use std::{borrow::Cow, cmp::{self, Ordering}, collections::BinaryHeap}; use std::collections::{BTreeMap, HashMap, btree_map}; use std::collections::binary_heap::PeekMut; use std::mem::take; use roaring::RoaringBitmap; use crate::{TreeLevel, search::build_dfa}; use crate::search::criteria::Query; use crate::search::query_tree::{Operation, QueryKind}; use crate::search::{word_derivations, WordDerivationsCache}; use super::{Criterion, CriterionResult, Context, resolve_query_tree}; /// To be able to divide integers by the number of words in the query /// we want to find a multiplier that allow us to divide by any number between 1 and 10. /// We Choosed the LCM of all numbers between 1 and 10 as the multiplier (https://en.wikipedia.org/wiki/Least_common_multiple). const LCM_10_FIRST_NUMBERS: u32 = 2520; pub struct Attribute<'t> { ctx: &'t dyn Context<'t>, query_tree: Option, candidates: Option, bucket_candidates: RoaringBitmap, parent: Box, flattened_query_tree: Option>>>, current_buckets: Option>, } impl<'t> Attribute<'t> { pub fn new(ctx: &'t dyn Context<'t>, parent: Box) -> Self { Attribute { ctx, query_tree: None, candidates: None, bucket_candidates: RoaringBitmap::new(), parent, flattened_query_tree: None, current_buckets: None, } } } impl<'t> Criterion for Attribute<'t> { #[logging_timer::time("Attribute::{}")] fn next(&mut self, wdcache: &mut WordDerivationsCache) -> anyhow::Result> { loop { match (&self.query_tree, &mut self.candidates) { (_, Some(candidates)) if candidates.is_empty() => { return Ok(Some(CriterionResult { query_tree: self.query_tree.take(), candidates: self.candidates.take(), bucket_candidates: take(&mut self.bucket_candidates), })); }, (Some(qt), Some(candidates)) => { let flattened_query_tree = self.flattened_query_tree.get_or_insert_with(|| { flatten_query_tree(&qt) }); let found_candidates = if candidates.len() < 1_000 { let current_buckets = match self.current_buckets.as_mut() { Some(current_buckets) => current_buckets, None => { let new_buckets = linear_compute_candidates(self.ctx, flattened_query_tree, candidates)?; self.current_buckets.get_or_insert(new_buckets.into_iter()) }, }; match current_buckets.next() { Some((_score, candidates)) => candidates, None => { return Ok(Some(CriterionResult { query_tree: self.query_tree.take(), candidates: self.candidates.take(), bucket_candidates: take(&mut self.bucket_candidates), })); }, } } else { let found_candidates = set_compute_candidates(self.ctx, flattened_query_tree, candidates, wdcache)?; match found_candidates { Some(candidates) => candidates, None => { return Ok(Some(CriterionResult { query_tree: self.query_tree.take(), candidates: self.candidates.take(), bucket_candidates: take(&mut self.bucket_candidates), })); }, } }; candidates.difference_with(&found_candidates); return Ok(Some(CriterionResult { query_tree: self.query_tree.clone(), candidates: Some(found_candidates), bucket_candidates: take(&mut self.bucket_candidates), })); }, (Some(qt), None) => { let query_tree_candidates = resolve_query_tree(self.ctx, &qt, &mut HashMap::new(), wdcache)?; self.bucket_candidates.union_with(&query_tree_candidates); self.candidates = Some(query_tree_candidates); }, (None, Some(_)) => { return Ok(Some(CriterionResult { query_tree: self.query_tree.take(), candidates: self.candidates.take(), bucket_candidates: take(&mut self.bucket_candidates), })); }, (None, None) => { match self.parent.next(wdcache)? { Some(CriterionResult { query_tree: None, candidates: None, bucket_candidates }) => { return Ok(Some(CriterionResult { query_tree: None, candidates: None, bucket_candidates, })); }, Some(CriterionResult { query_tree, candidates, bucket_candidates }) => { self.query_tree = query_tree; self.candidates = candidates; self.bucket_candidates.union_with(&bucket_candidates); self.flattened_query_tree = None; self.current_buckets = None; }, None => return Ok(None), } }, } } } } struct WordLevelIterator<'t, 'q> { inner: Box> + 't>, level: TreeLevel, interval_size: u32, word: Cow<'q, str>, in_prefix_cache: bool, inner_next: Option<(u32, u32, RoaringBitmap)>, current_interval: Option<(u32, u32)>, } impl<'t, 'q> WordLevelIterator<'t, 'q> { fn new(ctx: &'t dyn Context<'t>, word: Cow<'q, str>, in_prefix_cache: bool) -> heed::Result> { match ctx.word_position_last_level(&word, in_prefix_cache)? { Some(level) => { let interval_size = 4u32.pow(Into::::into(level.clone()) as u32); let inner = ctx.word_position_iterator(&word, level, in_prefix_cache, None, None)?; Ok(Some(Self { inner, level, interval_size, word, in_prefix_cache, inner_next: None, current_interval: None })) }, None => Ok(None), } } fn dig(&self, ctx: &'t dyn Context<'t>, level: &TreeLevel) -> heed::Result { let level = level.min(&self.level).clone(); let interval_size = 4u32.pow(Into::::into(level.clone()) as u32); let word = self.word.clone(); let in_prefix_cache = self.in_prefix_cache; // TODO try to dig starting from the current interval // let left = self.current_interval.map(|(left, _)| left); let inner = ctx.word_position_iterator(&word, level, in_prefix_cache, None, None)?; Ok(Self {inner, level, interval_size, word, in_prefix_cache, inner_next: None, current_interval: None}) } fn next(&mut self) -> heed::Result> { fn is_next_interval(last_right: u32, next_left: u32) -> bool { last_right + 1 == next_left } let inner_next = match self.inner_next.take() { Some(inner_next) => Some(inner_next), None => self.inner.next().transpose()?.map(|((_, _, left, right), docids)| (left, right, docids)), }; match inner_next { Some((left, right, docids)) => { match self.current_interval { Some((last_left, last_right)) if !is_next_interval(last_right, left) => { let blank_left = last_left + self.interval_size; let blank_right = last_right + self.interval_size; self.current_interval = Some((blank_left, blank_right)); self.inner_next = Some((left, right, docids)); Ok(Some((blank_left, blank_right, RoaringBitmap::new()))) }, _ => { self.current_interval = Some((left, right)); Ok(Some((left, right, docids))) } } }, None => Ok(None), } } } struct QueryLevelIterator<'t, 'q> { previous: Option>>, inner: Vec>, level: TreeLevel, accumulator: Vec>, previous_accumulator: Vec>, } impl<'t, 'q> QueryLevelIterator<'t, 'q> { fn new(ctx: &'t dyn Context<'t>, queries: &'q Vec, wdcache: &mut WordDerivationsCache) -> anyhow::Result> { let mut inner = Vec::with_capacity(queries.len()); for query in queries { match &query.kind { QueryKind::Exact { word, .. } => { if !query.prefix || ctx.in_prefix_cache(&word) { let word = Cow::Borrowed(query.kind.word()); if let Some(word_level_iterator) = WordLevelIterator::new(ctx, word, query.prefix)? { inner.push(word_level_iterator); } } else { for (word, _) in word_derivations(&word, true, 0, ctx.words_fst(), wdcache)? { let word = Cow::Owned(word.to_owned()); if let Some(word_level_iterator) = WordLevelIterator::new(ctx, word, false)? { inner.push(word_level_iterator); } } } }, QueryKind::Tolerant { typo, word } => { for (word, _) in word_derivations(&word, query.prefix, *typo, ctx.words_fst(), wdcache)? { let word = Cow::Owned(word.to_owned()); if let Some(word_level_iterator) = WordLevelIterator::new(ctx, word, false)? { inner.push(word_level_iterator); } } } } } let highest = inner.iter().max_by_key(|wli| wli.level).map(|wli| wli.level.clone()); match highest { Some(level) => Ok(Some(Self { previous: None, inner, level, accumulator: vec![], previous_accumulator: vec![], })), None => Ok(None), } } fn previous(&mut self, previous: QueryLevelIterator<'t, 'q>) -> &Self { self.previous = Some(Box::new(previous)); self } fn dig(&self, ctx: &'t dyn Context<'t>) -> heed::Result { let (level, previous) = match &self.previous { Some(previous) => { let previous = previous.dig(ctx)?; (previous.level.min(self.level), Some(Box::new(previous))) }, None => (self.level.saturating_sub(1), None), }; let mut inner = Vec::with_capacity(self.inner.len()); for word_level_iterator in self.inner.iter() { inner.push(word_level_iterator.dig(ctx, &level)?); } Ok(Self {previous, inner, level, accumulator: vec![], previous_accumulator: vec![]}) } fn inner_next(&mut self, level: TreeLevel) -> heed::Result> { let mut accumulated: Option<(u32, u32, RoaringBitmap)> = None; let u8_level = Into::::into(level); let interval_size = 4u32.pow(u8_level as u32); for wli in self.inner.iter_mut() { let wli_u8_level = Into::::into(wli.level.clone()); let accumulated_count = 4u32.pow((u8_level - wli_u8_level) as u32); for _ in 0..accumulated_count { if let Some((next_left, _, next_docids)) = wli.next()? { accumulated = accumulated.take().map( |(acc_left, acc_right, mut acc_docids)| { acc_docids.union_with(&next_docids); (acc_left, acc_right, acc_docids) } ).or_else(|| Some((next_left, next_left + interval_size, next_docids))); } } } Ok(accumulated) } fn next(&mut self) -> heed::Result<(TreeLevel, Option<(u32, u32, RoaringBitmap)>)> { let previous_result = match self.previous.as_mut() { Some(previous) => { Some(previous.next()?) }, None => None, }; match previous_result { Some((previous_level, previous_next)) => { let inner_next = self.inner_next(previous_level)?; self.accumulator.push(inner_next); self.previous_accumulator.push(previous_next); // TODO @many clean firsts intervals of both accumulators when both RoaringBitmap are empty, // WARNING the cleaned intervals count needs to be kept to skip at the end let mut merged_interval = None; for current in self.accumulator.iter().rev().zip(self.previous_accumulator.iter()) { if let (Some((left_a, right_a, a)), Some((left_b, right_b, b))) = current { let (_, _, merged_docids) = merged_interval.get_or_insert_with(|| (left_a + left_b, right_a + right_b, RoaringBitmap::new())); merged_docids.union_with(&(a & b)); } } Ok((previous_level, merged_interval)) }, None => { let level = self.level.clone(); let next_interval = self.inner_next(level.clone())?; self.accumulator = vec![next_interval.clone()]; Ok((level, next_interval)) } } } } struct Branch<'t, 'q> { query_level_iterator: QueryLevelIterator<'t, 'q>, last_result: (u32, u32, RoaringBitmap), tree_level: TreeLevel, branch_size: u32, } impl<'t, 'q> Branch<'t, 'q> { fn next(&mut self) -> heed::Result { match self.query_level_iterator.next()? { (tree_level, Some(last_result)) => { self.last_result = last_result; self.tree_level = tree_level; Ok(true) }, (_, None) => Ok(false), } } fn compute_rank(&self) -> u32 { // we compute a rank from the left interval. let (left, _, _) = self.last_result; left.saturating_sub((0..self.branch_size).sum()) * LCM_10_FIRST_NUMBERS / self.branch_size } fn cmp(&self, other: &Self) -> Ordering { let self_rank = self.compute_rank(); let other_rank = other.compute_rank(); let left_cmp = self_rank.cmp(&other_rank).reverse(); // on level: higher is better, // we want to reduce highest levels first. let level_cmp = self.tree_level.cmp(&other.tree_level); left_cmp.then(level_cmp) } } impl<'t, 'q> Ord for Branch<'t, 'q> { fn cmp(&self, other: &Self) -> Ordering { self.cmp(other) } } impl<'t, 'q> PartialOrd for Branch<'t, 'q> { fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } impl<'t, 'q> PartialEq for Branch<'t, 'q> { fn eq(&self, other: &Self) -> bool { self.cmp(other) == Ordering::Equal } } impl<'t, 'q> Eq for Branch<'t, 'q> {} fn initialize_query_level_iterators<'t, 'q>( ctx: &'t dyn Context<'t>, branches: &'q Vec>>, wdcache: &mut WordDerivationsCache, ) -> anyhow::Result>> { let mut positions = BinaryHeap::with_capacity(branches.len()); for branch in branches { let mut branch_positions = Vec::with_capacity(branch.len()); for queries in branch { match QueryLevelIterator::new(ctx, queries, wdcache)? { Some(qli) => branch_positions.push(qli), None => { // the branch seems to be invalid, so we skip it. branch_positions.clear(); break; }, } } // QueryLevelIterator need to be sorted by level and folded in descending order. branch_positions.sort_unstable_by_key(|qli| qli.level); let folded_query_level_iterators = branch_positions .into_iter() .rev() .fold(None, |fold: Option, mut qli| match fold { Some(fold) => { qli.previous(fold); Some(qli) }, None => Some(qli), }); if let Some(mut folded_query_level_iterators) = folded_query_level_iterators { let (tree_level, last_result) = folded_query_level_iterators.next()?; if let Some(last_result) = last_result { let branch = Branch { last_result, tree_level, query_level_iterator: folded_query_level_iterators, branch_size: branch.len() as u32, }; positions.push(branch); } } } Ok(positions) } fn set_compute_candidates<'t>( ctx: &'t dyn Context<'t>, branches: &Vec>>, allowed_candidates: &RoaringBitmap, wdcache: &mut WordDerivationsCache, ) -> anyhow::Result> { let mut branches_heap = initialize_query_level_iterators(ctx, branches, wdcache)?; let lowest_level = TreeLevel::min_value(); let mut final_candidates: Option<(u32, RoaringBitmap)> = None; while let Some(mut branch) = branches_heap.peek_mut() { let is_lowest_level = branch.tree_level == lowest_level; let branch_rank = branch.compute_rank(); let (_, _, candidates) = &mut branch.last_result; candidates.intersect_with(&allowed_candidates); if candidates.is_empty() { // we don't have candidates, get next interval. if !branch.next()? { PeekMut::pop(branch); } } else if is_lowest_level { // we have candidates, but we can't dig deeper, return candidates. final_candidates = match final_candidates.take() { Some((best_rank, mut best_candidates)) => { // if current is worst than best we break to return // candidates that correspond to the best rank if branch_rank > best_rank { final_candidates = Some((best_rank, best_candidates)); break; // else we add current candidates to best candidates // and we fetch the next page } else { best_candidates.union_with(candidates); if !branch.next()? { PeekMut::pop(branch); } Some((best_rank, best_candidates)) } }, // we take current candidates as best candidates // and we fetch the next page None => { let candidates = take(candidates); if !branch.next()? { PeekMut::pop(branch); } Some((branch_rank, candidates)) }, }; } else { // we have candidates, lets dig deeper in levels. branch.query_level_iterator = branch.query_level_iterator.dig(ctx)?; if !branch.next()? { PeekMut::pop(branch); } } } Ok(final_candidates.map(|(_rank, candidates)| { candidates })) } fn linear_compute_candidates( ctx: &dyn Context, branches: &Vec>>, allowed_candidates: &RoaringBitmap, ) -> anyhow::Result> { fn compute_candidate_rank(branches: &Vec>>, words_positions: HashMap) -> u64 { let mut min_rank = u64::max_value(); for branch in branches { let branch_len = branch.len(); let mut branch_rank = Vec::with_capacity(branch_len); for derivates in branch { let mut position = None; for Query { prefix, kind } in derivates { // find the best position of the current word in the document. let current_position = match kind { QueryKind::Exact { word, .. } => { if *prefix { word_derivations(word, true, 0, &words_positions) .flat_map(|positions| positions.iter().next()).min() } else { words_positions.get(word) .map(|positions| positions.iter().next()) .flatten() } }, QueryKind::Tolerant { typo, word } => { word_derivations(word, *prefix, *typo, &words_positions) .flat_map(|positions| positions.iter().next()).min() }, }; match (position, current_position) { (Some(p), Some(cp)) => position = Some(cmp::min(p, cp)), (None, Some(cp)) => position = Some(cp), _ => (), } } // if a position is found, we add it to the branch score, // otherwise the branch is considered as unfindable in this document and we break. if let Some(position) = position { branch_rank.push(position as u64); } else { branch_rank.clear(); break; } } if !branch_rank.is_empty() { branch_rank.sort_unstable(); // because several words in same query can't match all a the position 0, // we substract the word index to the position. let branch_rank: u64 = branch_rank.into_iter().enumerate().map(|(i, r)| r - i as u64).sum(); // here we do the means of the words of the branch min_rank = min_rank.min(branch_rank * LCM_10_FIRST_NUMBERS as u64 / branch_len as u64); } } min_rank } fn word_derivations<'a>( word: &str, is_prefix: bool, max_typo: u8, words_positions: &'a HashMap, ) -> impl Iterator { let dfa = build_dfa(word, max_typo, is_prefix); words_positions.iter().filter_map(move |(document_word, positions)| { use levenshtein_automata::Distance; match dfa.eval(document_word) { Distance::Exact(_) => Some(positions), Distance::AtLeast(_) => None, } }) } let mut candidates = BTreeMap::new(); for docid in allowed_candidates { let words_positions = ctx.docid_words_positions(docid)?; let rank = compute_candidate_rank(branches, words_positions); candidates.entry(rank).or_insert_with(RoaringBitmap::new).insert(docid); } Ok(candidates) } // TODO can we keep refs of Query fn flatten_query_tree(query_tree: &Operation) -> Vec>> { use crate::search::criteria::Operation::{And, Or, Consecutive}; fn and_recurse(head: &Operation, tail: &[Operation]) -> Vec>> { match tail.split_first() { Some((thead, tail)) => { let tail = and_recurse(thead, tail); let mut out = Vec::new(); for array in recurse(head) { for tail_array in &tail { let mut array = array.clone(); array.extend(tail_array.iter().cloned()); out.push(array); } } out }, None => recurse(head), } } fn recurse(op: &Operation) -> Vec>> { match op { And(ops) | Consecutive(ops) => { ops.split_first().map_or_else(Vec::new, |(h, t)| and_recurse(h, t)) }, Or(_, ops) => if ops.iter().all(|op| op.query().is_some()) { vec![vec![ops.iter().flat_map(|op| op.query()).cloned().collect()]] } else { ops.into_iter().map(recurse).flatten().collect() }, Operation::Query(query) => vec![vec![vec![query.clone()]]], } } recurse(query_tree) } #[cfg(test)] mod tests { use big_s::S; use crate::search::criteria::QueryKind; use super::*; #[test] fn simple_flatten_query_tree() { let query_tree = Operation::Or(false, vec![ Operation::Query(Query { prefix: false, kind: QueryKind::exact(S("manythefish")) }), Operation::And(vec![ Operation::Query(Query { prefix: false, kind: QueryKind::exact(S("manythe")) }), Operation::Query(Query { prefix: false, kind: QueryKind::exact(S("fish")) }), ]), Operation::And(vec![ Operation::Query(Query { prefix: false, kind: QueryKind::exact(S("many")) }), Operation::Or(false, vec![ Operation::Query(Query { prefix: false, kind: QueryKind::exact(S("thefish")) }), Operation::And(vec![ Operation::Query(Query { prefix: false, kind: QueryKind::exact(S("the")) }), Operation::Query(Query { prefix: false, kind: QueryKind::exact(S("fish")) }), ]), ]), ]), ]); let expected = vec![ vec![vec![Query { prefix: false, kind: QueryKind::exact(S("manythefish")) }]], vec![ vec![Query { prefix: false, kind: QueryKind::exact(S("manythe")) }], vec![Query { prefix: false, kind: QueryKind::exact(S("fish")) }], ], vec![ vec![Query { prefix: false, kind: QueryKind::exact(S("many")) }], vec![Query { prefix: false, kind: QueryKind::exact(S("thefish")) }], ], vec![ vec![Query { prefix: false, kind: QueryKind::exact(S("many")) }], vec![Query { prefix: false, kind: QueryKind::exact(S("the")) }], vec![Query { prefix: false, kind: QueryKind::exact(S("fish")) }], ], ]; let result = flatten_query_tree(&query_tree); assert_eq!(expected, result); } }