|
filtered_ids
|
|
}
|
|
|
|
#[derive(Debug, Clone, Deserialize, PartialEq, Eq)]
|
|
pub struct TestDocument {
|
|
pub id: String,
|
|
pub word_rank: u32,
|
|
pub typo_rank: u32,
|
|
pub proximity_rank: u32,
|
|
pub attribute_rank: u32,
|
|
pub exact_rank: u32,
|
|
pub asc_desc_rank: u32,
|
|
pub sort_by_rank: u32,
|
|
pub geo_rank: u32,
|
|
pub title: String,
|
|
pub description: String,
|
|
pub tag: String,
|
|
#[serde(default, deserialize_with = "some_option")]
|
|
pub opt1: Option<serde_json::Value>,
|
|
#[serde(default, deserialize_with = "some_option", rename = "opt1.opt2")]
|
|
pub opt1opt2: Option<serde_json::Value>,
|
|
}
|
|
|
|
fn some_option<'de, D>(deserializer: D) -> Result<Option<serde_json::Value>, D::Error>
|
|
where
|
|
D: Deserializer<'de>,
|
|
{
|
|
let result = serde_json::Value::deserialize(deserializer)?;
|
|
Ok(Some(result))
|
|
}
|