use std::collections::HashMap; use std::fmt::Write as _; use std::mem; use std::ops::ControlFlow; use std::time::Duration; use actix_web::web::{self, Data}; use actix_web::{Either, HttpRequest, HttpResponse, Responder}; use actix_web_lab::sse::{Event, Sse}; use async_openai::config::{Config, OpenAIConfig}; use async_openai::types::{ ChatCompletionMessageToolCall, ChatCompletionMessageToolCallChunk, ChatCompletionRequestAssistantMessageArgs, ChatCompletionRequestMessage, ChatCompletionRequestSystemMessage, ChatCompletionRequestSystemMessageContent, ChatCompletionRequestToolMessage, ChatCompletionRequestToolMessageContent, ChatCompletionStreamResponseDelta, ChatCompletionToolArgs, ChatCompletionToolType, CreateChatCompletionRequest, CreateChatCompletionStreamResponse, FinishReason, FunctionCall, FunctionCallStream, FunctionObjectArgs, }; use async_openai::Client; use bumpalo::Bump; use futures::StreamExt; use index_scheduler::IndexScheduler; use meilisearch_auth::AuthController; use meilisearch_types::error::{Code, ResponseError}; use meilisearch_types::features::{ ChatCompletionPrompts as DbChatCompletionPrompts, ChatCompletionSettings as DbChatSettings, }; use meilisearch_types::keys::actions; use meilisearch_types::milli::index::ChatConfig; use meilisearch_types::milli::{all_obkv_to_json, obkv_to_json, TimeBudget}; use meilisearch_types::{Document, Index}; use serde::Deserialize; use serde_json::json; use tokio::runtime::Handle; use tokio::sync::mpsc::error::SendError; use super::errors::StreamErrorEvent; use super::utils::format_documents; use super::{ ChatsParam, MEILI_APPEND_CONVERSATION_MESSAGE_NAME, MEILI_SEARCH_IN_INDEX_FUNCTION_NAME, MEILI_SEARCH_PROGRESS_NAME, MEILI_SEARCH_SOURCES_NAME, }; use crate::error::MeilisearchHttpError; use crate::extractors::authentication::policies::ActionPolicy; use crate::extractors::authentication::{extract_token_from_request, GuardedData, Policy as _}; use crate::metrics::MEILISEARCH_DEGRADED_SEARCH_REQUESTS; use crate::routes::chats::utils::SseEventSender; use crate::routes::indexes::search::search_kind; use crate::search::{add_search_rules, prepare_search, search_from_kind, SearchQuery}; use crate::search_queue::SearchQueue; pub fn configure(cfg: &mut web::ServiceConfig) { cfg.service(web::resource("").route(web::post().to(chat))); } /// Get a chat completion async fn chat( index_scheduler: GuardedData, Data>, auth_ctrl: web::Data, chats_param: web::Path, req: HttpRequest, search_queue: web::Data, web::Json(chat_completion): web::Json, ) -> impl Responder { let ChatsParam { workspace_uid } = chats_param.into_inner(); assert_eq!( chat_completion.n.unwrap_or(1), 1, "Meilisearch /chat only support one completion at a time (n = 1, n = null)" ); if chat_completion.stream.unwrap_or(false) { Either::Right( streamed_chat( index_scheduler, auth_ctrl, search_queue, &workspace_uid, req, chat_completion, ) .await, ) } else { Either::Left( non_streamed_chat( index_scheduler, auth_ctrl, search_queue, &workspace_uid, req, chat_completion, ) .await, ) } } #[derive(Default, Debug, Clone, Copy)] pub struct FunctionSupport { /// Defines if we can call the _meiliSearchProgress function /// to inform the front-end about what we are searching for. report_progress: bool, /// Defines if we can call the _meiliSearchSources function /// to inform the front-end about the sources of the search. report_sources: bool, /// Defines if we can call the _meiliAppendConversationMessage /// function to provide the messages to append into the conversation. append_to_conversation: bool, } /// Setup search tool in chat completion request fn setup_search_tool( index_scheduler: &Data, filters: &meilisearch_auth::AuthFilter, chat_completion: &mut CreateChatCompletionRequest, prompts: &DbChatCompletionPrompts, ) -> Result { let tools = chat_completion.tools.get_or_insert_default(); if tools.iter().any(|t| t.function.name == MEILI_SEARCH_IN_INDEX_FUNCTION_NAME) { panic!("{MEILI_SEARCH_IN_INDEX_FUNCTION_NAME} function already set"); } // Remove internal tools used for front-end notifications as they should be hidden from the LLM. let mut report_progress = false; let mut report_sources = false; let mut append_to_conversation = false; tools.retain(|tool| { match tool.function.name.as_str() { MEILI_SEARCH_PROGRESS_NAME => { report_progress = true; false } MEILI_SEARCH_SOURCES_NAME => { report_sources = true; false } MEILI_APPEND_CONVERSATION_MESSAGE_NAME => { append_to_conversation = true; false } _ => true, // keep other tools } }); let mut index_uids = Vec::new(); let mut function_description = prompts.search_description.clone(); index_scheduler.try_for_each_index::<_, ()>(|name, index| { // Make sure to skip unauthorized indexes if !filters.is_index_authorized(name) { return Ok(()); } let rtxn = index.read_txn()?; let chat_config = index.chat_config(&rtxn)?; let index_description = chat_config.description; let _ = writeln!(&mut function_description, "\n\n - {name}: {index_description}\n"); index_uids.push(name.to_string()); Ok(()) })?; let tool = ChatCompletionToolArgs::default() .r#type(ChatCompletionToolType::Function) .function( FunctionObjectArgs::default() .name(MEILI_SEARCH_IN_INDEX_FUNCTION_NAME) .description(&function_description) .parameters(json!({ "type": "object", "properties": { "index_uid": { "type": "string", "enum": index_uids, "description": prompts.search_index_uid_param, }, "q": { // Unfortunately, Mistral does not support an array of types, here. // "type": ["string", "null"], "type": "string", "description": prompts.search_q_param, } }, "required": ["index_uid", "q"], "additionalProperties": false, })) .strict(true) .build() .unwrap(), ) .build() .unwrap(); tools.push(tool); chat_completion.messages.insert( 0, ChatCompletionRequestMessage::System(ChatCompletionRequestSystemMessage { content: ChatCompletionRequestSystemMessageContent::Text(prompts.system.clone()), name: None, }), ); Ok(FunctionSupport { report_progress, report_sources, append_to_conversation }) } /// Process search request and return formatted results async fn process_search_request( index_scheduler: &GuardedData< ActionPolicy<{ actions::CHAT_COMPLETIONS }>, Data, >, auth_ctrl: web::Data, search_queue: &web::Data, auth_token: &str, index_uid: String, q: Option, ) -> Result<(Index, Vec, String), ResponseError> { // TBD // let mut aggregate = SearchAggregator::::from_query(&query); let index = index_scheduler.index(&index_uid)?; let rtxn = index.static_read_txn()?; let ChatConfig { description: _, prompt: _, search_parameters } = index.chat_config(&rtxn)?; let mut query = SearchQuery { q, ..SearchQuery::from(search_parameters) }; let auth_filter = ActionPolicy::<{ actions::SEARCH }>::authenticate( auth_ctrl, auth_token, Some(index_uid.as_str()), )?; // Tenant token search_rules. if let Some(search_rules) = auth_filter.get_index_search_rules(&index_uid) { add_search_rules(&mut query.filter, search_rules); } let search_kind = search_kind(&query, index_scheduler.get_ref(), index_uid.to_string(), &index)?; let permit = search_queue.try_get_search_permit().await?; let features = index_scheduler.features(); let index_cloned = index.clone(); let output = tokio::task::spawn_blocking(move || -> Result<_, ResponseError> { let time_budget = match index_cloned .search_cutoff(&rtxn) .map_err(|e| MeilisearchHttpError::from_milli(e, Some(index_uid.clone())))? { Some(cutoff) => TimeBudget::new(Duration::from_millis(cutoff)), None => TimeBudget::default(), }; let (search, _is_finite_pagination, _max_total_hits, _offset) = prepare_search(&index_cloned, &rtxn, &query, &search_kind, time_budget, features)?; search_from_kind(index_uid, search_kind, search) .map(|(search_results, _)| (rtxn, search_results)) .map_err(ResponseError::from) }) .await; permit.drop().await; let output = output?; let mut documents = Vec::new(); if let Ok((ref rtxn, ref search_result)) = output { // aggregate.succeed(search_result); if search_result.degraded { MEILISEARCH_DEGRADED_SEARCH_REQUESTS.inc(); } let fields_ids_map = index.fields_ids_map(rtxn)?; let displayed_fields = index.displayed_fields_ids(rtxn)?; for &document_id in &search_result.documents_ids { let obkv = index.document(rtxn, document_id)?; let document = match displayed_fields { Some(ref fields) => obkv_to_json(fields, &fields_ids_map, obkv)?, None => all_obkv_to_json(obkv, &fields_ids_map)?, }; documents.push(document); } } // analytics.publish(aggregate, &req); let (rtxn, search_result) = output?; let render_alloc = Bump::new(); let formatted = format_documents(&rtxn, &index, &render_alloc, search_result.documents_ids)?; let text = formatted.join("\n"); drop(rtxn); Ok((index, documents, text)) } async fn non_streamed_chat( index_scheduler: GuardedData, Data>, auth_ctrl: web::Data, search_queue: web::Data, workspace_uid: &str, req: HttpRequest, mut chat_completion: CreateChatCompletionRequest, ) -> Result { index_scheduler.features().check_chat_completions("Using the /chats chat completions route")?; let filters = index_scheduler.filters(); let rtxn = index_scheduler.read_txn()?; let chat_settings = match index_scheduler.chat_settings(&rtxn, workspace_uid).unwrap() { Some(settings) => settings, None => { return Err(ResponseError::from_msg( format!("Chat `{workspace_uid}` not found"), Code::ChatWorkspaceNotFound, )) } }; let mut config = OpenAIConfig::default(); if let Some(api_key) = chat_settings.api_key.as_ref() { config = config.with_api_key(api_key); } if let Some(base_api) = chat_settings.base_api.as_ref() { config = config.with_api_base(base_api); } let client = Client::with_config(config); let auth_token = extract_token_from_request(&req)?.unwrap(); // TODO do function support later let _function_support = setup_search_tool(&index_scheduler, filters, &mut chat_completion, &chat_settings.prompts)?; let mut response; loop { response = client.chat().create(chat_completion.clone()).await.unwrap(); let choice = &mut response.choices[0]; match choice.finish_reason { Some(FinishReason::ToolCalls) => { let tool_calls = mem::take(&mut choice.message.tool_calls).unwrap_or_default(); let (meili_calls, other_calls): (Vec<_>, Vec<_>) = tool_calls .into_iter() .partition(|call| call.function.name == MEILI_SEARCH_IN_INDEX_FUNCTION_NAME); chat_completion.messages.push( ChatCompletionRequestAssistantMessageArgs::default() .tool_calls(meili_calls.clone()) .build() .unwrap() .into(), ); for call in meili_calls { let result = match serde_json::from_str(&call.function.arguments) { Ok(SearchInIndexParameters { index_uid, q }) => process_search_request( &index_scheduler, auth_ctrl.clone(), &search_queue, auth_token, index_uid, q, ) .await .map_err(|e| e.to_string()), Err(err) => Err(err.to_string()), }; // TODO report documents sources later let text = match result { Ok((_, _documents, text)) => text, Err(err) => err, }; let answer = format!("{}\n\n{text}", chat_settings.prompts.pre_query); chat_completion.messages.push(ChatCompletionRequestMessage::Tool( ChatCompletionRequestToolMessage { tool_call_id: call.id.clone(), content: ChatCompletionRequestToolMessageContent::Text(answer), }, )); } // Let the client call other tools by themselves if !other_calls.is_empty() { response.choices[0].message.tool_calls = Some(other_calls); break; } } _ => break, } } Ok(HttpResponse::Ok().json(response)) } async fn streamed_chat( index_scheduler: GuardedData, Data>, auth_ctrl: web::Data, search_queue: web::Data, workspace_uid: &str, req: HttpRequest, mut chat_completion: CreateChatCompletionRequest, ) -> Result { index_scheduler.features().check_chat_completions("Using the /chats chat completions route")?; let filters = index_scheduler.filters(); let rtxn = index_scheduler.read_txn()?; let chat_settings = match index_scheduler.chat_settings(&rtxn, workspace_uid)? { Some(settings) => settings, None => { return Err(ResponseError::from_msg( format!("Chat `{workspace_uid}` not found"), Code::ChatWorkspaceNotFound, )) } }; drop(rtxn); let mut config = OpenAIConfig::default(); if let Some(api_key) = chat_settings.api_key.as_ref() { config = config.with_api_key(api_key); } if let Some(base_api) = chat_settings.base_api.as_ref() { config = config.with_api_base(base_api); } let auth_token = extract_token_from_request(&req)?.unwrap().to_string(); let function_support = setup_search_tool(&index_scheduler, filters, &mut chat_completion, &chat_settings.prompts)?; tracing::debug!("Conversation function support: {function_support:?}"); let (tx, rx) = tokio::sync::mpsc::channel(10); let tx = SseEventSender::new(tx); let _join_handle = Handle::current().spawn(async move { let client = Client::with_config(config.clone()); let mut global_tool_calls = HashMap::::new(); // Limit the number of internal calls to satisfy the search requests of the LLM for _ in 0..20 { let output = run_conversation( &index_scheduler, &auth_ctrl, &search_queue, &auth_token, &client, &chat_settings, &mut chat_completion, &tx, &mut global_tool_calls, function_support, ); match output.await { Ok(ControlFlow::Continue(())) => (), Ok(ControlFlow::Break(_finish_reason)) => break, // If the connection is closed we must stop Err(SendError(_)) => return, } } let _ = tx.stop().await; }); Ok(Sse::from_infallible_receiver(rx).with_retry_duration(Duration::from_secs(10))) } /// Updates the chat completion with the new messages, streams the LLM tokens, /// and report progress and errors. #[allow(clippy::too_many_arguments)] async fn run_conversation( index_scheduler: &GuardedData< ActionPolicy<{ actions::CHAT_COMPLETIONS }>, Data, >, auth_ctrl: &web::Data, search_queue: &web::Data, auth_token: &str, client: &Client, chat_settings: &DbChatSettings, chat_completion: &mut CreateChatCompletionRequest, tx: &SseEventSender, global_tool_calls: &mut HashMap, function_support: FunctionSupport, ) -> Result, ()>, SendError> { let mut finish_reason = None; // safety: The unwrap can only happen if the stream is not correctly configured. let mut response = client.chat().create_stream(chat_completion.clone()).await.unwrap(); while let Some(result) = response.next().await { match result { Ok(resp) => { let choice = &resp.choices[0]; finish_reason = choice.finish_reason; let ChatCompletionStreamResponseDelta { ref tool_calls, .. } = &choice.delta; match tool_calls { Some(tool_calls) => { for chunk in tool_calls { let ChatCompletionMessageToolCallChunk { index, id, r#type: _, function, } = chunk; let FunctionCallStream { name, arguments } = function.as_ref().unwrap(); global_tool_calls .entry(*index) .and_modify(|call| { if call.is_internal() { call.append(arguments.as_ref().unwrap()) } }) .or_insert_with(|| { if name.as_deref() == Some(MEILI_SEARCH_IN_INDEX_FUNCTION_NAME) { Call::Internal { id: id.as_ref().unwrap().clone(), function_name: name.as_ref().unwrap().clone(), arguments: arguments.as_ref().unwrap().clone(), } } else { Call::External } }); if global_tool_calls.get(index).is_some_and(Call::is_external) { todo!("Support forwarding external tool calls"); } } } None => { if !global_tool_calls.is_empty() { let (meili_calls, other_calls): (Vec<_>, Vec<_>) = mem::take(global_tool_calls) .into_values() .flat_map(|call| match call { Call::Internal { id, function_name: name, arguments } => { Some(ChatCompletionMessageToolCall { id, r#type: Some(ChatCompletionToolType::Function), function: FunctionCall { name, arguments }, }) } Call::External => None, }) .partition(|call| { call.function.name == MEILI_SEARCH_IN_INDEX_FUNCTION_NAME }); chat_completion.messages.push( ChatCompletionRequestAssistantMessageArgs::default() .tool_calls(meili_calls.clone()) .build() .unwrap() .into(), ); assert!( other_calls.is_empty(), "We do not support external tool forwarding for now" ); handle_meili_tools( index_scheduler, auth_ctrl, search_queue, auth_token, chat_settings, tx, meili_calls, chat_completion, &resp, function_support, ) .await?; } else { tx.forward_response(&resp).await?; } } } } Err(error) => { let error = StreamErrorEvent::from_openai_error(error).await.unwrap(); tx.send_error(&error).await?; return Ok(ControlFlow::Break(None)); } } } // We must stop if the finish reason is not something we can solve with Meilisearch match finish_reason { Some(FinishReason::ToolCalls) => Ok(ControlFlow::Continue(())), otherwise => Ok(ControlFlow::Break(otherwise)), } } #[allow(clippy::too_many_arguments)] async fn handle_meili_tools( index_scheduler: &GuardedData< ActionPolicy<{ actions::CHAT_COMPLETIONS }>, Data, >, auth_ctrl: &web::Data, search_queue: &web::Data, auth_token: &str, chat_settings: &DbChatSettings, tx: &SseEventSender, meili_calls: Vec, chat_completion: &mut CreateChatCompletionRequest, resp: &CreateChatCompletionStreamResponse, FunctionSupport { report_progress, report_sources, append_to_conversation, .. }: FunctionSupport, ) -> Result<(), SendError> { for call in meili_calls { if report_progress { tx.report_search_progress( resp.clone(), &call.id, &call.function.name, &call.function.arguments, ) .await?; } if append_to_conversation { tx.append_tool_call_conversation_message( resp.clone(), call.id.clone(), call.function.name.clone(), call.function.arguments.clone(), ) .await?; } let result = match serde_json::from_str(&call.function.arguments) { Ok(SearchInIndexParameters { index_uid, q }) => process_search_request( index_scheduler, auth_ctrl.clone(), search_queue, auth_token, index_uid, q, ) .await .map_err(|e| e.to_string()), Err(err) => Err(err.to_string()), }; let text = match result { Ok((_index, documents, text)) => { if report_sources { tx.report_sources(resp.clone(), &call.id, &documents).await?; } text } Err(err) => err, }; let answer = format!("{}\n\n{text}", chat_settings.prompts.pre_query); let tool = ChatCompletionRequestMessage::Tool(ChatCompletionRequestToolMessage { tool_call_id: call.id.clone(), content: ChatCompletionRequestToolMessageContent::Text(answer), }); if append_to_conversation { tx.append_conversation_message(resp.clone(), &tool).await?; } chat_completion.messages.push(tool); } Ok(()) } /// The structure used to aggregate the function calls to make. #[derive(Debug)] enum Call { /// Tool calls to tools that must be managed by Meilisearch internally. /// Typically the search functions. Internal { id: String, function_name: String, arguments: String }, /// Tool calls that we track but only to know that its not our functions. /// We return the function calls as-is to the end-user. External, } impl Call { fn is_internal(&self) -> bool { matches!(self, Call::Internal { .. }) } fn is_external(&self) -> bool { matches!(self, Call::External { .. }) } fn append(&mut self, more: &str) { match self { Call::Internal { arguments, .. } => arguments.push_str(more), Call::External { .. } => { panic!("Cannot append argument chunks to an external function") } } } } #[derive(Deserialize)] struct SearchInIndexParameters { /// The index uid to search in. index_uid: String, /// The query parameter to use. q: Option, }