use std::{borrow::Cow, cmp::{self, Ordering}, collections::BinaryHeap}; use std::collections::{BTreeMap, HashMap, btree_map}; use std::collections::binary_heap::PeekMut; use std::mem::take; use roaring::RoaringBitmap; use crate::{TreeLevel, search::build_dfa}; use crate::search::criteria::Query; use crate::search::query_tree::{Operation, QueryKind}; use crate::search::{word_derivations, WordDerivationsCache}; use super::{Criterion, CriterionParameters, CriterionResult, Context, resolve_query_tree}; /// To be able to divide integers by the number of words in the query /// we want to find a multiplier that allow us to divide by any number between 1 and 10. /// We chose the LCM of all numbers between 1 and 10 as the multiplier (https://en.wikipedia.org/wiki/Least_common_multiple). const LCM_10_FIRST_NUMBERS: u32 = 2520; /// To compute the interval size of a level, /// we use 4 as the exponentiation base and the level as the exponent. const LEVEL_EXPONENTIATION_BASE: u32 = 4; /// Threshold on the number of candidates that will make /// the system to choose between one algorithm or another. const CANDIDATES_THRESHOLD: u64 = 1000; type FlattenedQueryTree = Vec>>; pub struct Attribute<'t> { ctx: &'t dyn Context<'t>, state: Option<(Operation, FlattenedQueryTree, RoaringBitmap)>, bucket_candidates: RoaringBitmap, parent: Box, current_buckets: Option>, } impl<'t> Attribute<'t> { pub fn new(ctx: &'t dyn Context<'t>, parent: Box) -> Self { Attribute { ctx, state: None, bucket_candidates: RoaringBitmap::new(), parent, current_buckets: None, } } } impl<'t> Criterion for Attribute<'t> { #[logging_timer::time("Attribute::{}")] fn next(&mut self, params: &mut CriterionParameters) -> anyhow::Result> { // remove excluded candidates when next is called, instead of doing it in the loop. if let Some((_, _, allowed_candidates)) = self.state.as_mut() { *allowed_candidates -= params.excluded_candidates; } loop { match self.state.take() { Some((query_tree, _, allowed_candidates)) if allowed_candidates.is_empty() => { return Ok(Some(CriterionResult { query_tree: Some(query_tree), candidates: Some(RoaringBitmap::new()), filtered_candidates: None, bucket_candidates: Some(take(&mut self.bucket_candidates)), })); }, Some((query_tree, flattened_query_tree, mut allowed_candidates)) => { let found_candidates = if allowed_candidates.len() < CANDIDATES_THRESHOLD { let current_buckets = match self.current_buckets.as_mut() { Some(current_buckets) => current_buckets, None => { let new_buckets = linear_compute_candidates(self.ctx, &flattened_query_tree, &allowed_candidates)?; self.current_buckets.get_or_insert(new_buckets.into_iter()) }, }; match current_buckets.next() { Some((_score, candidates)) => candidates, None => { return Ok(Some(CriterionResult { query_tree: Some(query_tree), candidates: Some(RoaringBitmap::new()), filtered_candidates: None, bucket_candidates: Some(take(&mut self.bucket_candidates)), })); }, } } else { match set_compute_candidates(self.ctx, &flattened_query_tree, &allowed_candidates, params.wdcache)? { Some(candidates) => candidates, None => { return Ok(Some(CriterionResult { query_tree: Some(query_tree), candidates: Some(RoaringBitmap::new()), filtered_candidates: None, bucket_candidates: Some(take(&mut self.bucket_candidates)), })); }, } }; allowed_candidates -= &found_candidates; self.state = Some((query_tree.clone(), flattened_query_tree, allowed_candidates)); return Ok(Some(CriterionResult { query_tree: Some(query_tree), candidates: Some(found_candidates), filtered_candidates: None, bucket_candidates: Some(take(&mut self.bucket_candidates)), })); }, None => { match self.parent.next(params)? { Some(CriterionResult { query_tree: Some(query_tree), candidates, filtered_candidates, bucket_candidates }) => { let mut candidates = match candidates { Some(candidates) => candidates, None => resolve_query_tree(self.ctx, &query_tree, params.wdcache)? - params.excluded_candidates, }; if let Some(filtered_candidates) = filtered_candidates { candidates &= filtered_candidates; } let flattened_query_tree = flatten_query_tree(&query_tree); match bucket_candidates { Some(bucket_candidates) => self.bucket_candidates |= bucket_candidates, None => self.bucket_candidates |= &candidates, } self.state = Some((query_tree, flattened_query_tree, candidates)); self.current_buckets = None; }, Some(CriterionResult { query_tree: None, candidates, filtered_candidates, bucket_candidates }) => { return Ok(Some(CriterionResult { query_tree: None, candidates, filtered_candidates, bucket_candidates, })); }, None => return Ok(None), } }, } } } } /// WordLevelIterator is an pseudo-Iterator over intervals of word-position for one word, /// it will begin at the first non-empty interval and will return every interval without /// jumping over empty intervals. struct WordLevelIterator<'t, 'q> { inner: Box> + 't>, level: TreeLevel, interval_size: u32, word: Cow<'q, str>, in_prefix_cache: bool, inner_next: Option<(u32, u32, RoaringBitmap)>, current_interval: Option<(u32, u32)>, } impl<'t, 'q> WordLevelIterator<'t, 'q> { fn new(ctx: &'t dyn Context<'t>, word: Cow<'q, str>, in_prefix_cache: bool) -> heed::Result> { match ctx.word_position_last_level(&word, in_prefix_cache)? { Some(level) => { let interval_size = LEVEL_EXPONENTIATION_BASE.pow(Into::::into(level) as u32); let inner = ctx.word_position_iterator(&word, level, in_prefix_cache, None, None)?; Ok(Some(Self { inner, level, interval_size, word, in_prefix_cache, inner_next: None, current_interval: None })) }, None => Ok(None), } } fn dig(&self, ctx: &'t dyn Context<'t>, level: &TreeLevel, left_interval: Option) -> heed::Result { let level = *level.min(&self.level); let interval_size = LEVEL_EXPONENTIATION_BASE.pow(Into::::into(level) as u32); let word = self.word.clone(); let in_prefix_cache = self.in_prefix_cache; let inner = ctx.word_position_iterator(&word, level, in_prefix_cache, left_interval, None)?; Ok(Self {inner, level, interval_size, word, in_prefix_cache, inner_next: None, current_interval: None}) } fn next(&mut self) -> heed::Result> { fn is_next_interval(last_right: u32, next_left: u32) -> bool { last_right + 1 == next_left } let inner_next = match self.inner_next.take() { Some(inner_next) => Some(inner_next), None => self.inner.next().transpose()?.map(|((_, _, left, right), docids)| (left, right, docids)), }; match inner_next { Some((left, right, docids)) => { match self.current_interval { Some((last_left, last_right)) if !is_next_interval(last_right, left) => { let blank_left = last_left + self.interval_size; let blank_right = last_right + self.interval_size; self.current_interval = Some((blank_left, blank_right)); self.inner_next = Some((left, right, docids)); Ok(Some((blank_left, blank_right, RoaringBitmap::new()))) }, _ => { self.current_interval = Some((left, right)); Ok(Some((left, right, docids))) } } }, None => Ok(None), } } } /// QueryLevelIterator is an pseudo-Iterator for a Query, /// It contains WordLevelIterators and is chainned with other QueryLevelIterator. struct QueryLevelIterator<'t, 'q> { parent: Option>>, inner: Vec>, level: TreeLevel, accumulator: Vec>, parent_accumulator: Vec>, interval_to_skip: usize, } impl<'t, 'q> QueryLevelIterator<'t, 'q> { fn new(ctx: &'t dyn Context<'t>, queries: &'q [Query], wdcache: &mut WordDerivationsCache) -> anyhow::Result> { let mut inner = Vec::with_capacity(queries.len()); for query in queries { match &query.kind { QueryKind::Exact { word, .. } => { if !query.prefix || ctx.in_prefix_cache(&word) { let word = Cow::Borrowed(query.kind.word()); if let Some(word_level_iterator) = WordLevelIterator::new(ctx, word, query.prefix)? { inner.push(word_level_iterator); } } else { for (word, _) in word_derivations(&word, true, 0, ctx.words_fst(), wdcache)? { let word = Cow::Owned(word.to_owned()); if let Some(word_level_iterator) = WordLevelIterator::new(ctx, word, false)? { inner.push(word_level_iterator); } } } }, QueryKind::Tolerant { typo, word } => { for (word, _) in word_derivations(&word, query.prefix, *typo, ctx.words_fst(), wdcache)? { let word = Cow::Owned(word.to_owned()); if let Some(word_level_iterator) = WordLevelIterator::new(ctx, word, false)? { inner.push(word_level_iterator); } } } } } let highest = inner.iter().max_by_key(|wli| wli.level).map(|wli| wli.level); match highest { Some(level) => Ok(Some(Self { parent: None, inner, level, accumulator: vec![], parent_accumulator: vec![], interval_to_skip: 0, })), None => Ok(None), } } fn parent(&mut self, parent: QueryLevelIterator<'t, 'q>) -> &Self { self.parent = Some(Box::new(parent)); self } /// create a new QueryLevelIterator with a lower level than the current one. fn dig(&self, ctx: &'t dyn Context<'t>) -> heed::Result { let (level, parent) = match &self.parent { Some(parent) => { let parent = parent.dig(ctx)?; (parent.level.min(self.level), Some(Box::new(parent))) }, None => (self.level.saturating_sub(1), None), }; let left_interval = self.accumulator.get(self.interval_to_skip).map(|opt| opt.as_ref().map(|(left, _, _)| *left)).flatten(); let mut inner = Vec::with_capacity(self.inner.len()); for word_level_iterator in self.inner.iter() { inner.push(word_level_iterator.dig(ctx, &level, left_interval)?); } Ok(Self {parent, inner, level, accumulator: vec![], parent_accumulator: vec![], interval_to_skip: 0}) } fn inner_next(&mut self, level: TreeLevel) -> heed::Result> { let mut accumulated: Option<(u32, u32, RoaringBitmap)> = None; let u8_level = Into::::into(level); let interval_size = LEVEL_EXPONENTIATION_BASE.pow(u8_level as u32); for wli in self.inner.iter_mut() { let wli_u8_level = Into::::into(wli.level); let accumulated_count = LEVEL_EXPONENTIATION_BASE.pow((u8_level - wli_u8_level) as u32); for _ in 0..accumulated_count { if let Some((next_left, _, next_docids)) = wli.next()? { accumulated = match accumulated.take(){ Some((acc_left, acc_right, mut acc_docids)) => { acc_docids |= next_docids; Some((acc_left, acc_right, acc_docids)) }, None => Some((next_left, next_left + interval_size, next_docids)), }; } } } Ok(accumulated) } /// return the next meta-interval created from inner WordLevelIterators, /// and from eventual chainned QueryLevelIterator. fn next(&mut self, allowed_candidates: &RoaringBitmap, tree_level: TreeLevel) -> heed::Result> { let parent_result = match self.parent.as_mut() { Some(parent) => Some(parent.next(allowed_candidates, tree_level)?), None => None, }; match parent_result { Some(parent_next) => { let inner_next = self.inner_next(tree_level)?; self.interval_to_skip += interval_to_skip( &self.parent_accumulator, &self.accumulator, self.interval_to_skip, allowed_candidates ); self.accumulator.push(inner_next); self.parent_accumulator.push(parent_next); let mut merged_interval: Option<(u32, u32, RoaringBitmap)> = None; for current in self.accumulator.iter().rev().zip(self.parent_accumulator.iter()).skip(self.interval_to_skip) { if let (Some((left_a, right_a, a)), Some((left_b, right_b, b))) = current { match merged_interval.as_mut() { Some((_, _, merged_docids)) => *merged_docids |= a & b, None => merged_interval = Some((left_a + left_b, right_a + right_b, a & b)), } } } Ok(merged_interval) }, None => { let level = self.level; match self.inner_next(level)? { Some((left, right, mut candidates)) => { self.accumulator = vec![Some((left, right, RoaringBitmap::new()))]; candidates &= allowed_candidates; Ok(Some((left, right, candidates))) }, None => { self.accumulator = vec![None]; Ok(None) }, } } } } } /// Count the number of interval that can be skiped when we make the cross-intersections /// in order to compute the next meta-interval. /// A pair of intervals is skiped when both intervals doesn't contain any allowed docids. fn interval_to_skip( parent_accumulator: &[Option<(u32, u32, RoaringBitmap)>], current_accumulator: &[Option<(u32, u32, RoaringBitmap)>], already_skiped: usize, allowed_candidates: &RoaringBitmap, ) -> usize { parent_accumulator.iter() .zip(current_accumulator.iter()) .skip(already_skiped) .take_while(|(parent, current)| { let skip_parent = parent.as_ref().map_or(true, |(_, _, docids)| docids.is_empty()); let skip_current = current.as_ref().map_or(true, |(_, _, docids)| docids.is_disjoint(allowed_candidates)); skip_parent && skip_current }) .count() } /// A Branch is represent a possible alternative of the original query and is build with the Query Tree, /// This branch allows us to iterate over meta-interval of position and to dig in it if it contains interesting candidates. struct Branch<'t, 'q> { query_level_iterator: QueryLevelIterator<'t, 'q>, last_result: (u32, u32, RoaringBitmap), tree_level: TreeLevel, branch_size: u32, } impl<'t, 'q> Branch<'t, 'q> { /// return the next meta-interval of the branch, /// and update inner interval in order to be ranked by the BinaryHeap. fn next(&mut self, allowed_candidates: &RoaringBitmap) -> heed::Result { let tree_level = self.query_level_iterator.level; match self.query_level_iterator.next(allowed_candidates, tree_level)? { Some(last_result) => { self.last_result = last_result; self.tree_level = tree_level; Ok(true) }, None => Ok(false), } } /// make the current Branch iterate over smaller intervals. fn dig(&mut self, ctx: &'t dyn Context<'t>) -> heed::Result<()> { self.query_level_iterator = self.query_level_iterator.dig(ctx)?; Ok(()) } /// because next() method could be time consuming, /// update inner interval in order to be ranked by the binary_heap without computing it, /// the next() method should be called when the real interval is needed. fn lazy_next(&mut self) { let u8_level = Into::::into(self.tree_level); let interval_size = LEVEL_EXPONENTIATION_BASE.pow(u8_level as u32); let (left, right, _) = self.last_result; self.last_result = (left + interval_size, right + interval_size, RoaringBitmap::new()); } /// return the score of the current inner interval. fn compute_rank(&self) -> u32 { // we compute a rank from the left interval. let (left, _, _) = self.last_result; left.saturating_sub((0..self.branch_size).sum()) * LCM_10_FIRST_NUMBERS / self.branch_size } fn cmp(&self, other: &Self) -> Ordering { let self_rank = self.compute_rank(); let other_rank = other.compute_rank(); let left_cmp = self_rank.cmp(&other_rank).reverse(); // on level: lower is better, // we want to dig faster into levels on interesting branches. let level_cmp = self.tree_level.cmp(&other.tree_level).reverse(); left_cmp.then(level_cmp).then(self.last_result.2.len().cmp(&other.last_result.2.len())) } } impl<'t, 'q> Ord for Branch<'t, 'q> { fn cmp(&self, other: &Self) -> Ordering { self.cmp(other) } } impl<'t, 'q> PartialOrd for Branch<'t, 'q> { fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } impl<'t, 'q> PartialEq for Branch<'t, 'q> { fn eq(&self, other: &Self) -> bool { self.cmp(other) == Ordering::Equal } } impl<'t, 'q> Eq for Branch<'t, 'q> {} fn initialize_query_level_iterators<'t, 'q>( ctx: &'t dyn Context<'t>, branches: &'q FlattenedQueryTree, allowed_candidates: &RoaringBitmap, wdcache: &mut WordDerivationsCache, ) -> anyhow::Result>> { let mut positions = BinaryHeap::with_capacity(branches.len()); for branch in branches { let mut branch_positions = Vec::with_capacity(branch.len()); for queries in branch { match QueryLevelIterator::new(ctx, queries, wdcache)? { Some(qli) => branch_positions.push(qli), None => { // the branch seems to be invalid, so we skip it. branch_positions.clear(); break; }, } } // QueryLevelIterator need to be sorted by level and folded in descending order. branch_positions.sort_unstable_by_key(|qli| qli.level); let folded_query_level_iterators = branch_positions .into_iter() .fold(None, |fold: Option, mut qli| match fold { Some(fold) => { qli.parent(fold); Some(qli) }, None => Some(qli), }); if let Some(mut folded_query_level_iterators) = folded_query_level_iterators { let tree_level = folded_query_level_iterators.level; let last_result = folded_query_level_iterators.next(allowed_candidates, tree_level)?; if let Some(last_result) = last_result { let branch = Branch { last_result, tree_level, query_level_iterator: folded_query_level_iterators, branch_size: branch.len() as u32, }; positions.push(branch); } } } Ok(positions) } fn set_compute_candidates<'t>( ctx: &'t dyn Context<'t>, branches: &FlattenedQueryTree, allowed_candidates: &RoaringBitmap, wdcache: &mut WordDerivationsCache, ) -> anyhow::Result> { let mut branches_heap = initialize_query_level_iterators(ctx, branches, allowed_candidates, wdcache)?; let lowest_level = TreeLevel::min_value(); let mut final_candidates: Option<(u32, RoaringBitmap)> = None; let mut allowed_candidates = allowed_candidates.clone(); while let Some(mut branch) = branches_heap.peek_mut() { let is_lowest_level = branch.tree_level == lowest_level; let branch_rank = branch.compute_rank(); // if current is worst than best we break to return // candidates that correspond to the best rank if let Some((best_rank, _)) = final_candidates { if branch_rank > best_rank { break } } let _left = branch.last_result.0; let candidates = take(&mut branch.last_result.2); if candidates.is_empty() { // we don't have candidates, get next interval. if !branch.next(&allowed_candidates)? { PeekMut::pop(branch); } } else if is_lowest_level { // we have candidates, but we can't dig deeper. allowed_candidates -= &candidates; final_candidates = match final_candidates.take() { // we add current candidates to best candidates Some((best_rank, mut best_candidates)) => { best_candidates |= candidates; branch.lazy_next(); Some((best_rank, best_candidates)) }, // we take current candidates as best candidates None => { branch.lazy_next(); Some((branch_rank, candidates)) }, }; } else { // we have candidates, lets dig deeper in levels. branch.dig(ctx)?; if !branch.next(&allowed_candidates)? { PeekMut::pop(branch); } } } Ok(final_candidates.map(|(_rank, candidates)| candidates)) } fn linear_compute_candidates( ctx: &dyn Context, branches: &FlattenedQueryTree, allowed_candidates: &RoaringBitmap, ) -> anyhow::Result> { fn compute_candidate_rank(branches: &FlattenedQueryTree, words_positions: HashMap) -> u64 { let mut min_rank = u64::max_value(); for branch in branches { let branch_len = branch.len(); let mut branch_rank = Vec::with_capacity(branch_len); for derivates in branch { let mut position = None; for Query { prefix, kind } in derivates { // find the best position of the current word in the document. let current_position = match kind { QueryKind::Exact { word, .. } => { if *prefix { word_derivations(word, true, 0, &words_positions) .flat_map(|positions| positions.iter().next()).min() } else { words_positions.get(word) .map(|positions| positions.iter().next()) .flatten() } }, QueryKind::Tolerant { typo, word } => { word_derivations(word, *prefix, *typo, &words_positions) .flat_map(|positions| positions.iter().next()).min() }, }; match (position, current_position) { (Some(p), Some(cp)) => position = Some(cmp::min(p, cp)), (None, Some(cp)) => position = Some(cp), _ => (), } } // if a position is found, we add it to the branch score, // otherwise the branch is considered as unfindable in this document and we break. if let Some(position) = position { branch_rank.push(position as u64); } else { branch_rank.clear(); break; } } if !branch_rank.is_empty() { branch_rank.sort_unstable(); // because several words in same query can't match all a the position 0, // we substract the word index to the position. let branch_rank: u64 = branch_rank.into_iter().enumerate().map(|(i, r)| r - i as u64).sum(); // here we do the means of the words of the branch min_rank = min_rank.min(branch_rank * LCM_10_FIRST_NUMBERS as u64 / branch_len as u64); } } min_rank } fn word_derivations<'a>( word: &str, is_prefix: bool, max_typo: u8, words_positions: &'a HashMap, ) -> impl Iterator { let dfa = build_dfa(word, max_typo, is_prefix); words_positions.iter().filter_map(move |(document_word, positions)| { use levenshtein_automata::Distance; match dfa.eval(document_word) { Distance::Exact(_) => Some(positions), Distance::AtLeast(_) => None, } }) } let mut candidates = BTreeMap::new(); for docid in allowed_candidates { let words_positions = ctx.docid_words_positions(docid)?; let rank = compute_candidate_rank(branches, words_positions); candidates.entry(rank).or_insert_with(RoaringBitmap::new).insert(docid); } Ok(candidates) } // TODO can we keep refs of Query fn flatten_query_tree(query_tree: &Operation) -> FlattenedQueryTree { use crate::search::criteria::Operation::{And, Or, Consecutive}; fn and_recurse(head: &Operation, tail: &[Operation]) -> FlattenedQueryTree { match tail.split_first() { Some((thead, tail)) => { let tail = and_recurse(thead, tail); let mut out = Vec::new(); for array in recurse(head) { for tail_array in &tail { let mut array = array.clone(); array.extend(tail_array.iter().cloned()); out.push(array); } } out }, None => recurse(head), } } fn recurse(op: &Operation) -> FlattenedQueryTree { match op { And(ops) | Consecutive(ops) => { ops.split_first().map_or_else(Vec::new, |(h, t)| and_recurse(h, t)) }, Or(_, ops) => if ops.iter().all(|op| op.query().is_some()) { vec![vec![ops.iter().flat_map(|op| op.query()).cloned().collect()]] } else { ops.iter().map(recurse).flatten().collect() }, Operation::Query(query) => vec![vec![vec![query.clone()]]], } } recurse(query_tree) } #[cfg(test)] mod tests { use big_s::S; use crate::search::criteria::QueryKind; use super::*; #[test] fn simple_flatten_query_tree() { let query_tree = Operation::Or(false, vec![ Operation::Query(Query { prefix: false, kind: QueryKind::exact(S("manythefish")) }), Operation::And(vec![ Operation::Query(Query { prefix: false, kind: QueryKind::exact(S("manythe")) }), Operation::Query(Query { prefix: false, kind: QueryKind::exact(S("fish")) }), ]), Operation::And(vec![ Operation::Query(Query { prefix: false, kind: QueryKind::exact(S("many")) }), Operation::Or(false, vec![ Operation::Query(Query { prefix: false, kind: QueryKind::exact(S("thefish")) }), Operation::And(vec![ Operation::Query(Query { prefix: false, kind: QueryKind::exact(S("the")) }), Operation::Query(Query { prefix: false, kind: QueryKind::exact(S("fish")) }), ]), ]), ]), ]); let expected = vec![ vec![vec![Query { prefix: false, kind: QueryKind::exact(S("manythefish")) }]], vec![ vec![Query { prefix: false, kind: QueryKind::exact(S("manythe")) }], vec![Query { prefix: false, kind: QueryKind::exact(S("fish")) }], ], vec![ vec![Query { prefix: false, kind: QueryKind::exact(S("many")) }], vec![Query { prefix: false, kind: QueryKind::exact(S("thefish")) }], ], vec![ vec![Query { prefix: false, kind: QueryKind::exact(S("many")) }], vec![Query { prefix: false, kind: QueryKind::exact(S("the")) }], vec![Query { prefix: false, kind: QueryKind::exact(S("fish")) }], ], ]; let result = flatten_query_tree(&query_tree); assert_eq!(expected, result); } }