use std::collections::BTreeMap; use meili_snap::{json_string, snapshot}; use reqwest::IntoUrl; use wiremock::matchers::{method, path}; use wiremock::{Mock, MockServer, Request, ResponseTemplate}; use crate::common::Value; use crate::json; use crate::vector::{get_server_vector, GetAllDocumentsOptions}; async fn create_mock() -> (MockServer, Value) { let mock_server = MockServer::start().await; let text_to_embedding: BTreeMap<_, _> = vec![ // text -> embedding ("kefir", [0.0, 0.0, 0.0]), ("intel", [1.0, 1.0, 1.0]), ] // turn into btree .into_iter() .collect(); Mock::given(method("POST")) .and(path("/")) .respond_with(move |req: &Request| { let text: String = req.body_json().unwrap(); ResponseTemplate::new(200).set_body_json( json!({ "data": text_to_embedding.get(text.as_str()).unwrap_or(&[99., 99., 99.]) }), ) }) .mount(&mock_server) .await; let url = mock_server.uri(); let embedder_settings = json!({ "source": "rest", "url": url, "dimensions": 3, "request": "{{text}}", "response": { "data": "{{embedding}}" }, "documentTemplate": "{{doc.name}}", }); (mock_server, embedder_settings) } async fn create_mock_default_template() -> (MockServer, Value) { let mock_server = MockServer::start().await; let text_to_embedding: BTreeMap<_, _> = vec![ // text -> embedding ("name: kefir\n", [0.0, 0.1, 0.2]), ] // turn into btree .into_iter() .collect(); Mock::given(method("POST")) .and(path("/")) .respond_with(move |req: &Request| { let text: String = req.body_json().unwrap(); match text_to_embedding.get(text.as_str()) { Some(embedding) => { ResponseTemplate::new(200).set_body_json(json!({ "data": embedding })) } None => ResponseTemplate::new(404) .set_body_json(json!({"error": "text not found", "text": text})), } }) .mount(&mock_server) .await; let url = mock_server.uri(); let embedder_settings = json!({ "source": "rest", "url": url, "dimensions": 3, "request": "{{text}}", "response": { "data": "{{embedding}}" } }); (mock_server, embedder_settings) } #[derive(Debug, Clone, serde::Deserialize, serde::Serialize)] struct MultipleRequest { input: Vec<String>, } #[derive(Debug, Clone, serde::Serialize, serde::Deserialize)] struct MultipleResponse { output: Vec<SingleResponse>, } #[derive(Debug, Clone, serde::Serialize, serde::Deserialize)] struct SingleResponse { text: String, embedding: Vec<f32>, } async fn create_mock_multiple() -> (MockServer, Value) { let mock_server = MockServer::start().await; let text_to_embedding: BTreeMap<_, _> = vec![ // text -> embedding ("kefir", [0.0, 0.0, 0.0]), ("intel", [1.0, 1.0, 1.0]), ] // turn into btree .into_iter() .collect(); Mock::given(method("POST")) .and(path("/")) .respond_with(move |req: &Request| { let req: MultipleRequest = match req.body_json() { Ok(req) => req, Err(error) => { return ResponseTemplate::new(400).set_body_json(json!({ "error": format!("Invalid request: {error}") })); } }; let output = req .input .into_iter() .map(|text| SingleResponse { embedding: text_to_embedding .get(text.as_str()) .unwrap_or(&[99., 99., 99.]) .to_vec(), text, }) .collect(); let response = MultipleResponse { output }; ResponseTemplate::new(200).set_body_json(response) }) .mount(&mock_server) .await; let url = mock_server.uri(); let embedder_settings = json!({ "source": "rest", "url": url, "dimensions": 3, "request": { "input": ["{{text}}", "{{..}}"] }, "response": { "output": [ { "embedding": "{{embedding}}" }, "{{..}}" ] }, "documentTemplate": "{{doc.name}}" }); (mock_server, embedder_settings) } #[derive(Debug, Clone, serde::Deserialize, serde::Serialize)] struct SingleRequest { input: String, } async fn create_mock_single_response_in_array() -> (MockServer, Value) { let mock_server = MockServer::start().await; let text_to_embedding: BTreeMap<_, _> = vec![ // text -> embedding ("kefir", [0.0, 0.0, 0.0]), ("intel", [1.0, 1.0, 1.0]), ] // turn into btree .into_iter() .collect(); Mock::given(method("POST")) .and(path("/")) .respond_with(move |req: &Request| { let req: SingleRequest = match req.body_json() { Ok(req) => req, Err(error) => { return ResponseTemplate::new(400).set_body_json(json!({ "error": format!("Invalid request: {error}") })); } }; let output = vec![SingleResponse { embedding: text_to_embedding .get(req.input.as_str()) .unwrap_or(&[99., 99., 99.]) .to_vec(), text: req.input, }]; let response = MultipleResponse { output }; ResponseTemplate::new(200).set_body_json(response) }) .mount(&mock_server) .await; let url = mock_server.uri(); let embedder_settings = json!({ "source": "rest", "url": url, "dimensions": 3, "request": { "input": "{{text}}" }, "response": { "output": [ { "embedding": "{{embedding}}" } ] }, "documentTemplate": "{{doc.name}}" }); (mock_server, embedder_settings) } async fn create_mock_raw_with_custom_header() -> (MockServer, Value) { let mock_server = MockServer::start().await; let text_to_embedding: BTreeMap<_, _> = vec![ // text -> embedding ("kefir", [0.0, 0.0, 0.0]), ("intel", [1.0, 1.0, 1.0]), ] // turn into btree .into_iter() .collect(); Mock::given(method("POST")) .and(path("/")) .respond_with(move |req: &Request| { match req.headers.get("my-nonstandard-auth") { Some(x) if x == "bearer of the ring" => {} Some(x) => { return ResponseTemplate::new(401).set_body_json( json!({"error": format!("thou shall not pass, {}", x.to_str().unwrap())}), ) } None => { return ResponseTemplate::new(401) .set_body_json(json!({"error": "missing header 'my-nonstandard-auth'"})) } } let req: String = match req.body_json() { Ok(req) => req, Err(error) => { return ResponseTemplate::new(400).set_body_json(json!({ "error": format!("Invalid request: {error}") })); } }; let output = text_to_embedding.get(req.as_str()).unwrap_or(&[99., 99., 99.]).to_vec(); ResponseTemplate::new(200).set_body_json(output) }) .mount(&mock_server) .await; let url = mock_server.uri(); let embedder_settings = json!({ "source": "rest", "url": url, "request": "{{text}}", "response": "{{embedding}}", "headers": {"my-nonstandard-auth": "bearer of the ring"}, "documentTemplate": "{{doc.name}}" }); (mock_server, embedder_settings) } async fn create_mock_raw() -> (MockServer, Value) { let mock_server = MockServer::start().await; let text_to_embedding: BTreeMap<_, _> = vec![ // text -> embedding ("kefir", [0.0, 0.0, 0.0]), ("intel", [1.0, 1.0, 1.0]), ] // turn into btree .into_iter() .collect(); Mock::given(method("POST")) .and(path("/")) .respond_with(move |req: &Request| { let req: String = match req.body_json() { Ok(req) => req, Err(error) => { return ResponseTemplate::new(400).set_body_json(json!({ "error": format!("Invalid request: {error}") })); } }; let output = text_to_embedding.get(req.as_str()).unwrap_or(&[99., 99., 99.]).to_vec(); ResponseTemplate::new(200).set_body_json(output) }) .mount(&mock_server) .await; let url = mock_server.uri(); let embedder_settings = json!({ "source": "rest", "url": url, "dimensions": 3, "request": "{{text}}", "response": "{{embedding}}", "documentTemplate": "{{doc.name}}" }); (mock_server, embedder_settings) } pub async fn post<T: IntoUrl>(url: T, text: &str) -> reqwest::Result<reqwest::Response> { reqwest::Client::builder().build()?.post(url).json(&json!(text)).send().await } #[actix_rt::test] async fn dummy_testing_the_mock() { let (mock, _setting) = create_mock().await; let body = post(&mock.uri(), "kefir").await.unwrap().text().await.unwrap(); snapshot!(body, @r###"{"data":[0.0,0.0,0.0]}"###); let body = post(&mock.uri(), "intel").await.unwrap().text().await.unwrap(); snapshot!(body, @r###"{"data":[1.0,1.0,1.0]}"###); let body = post(&mock.uri(), "kefir").await.unwrap().text().await.unwrap(); snapshot!(body, @r###"{"data":[0.0,0.0,0.0]}"###); let body = post(&mock.uri(), "kefir").await.unwrap().text().await.unwrap(); snapshot!(body, @r###"{"data":[0.0,0.0,0.0]}"###); let body = post(&mock.uri(), "intel").await.unwrap().text().await.unwrap(); snapshot!(body, @r###"{"data":[1.0,1.0,1.0]}"###); } #[actix_rt::test] async fn bad_request() { let (mock, _setting) = create_mock().await; let server = get_server_vector().await; let index = server.index("doggo"); // No placeholder string appear in the template let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": "54", "response": "{{embedding}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `request`: \"{{text}}\" not found", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); // A repeat string appears inside a repeated value let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": { "input": [ { "input": [ "{{text}}", "{{..}}" ] }, "{{..}}" ] }, "response": "{{embedding}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `request.input.input`: \"{{..}}\" appears nested inside of a value that is itself repeated", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); // A repeat string appears outside of an array let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": { "input": { "input": "{{text}}", "repeat": "{{..}}" } }, "response": "{{embedding}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `request.input.repeat`: \"{{..}}\" appears outside of an array", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); // A repeat string appears in an array, but not in the second position let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": { "input": [ "{{..}}", "{{text}}" ] }, "response": "{{embedding}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `request.input`: \"{{..}}\" expected at position #1, but found at position #0", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": { "input": [ "{{text}}", "42", "{{..}}", ] }, "response": "{{embedding}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `request.input`: \"{{..}}\" expected at position #1, but found at position #2", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); // A repeated value lacks a placeholder let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": { "input": [ "42", "{{..}}", ] }, "response": "{{embedding}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `request.input[0]`: Expected \"{{text}}\" inside of the repeated value", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); // Multiple repeat strings appear in the template let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": { "input": [ "{{text}}", "{{..}}", ], "data": [ "42", "{{..}}", ], }, "response": "{{embedding}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `request.data`: Found \"{{..}}\", but it was already present in `request.input`", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); // Multiple placeholder strings appear in the template let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": { "input": "{{text}}", "data": "{{text}}", }, "response": "{{embedding}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `request.data`: Found \"{{text}}\", but it was already present in `request.input`", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": {"repeated": [{ "input": "{{text}}", "data": [42, "{{text}}"], }, "{{..}}"]}, "response": "{{embedding}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `request.repeated.data[1]`: Found \"{{text}}\", but it was already present in `request.repeated.input`", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); // A placeholder appears both inside a repeated value and outside of it let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": { "input": ["{{text}}", "{{..}}"], "data": "{{text}}", }, "response": "{{embedding}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `request.data`: Found \"{{text}}\", but it was already present in `request.input[0]` (repeated)", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); } #[actix_rt::test] async fn bad_response() { let (mock, _setting) = create_mock().await; let server = get_server_vector().await; let index = server.index("doggo"); // No placeholder string appear in the template let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": "{{text}}", "response": "42" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `response`: \"{{embedding}}\" not found", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); // A repeat string appears inside a repeated value let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "response": { "output": [ { "output": [ "{{embedding}}", "{{..}}" ] }, "{{..}}" ] }, "request": "{{text}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `response.output.output`: \"{{..}}\" appears nested inside of a value that is itself repeated", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); // A repeat string appears outside of an array let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "response": { "output": { "output": "{{embedding}}", "repeat": "{{..}}" } }, "request": "{{text}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `response.output.repeat`: \"{{..}}\" appears outside of an array", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); // A repeat string appears in an array, but not in the second position let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "response": { "output": [ "{{..}}", "{{embedding}}" ] }, "request": "{{text}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `response.output`: \"{{..}}\" expected at position #1, but found at position #0", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "response": { "output": [ "{{embedding}}", "42", "{{..}}", ] }, "request": "{{text}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `response.output`: \"{{..}}\" expected at position #1, but found at position #2", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); // A repeated value lacks a placeholder let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "response": { "output": [ "42", "{{..}}", ] }, "request": "{{text}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `response.output[0]`: Expected \"{{embedding}}\" inside of the repeated value", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); // Multiple repeat strings appear in the template let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "response": { "output": [ "{{embedding}}", "{{..}}", ], "data": [ "42", "{{..}}", ], }, "request": "{{text}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `response.data`: Found \"{{..}}\", but it was already present in `response.output`", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); // Multiple placeholder strings appear in the template let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "response": { "output": [{"type": "data", "data": "{{embedding}}"}], "data": "{{embedding}}", }, "request": "{{text}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `response.data`: Found \"{{embedding}}\", but it was already present in `response.output[0].data`", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "response": {"repeated": [{ "output": "{{embedding}}", "data": [42, "{{embedding}}"], }, "{{..}}"]}, "request": "{{text}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `response.repeated.data[1]`: Found \"{{embedding}}\", but it was already present in `response.repeated.output`", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); // A placeholder appears both inside a repeated value and outside of it let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "response": { "output": ["{{embedding}}", "{{..}}"], "data": "{{embedding}}", }, "request": "{{text}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `response.data`: Found \"{{embedding}}\", but it was already present in `response.output[0]` (repeated)", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); // request sends a single text but response expects multiple embeddings let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "response": { "data": ["{{embedding}}", "{{..}}"], }, "request": "{{text}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `response`: `response` has multiple embeddings, but `request` has only one text to embed", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); // request sends multiple texts but response expects a single embedding let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "response": { "data": "{{embedding}}", }, "request": {"data": ["{{text}}", "{{..}}"]} }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `response`: `response` has a single embedding, but `request` has multiple texts to embed", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); } #[actix_rt::test] async fn bad_settings() { let (mock, _setting) = create_mock().await; let server = get_server_vector().await; let index = server.index("doggo"); let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "request": 42, "response": 42 }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `request`: \"{{text}}\" not found", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": "kefir", "request": 42, "response": 42 }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "`.embedders.rest.url`: could not parse `kefir`: relative URL without a base", "code": "invalid_settings_embedders", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#invalid_settings_embedders" } "###); let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "response": "{{text}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "`.embedders.rest`: Missing field `request` (note: this field is mandatory for source rest)", "code": "invalid_settings_embedders", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#invalid_settings_embedders" } "###); let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": "{{text}}" }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "`.embedders.rest`: Missing field `response` (note: this field is mandatory for source rest)", "code": "invalid_settings_embedders", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#invalid_settings_embedders" } "###); let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": "{{text}}", "response": 42 }), }, })) .await; snapshot!(code, @"400 Bad Request"); snapshot!(response, @r###" { "message": "Error while generating embeddings: user error: in `response`: \"{{embedding}}\" not found", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" } "###); let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": "{{text}}", "response": "{{embedding}}" }), }, })) .await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task, @r###" { "uid": "[uid]", "batchUid": "[batch_uid]", "indexUid": "doggo", "status": "failed", "type": "settingsUpdate", "canceledBy": null, "details": { "embedders": { "rest": { "source": "rest", "url": "[url]", "request": "{{text}}", "response": "{{embedding}}" } } }, "error": { "message": "Index `doggo`: Error while generating embeddings: runtime error: could not determine model dimensions:\n - test embedding failed with runtime error: error extracting embeddings from the response:\n - in `response`, while extracting a single \"{{embedding}}\", expected `response` to be an array of numbers, but failed to parse server response:\n - invalid type: map, expected a sequence", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" }, "duration": "[duration]", "enqueuedAt": "[date]", "startedAt": "[date]", "finishedAt": "[date]" } "###); // Validate an embedder with a bad dimension of 2 instead of 3 let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": "{{text}}", "response": { "data": "{{embedding}}" }, "dimensions": 2, "documentTemplate": "{{doc.name}}" }), }, })) .await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task["status"], @r###""succeeded""###); let (response, code) = index.add_documents(json!( { "id": 1, "name": "kefir" }), None).await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task, @r###" { "uid": "[uid]", "batchUid": "[batch_uid]", "indexUid": "doggo", "status": "failed", "type": "documentAdditionOrUpdate", "canceledBy": null, "details": { "receivedDocuments": 1, "indexedDocuments": 0 }, "error": { "message": "Index `doggo`: While embedding documents for embedder `rest`: runtime error: was expecting embeddings of dimension `2`, got embeddings of dimensions `3`", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" }, "duration": "[duration]", "enqueuedAt": "[date]", "startedAt": "[date]", "finishedAt": "[date]" } "###); } #[actix_rt::test] async fn add_vector_and_user_provided() { let (_mock, setting) = create_mock().await; let server = get_server_vector().await; let index = server.index("doggo"); let (response, code) = index .update_settings(json!({ "embedders": { "rest": setting, }, })) .await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task["status"], @r###""succeeded""###); let documents = json!([ {"id": 0, "name": "kefir"}, {"id": 1, "name": "echo", "_vectors": { "rest": [1, 1, 1] }}, {"id": 2, "name": "intel"}, ]); let (value, code) = index.add_documents(documents, None).await; snapshot!(code, @"202 Accepted"); let task = index.wait_task(value.uid()).await; snapshot!(task, @r###" { "uid": "[uid]", "batchUid": "[batch_uid]", "indexUid": "doggo", "status": "succeeded", "type": "documentAdditionOrUpdate", "canceledBy": null, "details": { "receivedDocuments": 3, "indexedDocuments": 3 }, "error": null, "duration": "[duration]", "enqueuedAt": "[date]", "startedAt": "[date]", "finishedAt": "[date]" } "###); let (documents, _code) = index .get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() }) .await; snapshot!(json_string!(documents), @r###" { "results": [ { "id": 0, "name": "kefir", "_vectors": { "rest": { "embeddings": [ [ 0.0, 0.0, 0.0 ] ], "regenerate": true } } }, { "id": 1, "name": "echo", "_vectors": { "rest": { "embeddings": [ [ 1.0, 1.0, 1.0 ] ], "regenerate": false } } }, { "id": 2, "name": "intel", "_vectors": { "rest": { "embeddings": [ [ 1.0, 1.0, 1.0 ] ], "regenerate": true } } } ], "offset": 0, "limit": 20, "total": 3 } "###); } #[actix_rt::test] async fn server_returns_bad_request() { let (mock, _setting) = create_mock_multiple().await; let server = get_server_vector().await; let index = server.index("doggo"); let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": "{{text}}", "response": "{{embedding}}" }), }, })) .await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task, @r###" { "uid": "[uid]", "batchUid": "[batch_uid]", "indexUid": "doggo", "status": "failed", "type": "settingsUpdate", "canceledBy": null, "details": { "embedders": { "rest": { "source": "rest", "url": "[url]", "request": "{{text}}", "response": "{{embedding}}" } } }, "error": { "message": "Index `doggo`: Error while generating embeddings: runtime error: could not determine model dimensions:\n - test embedding failed with user error: sent a bad request to embedding server\n - Hint: check that the `request` in the embedder configuration matches the remote server's API\n - server replied with `{\"error\":\"Invalid request: invalid type: string \\\"test\\\", expected struct MultipleRequest at line 1 column 6\"}`", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" }, "duration": "[duration]", "enqueuedAt": "[date]", "startedAt": "[date]", "finishedAt": "[date]" } "###); let (response, code) = index .update_settings(json!({ "searchableAttributes": ["name", "missing_field"], "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": "{{text}}", "response": "{{embedding}}", "dimensions": 3 }), }, })) .await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task, @r###" { "uid": "[uid]", "batchUid": "[batch_uid]", "indexUid": "doggo", "status": "succeeded", "type": "settingsUpdate", "canceledBy": null, "details": { "searchableAttributes": [ "name", "missing_field" ], "embedders": { "rest": { "source": "rest", "dimensions": 3, "url": "[url]", "request": "{{text}}", "response": "{{embedding}}" } } }, "error": null, "duration": "[duration]", "enqueuedAt": "[date]", "startedAt": "[date]", "finishedAt": "[date]" } "###); let (response, code) = index.add_documents(json!( { "id": 1, "name": "kefir" }), None).await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task, @r###" { "uid": "[uid]", "batchUid": "[batch_uid]", "indexUid": "doggo", "status": "failed", "type": "documentAdditionOrUpdate", "canceledBy": null, "details": { "receivedDocuments": 1, "indexedDocuments": 0 }, "error": { "message": "Index `doggo`: While embedding documents for embedder `rest`: user error: sent a bad request to embedding server\n - Hint: check that the `request` in the embedder configuration matches the remote server's API\n - server replied with `{\"error\":\"Invalid request: invalid type: string \\\"name: kefir\\\\n\\\", expected struct MultipleRequest at line 1 column 15\"}`", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" }, "duration": "[duration]", "enqueuedAt": "[date]", "startedAt": "[date]", "finishedAt": "[date]" } "###); } #[actix_rt::test] async fn server_returns_bad_response() { let (mock, _setting) = create_mock_multiple().await; let server = get_server_vector().await; let index = server.index("doggo"); let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": { "input": ["{{text}}", "{{..}}"] }, "response": ["{{embedding}}", "{{..}}"] }), }, })) .await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task, @r###" { "uid": "[uid]", "batchUid": "[batch_uid]", "indexUid": "doggo", "status": "failed", "type": "settingsUpdate", "canceledBy": null, "details": { "embedders": { "rest": { "source": "rest", "url": "[url]", "request": { "input": [ "{{text}}", "{{..}}" ] }, "response": [ "{{embedding}}", "{{..}}" ] } } }, "error": { "message": "Index `doggo`: Error while generating embeddings: runtime error: could not determine model dimensions:\n - test embedding failed with runtime error: error extracting embeddings from the response:\n - in `response`, while extracting the array of \"{{embedding}}\"s, configuration expects `response` to be an array with at least 1 item(s) but server sent an object with 1 field(s)", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" }, "duration": "[duration]", "enqueuedAt": "[date]", "startedAt": "[date]", "finishedAt": "[date]" } "###); let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": { "input": ["{{text}}", "{{..}}"] }, "response": { "output": ["{{embedding}}", "{{..}}"] } }), }, })) .await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task, @r###" { "uid": "[uid]", "batchUid": "[batch_uid]", "indexUid": "doggo", "status": "failed", "type": "settingsUpdate", "canceledBy": null, "details": { "embedders": { "rest": { "source": "rest", "url": "[url]", "request": { "input": [ "{{text}}", "{{..}}" ] }, "response": { "output": [ "{{embedding}}", "{{..}}" ] } } } }, "error": { "message": "Index `doggo`: Error while generating embeddings: runtime error: could not determine model dimensions:\n - test embedding failed with runtime error: error extracting embeddings from the response:\n - in `response`, while extracting item #0 from the array of \"{{embedding}}\"s, expected `response` to be an array of numbers, but failed to parse server response:\n - invalid type: map, expected a sequence", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" }, "duration": "[duration]", "enqueuedAt": "[date]", "startedAt": "[date]", "finishedAt": "[date]" } "###); let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": { "input": ["{{text}}"] }, "response": { "output": "{{embedding}}" } }), }, })) .await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task, @r###" { "uid": "[uid]", "batchUid": "[batch_uid]", "indexUid": "doggo", "status": "failed", "type": "settingsUpdate", "canceledBy": null, "details": { "embedders": { "rest": { "source": "rest", "url": "[url]", "request": { "input": [ "{{text}}" ] }, "response": { "output": "{{embedding}}" } } } }, "error": { "message": "Index `doggo`: Error while generating embeddings: runtime error: could not determine model dimensions:\n - test embedding failed with runtime error: error extracting embeddings from the response:\n - in `response.output`, while extracting a single \"{{embedding}}\", expected `output` to be an array of numbers, but failed to parse server response:\n - invalid type: map, expected f32", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" }, "duration": "[duration]", "enqueuedAt": "[date]", "startedAt": "[date]", "finishedAt": "[date]" } "###); let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": { "input": ["{{text}}", "{{..}}"] }, "response": { "output": [{ "embedding": { "data": "{{embedding}}" } }, "{{..}}"] } }), }, })) .await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task, @r###" { "uid": "[uid]", "batchUid": "[batch_uid]", "indexUid": "doggo", "status": "failed", "type": "settingsUpdate", "canceledBy": null, "details": { "embedders": { "rest": { "source": "rest", "url": "[url]", "request": { "input": [ "{{text}}", "{{..}}" ] }, "response": { "output": [ { "embedding": { "data": "{{embedding}}" } }, "{{..}}" ] } } } }, "error": { "message": "Index `doggo`: Error while generating embeddings: runtime error: could not determine model dimensions:\n - test embedding failed with runtime error: error extracting embeddings from the response:\n - in `response.embedding`, while extracting item #0 from the array of \"{{embedding}}\"s, configuration expects `embedding` to be an object with key `data` but server sent an array of size 3", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" }, "duration": "[duration]", "enqueuedAt": "[date]", "startedAt": "[date]", "finishedAt": "[date]" } "###); let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": { "input": ["{{text}}"] }, "response": { "output": [ { "embeddings": { "data": "{{embedding}}" } } ] } }), }, })) .await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task, @r###" { "uid": "[uid]", "batchUid": "[batch_uid]", "indexUid": "doggo", "status": "failed", "type": "settingsUpdate", "canceledBy": null, "details": { "embedders": { "rest": { "source": "rest", "url": "[url]", "request": { "input": [ "{{text}}" ] }, "response": { "output": [ { "embeddings": { "data": "{{embedding}}" } } ] } } } }, "error": { "message": "Index `doggo`: Error while generating embeddings: runtime error: could not determine model dimensions:\n - test embedding failed with runtime error: error extracting embeddings from the response:\n - in `response.output[0]`, while extracting a single \"{{embedding}}\", configuration expects key \"embeddings\", which is missing in response\n - Hint: item #0 inside `output` has key `embedding`, did you mean `response.output[0].embedding` in embedder configuration?", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" }, "duration": "[duration]", "enqueuedAt": "[date]", "startedAt": "[date]", "finishedAt": "[date]" } "###); } #[actix_rt::test] async fn server_returns_multiple() { let (_mock, setting) = create_mock_multiple().await; let server = get_server_vector().await; let index = server.index("doggo"); let (response, code) = index .update_settings(json!({ "embedders": { "rest": setting, }, })) .await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task["status"], @r###""succeeded""###); let documents = json!([ {"id": 0, "name": "kefir"}, {"id": 1, "name": "echo", "_vectors": { "rest": [1, 1, 1] }}, {"id": 2, "name": "intel"}, ]); let (value, code) = index.add_documents(documents, None).await; snapshot!(code, @"202 Accepted"); let task = index.wait_task(value.uid()).await; snapshot!(task, @r###" { "uid": "[uid]", "batchUid": "[batch_uid]", "indexUid": "doggo", "status": "succeeded", "type": "documentAdditionOrUpdate", "canceledBy": null, "details": { "receivedDocuments": 3, "indexedDocuments": 3 }, "error": null, "duration": "[duration]", "enqueuedAt": "[date]", "startedAt": "[date]", "finishedAt": "[date]" } "###); let (documents, _code) = index .get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() }) .await; snapshot!(json_string!(documents), @r###" { "results": [ { "id": 0, "name": "kefir", "_vectors": { "rest": { "embeddings": [ [ 0.0, 0.0, 0.0 ] ], "regenerate": true } } }, { "id": 1, "name": "echo", "_vectors": { "rest": { "embeddings": [ [ 1.0, 1.0, 1.0 ] ], "regenerate": false } } }, { "id": 2, "name": "intel", "_vectors": { "rest": { "embeddings": [ [ 1.0, 1.0, 1.0 ] ], "regenerate": true } } } ], "offset": 0, "limit": 20, "total": 3 } "###); } #[actix_rt::test] async fn server_single_input_returns_in_array() { let (_mock, setting) = create_mock_single_response_in_array().await; let server = get_server_vector().await; let index = server.index("doggo"); let (response, code) = index .update_settings(json!({ "embedders": { "rest": setting, }, })) .await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task["status"], @r###""succeeded""###); let documents = json!([ {"id": 0, "name": "kefir"}, {"id": 1, "name": "echo", "_vectors": { "rest": [1, 1, 1] }}, {"id": 2, "name": "intel"}, ]); let (value, code) = index.add_documents(documents, None).await; snapshot!(code, @"202 Accepted"); let task = index.wait_task(value.uid()).await; snapshot!(task, @r###" { "uid": "[uid]", "batchUid": "[batch_uid]", "indexUid": "doggo", "status": "succeeded", "type": "documentAdditionOrUpdate", "canceledBy": null, "details": { "receivedDocuments": 3, "indexedDocuments": 3 }, "error": null, "duration": "[duration]", "enqueuedAt": "[date]", "startedAt": "[date]", "finishedAt": "[date]" } "###); let (documents, _code) = index .get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() }) .await; snapshot!(json_string!(documents), @r###" { "results": [ { "id": 0, "name": "kefir", "_vectors": { "rest": { "embeddings": [ [ 0.0, 0.0, 0.0 ] ], "regenerate": true } } }, { "id": 1, "name": "echo", "_vectors": { "rest": { "embeddings": [ [ 1.0, 1.0, 1.0 ] ], "regenerate": false } } }, { "id": 2, "name": "intel", "_vectors": { "rest": { "embeddings": [ [ 1.0, 1.0, 1.0 ] ], "regenerate": true } } } ], "offset": 0, "limit": 20, "total": 3 } "###); } #[actix_rt::test] async fn server_raw() { let (_mock, setting) = create_mock_raw().await; let server = get_server_vector().await; let index = server.index("doggo"); let (response, code) = index .update_settings(json!({ "embedders": { "rest": setting, }, })) .await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task["status"], @r###""succeeded""###); let documents = json!([ {"id": 0, "name": "kefir"}, {"id": 1, "name": "echo", "_vectors": { "rest": [1, 1, 1] }}, {"id": 2, "name": "intel"}, ]); let (value, code) = index.add_documents(documents, None).await; snapshot!(code, @"202 Accepted"); let task = index.wait_task(value.uid()).await; snapshot!(task, @r###" { "uid": "[uid]", "batchUid": "[batch_uid]", "indexUid": "doggo", "status": "succeeded", "type": "documentAdditionOrUpdate", "canceledBy": null, "details": { "receivedDocuments": 3, "indexedDocuments": 3 }, "error": null, "duration": "[duration]", "enqueuedAt": "[date]", "startedAt": "[date]", "finishedAt": "[date]" } "###); let (documents, _code) = index .get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() }) .await; snapshot!(json_string!(documents), @r###" { "results": [ { "id": 0, "name": "kefir", "_vectors": { "rest": { "embeddings": [ [ 0.0, 0.0, 0.0 ] ], "regenerate": true } } }, { "id": 1, "name": "echo", "_vectors": { "rest": { "embeddings": [ [ 1.0, 1.0, 1.0 ] ], "regenerate": false } } }, { "id": 2, "name": "intel", "_vectors": { "rest": { "embeddings": [ [ 1.0, 1.0, 1.0 ] ], "regenerate": true } } } ], "offset": 0, "limit": 20, "total": 3 } "###); } #[actix_rt::test] async fn server_custom_header() { let (mock, setting) = create_mock_raw_with_custom_header().await; let server = get_server_vector().await; let index = server.index("doggo"); let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": "{{text}}", "response": "{{embedding}}" }), }, })) .await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task, @r###" { "uid": "[uid]", "batchUid": "[batch_uid]", "indexUid": "doggo", "status": "failed", "type": "settingsUpdate", "canceledBy": null, "details": { "embedders": { "rest": { "source": "rest", "url": "[url]", "request": "{{text}}", "response": "{{embedding}}" } } }, "error": { "message": "Index `doggo`: Error while generating embeddings: runtime error: could not determine model dimensions:\n - test embedding failed with user error: could not authenticate against embedding server\n - server replied with `{\"error\":\"missing header 'my-nonstandard-auth'\"}`\n - Hint: Check the `apiKey` parameter in the embedder configuration", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" }, "duration": "[duration]", "enqueuedAt": "[date]", "startedAt": "[date]", "finishedAt": "[date]" } "###); let (response, code) = index .update_settings(json!({ "embedders": { "rest": json!({ "source": "rest", "url": mock.uri(), "request": "{{text}}", "response": "{{embedding}}", "headers": {"my-nonstandard-auth": "Balrog"} }), }, })) .await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task, @r###" { "uid": "[uid]", "batchUid": "[batch_uid]", "indexUid": "doggo", "status": "failed", "type": "settingsUpdate", "canceledBy": null, "details": { "embedders": { "rest": { "source": "rest", "url": "[url]", "request": "{{text}}", "response": "{{embedding}}", "headers": { "my-nonstandard-auth": "Balrog" } } } }, "error": { "message": "Index `doggo`: Error while generating embeddings: runtime error: could not determine model dimensions:\n - test embedding failed with user error: could not authenticate against embedding server\n - server replied with `{\"error\":\"thou shall not pass, Balrog\"}`\n - Hint: Check the `apiKey` parameter in the embedder configuration", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" }, "duration": "[duration]", "enqueuedAt": "[date]", "startedAt": "[date]", "finishedAt": "[date]" } "###); let (response, code) = index .update_settings(json!({ "embedders": { "rest": setting, }, })) .await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task, @r###" { "uid": "[uid]", "batchUid": "[batch_uid]", "indexUid": "doggo", "status": "succeeded", "type": "settingsUpdate", "canceledBy": null, "details": { "embedders": { "rest": { "source": "rest", "documentTemplate": "{{doc.name}}", "url": "[url]", "request": "{{text}}", "response": "{{embedding}}", "headers": { "my-nonstandard-auth": "bearer of the ring" } } } }, "error": null, "duration": "[duration]", "enqueuedAt": "[date]", "startedAt": "[date]", "finishedAt": "[date]" } "###); } #[actix_rt::test] async fn searchable_reindex() { let (_mock, setting) = create_mock_default_template().await; let server = get_server_vector().await; let index = server.index("doggo"); let (response, code) = index .update_settings(json!({ "searchableAttributes": ["name", "missing_field"], "embedders": { "rest": setting, }, })) .await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task, @r###" { "uid": "[uid]", "batchUid": "[batch_uid]", "indexUid": "doggo", "status": "succeeded", "type": "settingsUpdate", "canceledBy": null, "details": { "searchableAttributes": [ "name", "missing_field" ], "embedders": { "rest": { "source": "rest", "dimensions": 3, "url": "[url]", "request": "{{text}}", "response": { "data": "{{embedding}}" } } } }, "error": null, "duration": "[duration]", "enqueuedAt": "[date]", "startedAt": "[date]", "finishedAt": "[date]" } "###); let (response, code) = index.add_documents(json!( { "id": 1, "name": "kefir", "breed": "patou" }), None).await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task, @r###" { "uid": "[uid]", "batchUid": "[batch_uid]", "indexUid": "doggo", "status": "succeeded", "type": "documentAdditionOrUpdate", "canceledBy": null, "details": { "receivedDocuments": 1, "indexedDocuments": 1 }, "error": null, "duration": "[duration]", "enqueuedAt": "[date]", "startedAt": "[date]", "finishedAt": "[date]" } "###); // triggers reindexing with the new searchable attribute. // as the mock intentionally doesn't know of this text, the task will fail, outputting the putative rendered text. let (response, code) = index .update_settings(json!({ "searchableAttributes": ["breed"], })) .await; snapshot!(code, @"202 Accepted"); let task = server.wait_task(response.uid()).await; snapshot!(task, @r###" { "uid": "[uid]", "batchUid": "[batch_uid]", "indexUid": "doggo", "status": "failed", "type": "settingsUpdate", "canceledBy": null, "details": { "searchableAttributes": [ "breed" ] }, "error": { "message": "Index `doggo`: While embedding documents for embedder `rest`: error: received unexpected HTTP 404 from embedding server\n - server replied with `{\"error\":\"text not found\",\"text\":\"breed: patou\\n\"}`", "code": "vector_embedding_error", "type": "invalid_request", "link": "https://docs.meilisearch.com/errors#vector_embedding_error" }, "duration": "[duration]", "enqueuedAt": "[date]", "startedAt": "[date]", "finishedAt": "[date]" } "###); }