use core::fmt; use std::cmp::min; use std::collections::{BTreeMap, BTreeSet, HashSet}; use std::str::FromStr; use std::sync::Arc; use std::time::{Duration, Instant}; use deserr::Deserr; use either::Either; use indexmap::IndexMap; use meilisearch_auth::IndexSearchRules; use meilisearch_types::deserr::DeserrJsonError; use meilisearch_types::error::deserr_codes::*; use meilisearch_types::error::{Code, ResponseError}; use meilisearch_types::heed::RoTxn; use meilisearch_types::index_uid::IndexUid; use meilisearch_types::milli::score_details::{ScoreDetails, ScoringStrategy}; use meilisearch_types::milli::vector::parsed_vectors::ExplicitVectors; use meilisearch_types::milli::vector::Embedder; use meilisearch_types::milli::{FacetValueHit, OrderBy, SearchForFacetValues, TimeBudget}; use meilisearch_types::settings::DEFAULT_PAGINATION_MAX_TOTAL_HITS; use meilisearch_types::{milli, Document}; use milli::tokenizer::TokenizerBuilder; use milli::{ AscDesc, FieldId, FieldsIdsMap, Filter, FormatOptions, Index, MatchBounds, MatcherBuilder, SortError, TermsMatchingStrategy, DEFAULT_VALUES_PER_FACET, }; use regex::Regex; use serde::Serialize; use serde_json::{json, Value}; use crate::error::MeilisearchHttpError; type MatchesPosition = BTreeMap>; pub const DEFAULT_SEARCH_OFFSET: fn() -> usize = || 0; pub const DEFAULT_SEARCH_LIMIT: fn() -> usize = || 20; pub const DEFAULT_CROP_LENGTH: fn() -> usize = || 10; pub const DEFAULT_CROP_MARKER: fn() -> String = || "…".to_string(); pub const DEFAULT_HIGHLIGHT_PRE_TAG: fn() -> String = || "".to_string(); pub const DEFAULT_HIGHLIGHT_POST_TAG: fn() -> String = || "".to_string(); pub const DEFAULT_SEMANTIC_RATIO: fn() -> SemanticRatio = || SemanticRatio(0.5); #[derive(Clone, Default, PartialEq, Deserr)] #[deserr(error = DeserrJsonError, rename_all = camelCase, deny_unknown_fields)] pub struct SearchQuery { #[deserr(default, error = DeserrJsonError)] pub q: Option, #[deserr(default, error = DeserrJsonError)] pub vector: Option>, #[deserr(default, error = DeserrJsonError)] pub hybrid: Option, #[deserr(default = DEFAULT_SEARCH_OFFSET(), error = DeserrJsonError)] pub offset: usize, #[deserr(default = DEFAULT_SEARCH_LIMIT(), error = DeserrJsonError)] pub limit: usize, #[deserr(default, error = DeserrJsonError)] pub page: Option, #[deserr(default, error = DeserrJsonError)] pub hits_per_page: Option, #[deserr(default, error = DeserrJsonError)] pub attributes_to_retrieve: Option>, #[deserr(default, error = DeserrJsonError)] pub retrieve_vectors: bool, #[deserr(default, error = DeserrJsonError)] pub attributes_to_crop: Option>, #[deserr(default, error = DeserrJsonError, default = DEFAULT_CROP_LENGTH())] pub crop_length: usize, #[deserr(default, error = DeserrJsonError)] pub attributes_to_highlight: Option>, #[deserr(default, error = DeserrJsonError, default)] pub show_matches_position: bool, #[deserr(default, error = DeserrJsonError, default)] pub show_ranking_score: bool, #[deserr(default, error = DeserrJsonError, default)] pub show_ranking_score_details: bool, #[deserr(default, error = DeserrJsonError)] pub filter: Option, #[deserr(default, error = DeserrJsonError)] pub sort: Option>, #[deserr(default, error = DeserrJsonError)] pub distinct: Option, #[deserr(default, error = DeserrJsonError)] pub facets: Option>, #[deserr(default, error = DeserrJsonError, default = DEFAULT_HIGHLIGHT_PRE_TAG())] pub highlight_pre_tag: String, #[deserr(default, error = DeserrJsonError, default = DEFAULT_HIGHLIGHT_POST_TAG())] pub highlight_post_tag: String, #[deserr(default, error = DeserrJsonError, default = DEFAULT_CROP_MARKER())] pub crop_marker: String, #[deserr(default, error = DeserrJsonError, default)] pub matching_strategy: MatchingStrategy, #[deserr(default, error = DeserrJsonError, default)] pub attributes_to_search_on: Option>, #[deserr(default, error = DeserrJsonError, default)] pub ranking_score_threshold: Option, } #[derive(Debug, Clone, Copy, PartialEq, Deserr)] #[deserr(try_from(f64) = TryFrom::try_from -> InvalidSearchRankingScoreThreshold)] pub struct RankingScoreThreshold(f64); impl std::convert::TryFrom for RankingScoreThreshold { type Error = InvalidSearchRankingScoreThreshold; fn try_from(f: f64) -> Result { // the suggested "fix" is: `!(0.0..=1.0).contains(&f)`` which is allegedly less readable #[allow(clippy::manual_range_contains)] if f > 1.0 || f < 0.0 { Err(InvalidSearchRankingScoreThreshold) } else { Ok(RankingScoreThreshold(f)) } } } #[derive(Debug, Clone, Copy, PartialEq, Deserr)] #[deserr(try_from(f64) = TryFrom::try_from -> InvalidSimilarRankingScoreThreshold)] pub struct RankingScoreThresholdSimilar(f64); impl std::convert::TryFrom for RankingScoreThresholdSimilar { type Error = InvalidSimilarRankingScoreThreshold; fn try_from(f: f64) -> Result { // the suggested "fix" is: `!(0.0..=1.0).contains(&f)`` which is allegedly less readable #[allow(clippy::manual_range_contains)] if f > 1.0 || f < 0.0 { Err(InvalidSimilarRankingScoreThreshold) } else { Ok(Self(f)) } } } // Since this structure is logged A LOT we're going to reduce the number of things it logs to the bare minimum. // - Only what IS used, we know everything else is set to None so there is no need to print it // - Re-order the most important field to debug first impl fmt::Debug for SearchQuery { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let Self { q, vector, hybrid, offset, limit, page, hits_per_page, attributes_to_retrieve, retrieve_vectors, attributes_to_crop, crop_length, attributes_to_highlight, show_matches_position, show_ranking_score, show_ranking_score_details, filter, sort, distinct, facets, highlight_pre_tag, highlight_post_tag, crop_marker, matching_strategy, attributes_to_search_on, ranking_score_threshold, } = self; let mut debug = f.debug_struct("SearchQuery"); // First, everything related to the number of documents to retrieve debug.field("limit", &limit).field("offset", &offset); if let Some(page) = page { debug.field("page", &page); } if let Some(hits_per_page) = hits_per_page { debug.field("hits_per_page", &hits_per_page); } // Then, everything related to the queries if let Some(q) = q { debug.field("q", &q); } if *retrieve_vectors { debug.field("retrieve_vectors", &retrieve_vectors); } if let Some(v) = vector { if v.len() < 10 { debug.field("vector", &v); } else { debug.field( "vector", &format!("[{}, {}, {}, ... {} dimensions]", v[0], v[1], v[2], v.len()), ); } } if let Some(hybrid) = hybrid { debug.field("hybrid", &hybrid); } if let Some(attributes_to_search_on) = attributes_to_search_on { debug.field("attributes_to_search_on", &attributes_to_search_on); } if let Some(filter) = filter { debug.field("filter", &filter); } if let Some(sort) = sort { debug.field("sort", &sort); } if let Some(distinct) = distinct { debug.field("distinct", &distinct); } if let Some(facets) = facets { debug.field("facets", &facets); } debug.field("matching_strategy", &matching_strategy); // Then everything related to the formatting debug.field("crop_length", &crop_length); if *show_matches_position { debug.field("show_matches_position", show_matches_position); } if *show_ranking_score { debug.field("show_ranking_score", show_ranking_score); } if *show_ranking_score_details { debug.field("self.show_ranking_score_details", show_ranking_score_details); } debug.field("crop_length", &crop_length); if let Some(facets) = facets { debug.field("facets", &facets); } if let Some(attributes_to_retrieve) = attributes_to_retrieve { debug.field("attributes_to_retrieve", &attributes_to_retrieve); } if let Some(attributes_to_crop) = attributes_to_crop { debug.field("attributes_to_crop", &attributes_to_crop); } if let Some(attributes_to_highlight) = attributes_to_highlight { debug.field("attributes_to_highlight", &attributes_to_highlight); } debug.field("highlight_pre_tag", &highlight_pre_tag); debug.field("highlight_post_tag", &highlight_post_tag); debug.field("crop_marker", &crop_marker); if let Some(ranking_score_threshold) = ranking_score_threshold { debug.field("ranking_score_threshold", &ranking_score_threshold); } debug.finish() } } #[derive(Debug, Clone, Default, PartialEq, Deserr)] #[deserr(error = DeserrJsonError, rename_all = camelCase, deny_unknown_fields)] pub struct HybridQuery { #[deserr(default, error = DeserrJsonError, default)] pub semantic_ratio: SemanticRatio, #[deserr(default, error = DeserrJsonError, default)] pub embedder: Option, } pub enum SearchKind { KeywordOnly, SemanticOnly { embedder_name: String, embedder: Arc }, Hybrid { embedder_name: String, embedder: Arc, semantic_ratio: f32 }, } impl SearchKind { pub(crate) fn semantic( index_scheduler: &index_scheduler::IndexScheduler, index: &Index, embedder_name: Option<&str>, vector_len: Option, ) -> Result { let (embedder_name, embedder) = Self::embedder(index_scheduler, index, embedder_name, vector_len)?; Ok(Self::SemanticOnly { embedder_name, embedder }) } pub(crate) fn hybrid( index_scheduler: &index_scheduler::IndexScheduler, index: &Index, embedder_name: Option<&str>, semantic_ratio: f32, vector_len: Option, ) -> Result { let (embedder_name, embedder) = Self::embedder(index_scheduler, index, embedder_name, vector_len)?; Ok(Self::Hybrid { embedder_name, embedder, semantic_ratio }) } pub(crate) fn embedder( index_scheduler: &index_scheduler::IndexScheduler, index: &Index, embedder_name: Option<&str>, vector_len: Option, ) -> Result<(String, Arc), ResponseError> { let embedder_configs = index.embedding_configs(&index.read_txn()?)?; let embedders = index_scheduler.embedders(embedder_configs)?; let embedder_name = embedder_name.unwrap_or_else(|| embedders.get_default_embedder_name()); let embedder = embedders.get(embedder_name); let embedder = embedder .ok_or(milli::UserError::InvalidEmbedder(embedder_name.to_owned())) .map_err(milli::Error::from)? .0; if let Some(vector_len) = vector_len { if vector_len != embedder.dimensions() { return Err(meilisearch_types::milli::Error::UserError( meilisearch_types::milli::UserError::InvalidVectorDimensions { expected: embedder.dimensions(), found: vector_len, }, ) .into()); } } Ok((embedder_name.to_owned(), embedder)) } } #[derive(Debug, Clone, Copy, PartialEq, Deserr)] #[deserr(try_from(f32) = TryFrom::try_from -> InvalidSearchSemanticRatio)] pub struct SemanticRatio(f32); impl Default for SemanticRatio { fn default() -> Self { DEFAULT_SEMANTIC_RATIO() } } impl std::convert::TryFrom for SemanticRatio { type Error = InvalidSearchSemanticRatio; fn try_from(f: f32) -> Result { // the suggested "fix" is: `!(0.0..=1.0).contains(&f)`` which is allegedly less readable #[allow(clippy::manual_range_contains)] if f > 1.0 || f < 0.0 { Err(InvalidSearchSemanticRatio) } else { Ok(SemanticRatio(f)) } } } impl std::ops::Deref for SemanticRatio { type Target = f32; fn deref(&self) -> &Self::Target { &self.0 } } impl SearchQuery { pub fn is_finite_pagination(&self) -> bool { self.page.or(self.hits_per_page).is_some() } } /// A `SearchQuery` + an index UID. // This struct contains the fields of `SearchQuery` inline. // This is because neither deserr nor serde support `flatten` when using `deny_unknown_fields. // The `From` implementation ensures both structs remain up to date. #[derive(Debug, Clone, PartialEq, Deserr)] #[deserr(error = DeserrJsonError, rename_all = camelCase, deny_unknown_fields)] pub struct SearchQueryWithIndex { #[deserr(error = DeserrJsonError, missing_field_error = DeserrJsonError::missing_index_uid)] pub index_uid: IndexUid, #[deserr(default, error = DeserrJsonError)] pub q: Option, #[deserr(default, error = DeserrJsonError)] pub vector: Option>, #[deserr(default, error = DeserrJsonError)] pub hybrid: Option, #[deserr(default = DEFAULT_SEARCH_OFFSET(), error = DeserrJsonError)] pub offset: usize, #[deserr(default = DEFAULT_SEARCH_LIMIT(), error = DeserrJsonError)] pub limit: usize, #[deserr(default, error = DeserrJsonError)] pub page: Option, #[deserr(default, error = DeserrJsonError)] pub hits_per_page: Option, #[deserr(default, error = DeserrJsonError)] pub attributes_to_retrieve: Option>, #[deserr(default, error = DeserrJsonError)] pub retrieve_vectors: bool, #[deserr(default, error = DeserrJsonError)] pub attributes_to_crop: Option>, #[deserr(default, error = DeserrJsonError, default = DEFAULT_CROP_LENGTH())] pub crop_length: usize, #[deserr(default, error = DeserrJsonError)] pub attributes_to_highlight: Option>, #[deserr(default, error = DeserrJsonError, default)] pub show_ranking_score: bool, #[deserr(default, error = DeserrJsonError, default)] pub show_ranking_score_details: bool, #[deserr(default, error = DeserrJsonError, default)] pub show_matches_position: bool, #[deserr(default, error = DeserrJsonError)] pub filter: Option, #[deserr(default, error = DeserrJsonError)] pub sort: Option>, #[deserr(default, error = DeserrJsonError)] pub distinct: Option, #[deserr(default, error = DeserrJsonError)] pub facets: Option>, #[deserr(default, error = DeserrJsonError, default = DEFAULT_HIGHLIGHT_PRE_TAG())] pub highlight_pre_tag: String, #[deserr(default, error = DeserrJsonError, default = DEFAULT_HIGHLIGHT_POST_TAG())] pub highlight_post_tag: String, #[deserr(default, error = DeserrJsonError, default = DEFAULT_CROP_MARKER())] pub crop_marker: String, #[deserr(default, error = DeserrJsonError, default)] pub matching_strategy: MatchingStrategy, #[deserr(default, error = DeserrJsonError, default)] pub attributes_to_search_on: Option>, #[deserr(default, error = DeserrJsonError, default)] pub ranking_score_threshold: Option, } impl SearchQueryWithIndex { pub fn into_index_query(self) -> (IndexUid, SearchQuery) { let SearchQueryWithIndex { index_uid, q, vector, offset, limit, page, hits_per_page, attributes_to_retrieve, retrieve_vectors, attributes_to_crop, crop_length, attributes_to_highlight, show_ranking_score, show_ranking_score_details, show_matches_position, filter, sort, distinct, facets, highlight_pre_tag, highlight_post_tag, crop_marker, matching_strategy, attributes_to_search_on, hybrid, ranking_score_threshold, } = self; ( index_uid, SearchQuery { q, vector, offset, limit, page, hits_per_page, attributes_to_retrieve, retrieve_vectors, attributes_to_crop, crop_length, attributes_to_highlight, show_ranking_score, show_ranking_score_details, show_matches_position, filter, sort, distinct, facets, highlight_pre_tag, highlight_post_tag, crop_marker, matching_strategy, attributes_to_search_on, hybrid, ranking_score_threshold, // do not use ..Default::default() here, // rather add any missing field from `SearchQuery` to `SearchQueryWithIndex` }, ) } } #[derive(Debug, Clone, PartialEq, Deserr)] #[deserr(error = DeserrJsonError, rename_all = camelCase, deny_unknown_fields)] pub struct SimilarQuery { #[deserr(error = DeserrJsonError)] pub id: ExternalDocumentId, #[deserr(default = DEFAULT_SEARCH_OFFSET(), error = DeserrJsonError)] pub offset: usize, #[deserr(default = DEFAULT_SEARCH_LIMIT(), error = DeserrJsonError)] pub limit: usize, #[deserr(default, error = DeserrJsonError)] pub filter: Option, #[deserr(default, error = DeserrJsonError, default)] pub embedder: Option, #[deserr(default, error = DeserrJsonError)] pub attributes_to_retrieve: Option>, #[deserr(default, error = DeserrJsonError)] pub retrieve_vectors: bool, #[deserr(default, error = DeserrJsonError, default)] pub show_ranking_score: bool, #[deserr(default, error = DeserrJsonError, default)] pub show_ranking_score_details: bool, #[deserr(default, error = DeserrJsonError, default)] pub ranking_score_threshold: Option, } #[derive(Debug, Clone, PartialEq, Deserr)] #[deserr(try_from(Value) = TryFrom::try_from -> InvalidSimilarId)] pub struct ExternalDocumentId(String); impl AsRef for ExternalDocumentId { fn as_ref(&self) -> &str { &self.0 } } impl ExternalDocumentId { pub fn into_inner(self) -> String { self.0 } } impl TryFrom for ExternalDocumentId { type Error = InvalidSimilarId; fn try_from(value: String) -> Result { serde_json::Value::String(value).try_into() } } impl TryFrom for ExternalDocumentId { type Error = InvalidSimilarId; fn try_from(value: Value) -> Result { Ok(Self(milli::documents::validate_document_id_value(value).map_err(|_| InvalidSimilarId)?)) } } #[derive(Debug, Copy, Clone, PartialEq, Eq, Deserr)] #[deserr(rename_all = camelCase)] pub enum MatchingStrategy { /// Remove query words from last to first Last, /// All query words are mandatory All, /// Remove query words from the most frequent to the least Frequency, } impl Default for MatchingStrategy { fn default() -> Self { Self::Last } } impl From for TermsMatchingStrategy { fn from(other: MatchingStrategy) -> Self { match other { MatchingStrategy::Last => Self::Last, MatchingStrategy::All => Self::All, MatchingStrategy::Frequency => Self::Frequency, } } } #[derive(Debug, Default, Clone, PartialEq, Eq, Deserr)] #[deserr(rename_all = camelCase)] pub enum FacetValuesSort { /// Facet values are sorted in alphabetical order, ascending from A to Z. #[default] Alpha, /// Facet values are sorted by decreasing count. /// The count is the number of records containing this facet value in the results of the query. Count, } impl From for OrderBy { fn from(val: FacetValuesSort) -> Self { match val { FacetValuesSort::Alpha => OrderBy::Lexicographic, FacetValuesSort::Count => OrderBy::Count, } } } #[derive(Debug, Clone, Serialize, PartialEq)] pub struct SearchHit { #[serde(flatten)] pub document: Document, #[serde(rename = "_formatted", skip_serializing_if = "Document::is_empty")] pub formatted: Document, #[serde(rename = "_matchesPosition", skip_serializing_if = "Option::is_none")] pub matches_position: Option, #[serde(rename = "_rankingScore", skip_serializing_if = "Option::is_none")] pub ranking_score: Option, #[serde(rename = "_rankingScoreDetails", skip_serializing_if = "Option::is_none")] pub ranking_score_details: Option>, } #[derive(Serialize, Clone, PartialEq)] #[serde(rename_all = "camelCase")] pub struct SearchResult { pub hits: Vec, pub query: String, pub processing_time_ms: u128, #[serde(flatten)] pub hits_info: HitsInfo, #[serde(skip_serializing_if = "Option::is_none")] pub facet_distribution: Option>>, #[serde(skip_serializing_if = "Option::is_none")] pub facet_stats: Option>, #[serde(skip_serializing_if = "Option::is_none")] pub semantic_hit_count: Option, // These fields are only used for analytics purposes #[serde(skip)] pub degraded: bool, #[serde(skip)] pub used_negative_operator: bool, } impl fmt::Debug for SearchResult { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let SearchResult { hits, query, processing_time_ms, hits_info, facet_distribution, facet_stats, semantic_hit_count, degraded, used_negative_operator, } = self; let mut debug = f.debug_struct("SearchResult"); // The most important thing when looking at a search result is the time it took to process debug.field("processing_time_ms", &processing_time_ms); debug.field("hits", &format!("[{} hits returned]", hits.len())); debug.field("query", &query); debug.field("hits_info", &hits_info); if *used_negative_operator { debug.field("used_negative_operator", used_negative_operator); } if *degraded { debug.field("degraded", degraded); } if let Some(facet_distribution) = facet_distribution { debug.field("facet_distribution", &facet_distribution); } if let Some(facet_stats) = facet_stats { debug.field("facet_stats", &facet_stats); } if let Some(semantic_hit_count) = semantic_hit_count { debug.field("semantic_hit_count", &semantic_hit_count); } debug.finish() } } #[derive(Serialize, Debug, Clone, PartialEq)] #[serde(rename_all = "camelCase")] pub struct SimilarResult { pub hits: Vec, pub id: String, pub processing_time_ms: u128, #[serde(flatten)] pub hits_info: HitsInfo, } #[derive(Serialize, Debug, Clone, PartialEq)] #[serde(rename_all = "camelCase")] pub struct SearchResultWithIndex { pub index_uid: String, #[serde(flatten)] pub result: SearchResult, } #[derive(Serialize, Debug, Clone, PartialEq, Eq)] #[serde(untagged)] pub enum HitsInfo { #[serde(rename_all = "camelCase")] Pagination { hits_per_page: usize, page: usize, total_pages: usize, total_hits: usize }, #[serde(rename_all = "camelCase")] OffsetLimit { limit: usize, offset: usize, estimated_total_hits: usize }, } #[derive(Serialize, Debug, Clone, PartialEq)] pub struct FacetStats { pub min: f64, pub max: f64, } #[derive(Serialize, Debug, Clone, PartialEq)] #[serde(rename_all = "camelCase")] pub struct FacetSearchResult { pub facet_hits: Vec, pub facet_query: Option, pub processing_time_ms: u128, } /// Incorporate search rules in search query pub fn add_search_rules(filter: &mut Option, rules: IndexSearchRules) { *filter = match (filter.take(), rules.filter) { (None, rules_filter) => rules_filter, (filter, None) => filter, (Some(filter), Some(rules_filter)) => { let filter = match filter { Value::Array(filter) => filter, filter => vec![filter], }; let rules_filter = match rules_filter { Value::Array(rules_filter) => rules_filter, rules_filter => vec![rules_filter], }; Some(Value::Array([filter, rules_filter].concat())) } } } fn prepare_search<'t>( index: &'t Index, rtxn: &'t RoTxn, query: &'t SearchQuery, search_kind: &SearchKind, time_budget: TimeBudget, ) -> Result<(milli::Search<'t>, bool, usize, usize), MeilisearchHttpError> { let mut search = index.search(rtxn); search.time_budget(time_budget); if let Some(ranking_score_threshold) = query.ranking_score_threshold { search.ranking_score_threshold(ranking_score_threshold.0); } if let Some(distinct) = &query.distinct { search.distinct(distinct.clone()); } match search_kind { SearchKind::KeywordOnly => { if let Some(q) = &query.q { search.query(q); } } SearchKind::SemanticOnly { embedder_name, embedder } => { let vector = match query.vector.clone() { Some(vector) => vector, None => { let span = tracing::trace_span!(target: "search::vector", "embed_one"); let _entered = span.enter(); embedder .embed_one(query.q.clone().unwrap()) .map_err(milli::vector::Error::from) .map_err(milli::Error::from)? } }; search.semantic(embedder_name.clone(), embedder.clone(), Some(vector)); } SearchKind::Hybrid { embedder_name, embedder, semantic_ratio: _ } => { if let Some(q) = &query.q { search.query(q); } // will be embedded in hybrid search if necessary search.semantic(embedder_name.clone(), embedder.clone(), query.vector.clone()); } } if let Some(ref searchable) = query.attributes_to_search_on { search.searchable_attributes(searchable); } let is_finite_pagination = query.is_finite_pagination(); search.terms_matching_strategy(query.matching_strategy.into()); let max_total_hits = index .pagination_max_total_hits(rtxn) .map_err(milli::Error::from)? .map(|x| x as usize) .unwrap_or(DEFAULT_PAGINATION_MAX_TOTAL_HITS); search.exhaustive_number_hits(is_finite_pagination); search.scoring_strategy( if query.show_ranking_score || query.show_ranking_score_details || query.ranking_score_threshold.is_some() { ScoringStrategy::Detailed } else { ScoringStrategy::Skip }, ); // compute the offset on the limit depending on the pagination mode. let (offset, limit) = if is_finite_pagination { let limit = query.hits_per_page.unwrap_or_else(DEFAULT_SEARCH_LIMIT); let page = query.page.unwrap_or(1); // page 0 gives a limit of 0 forcing Meilisearch to return no document. page.checked_sub(1).map_or((0, 0), |p| (limit * p, limit)) } else { (query.offset, query.limit) }; // Make sure that a user can't get more documents than the hard limit, // we align that on the offset too. let offset = min(offset, max_total_hits); let limit = min(limit, max_total_hits.saturating_sub(offset)); search.offset(offset); search.limit(limit); if let Some(ref filter) = query.filter { if let Some(facets) = parse_filter(filter)? { search.filter(facets); } } if let Some(ref sort) = query.sort { let sort = match sort.iter().map(|s| AscDesc::from_str(s)).collect() { Ok(sorts) => sorts, Err(asc_desc_error) => { return Err(milli::Error::from(SortError::from(asc_desc_error)).into()) } }; search.sort_criteria(sort); } Ok((search, is_finite_pagination, max_total_hits, offset)) } pub fn perform_search( index: &Index, query: SearchQuery, search_kind: SearchKind, retrieve_vectors: RetrieveVectors, ) -> Result { let before_search = Instant::now(); let rtxn = index.read_txn()?; let time_budget = match index.search_cutoff(&rtxn)? { Some(cutoff) => TimeBudget::new(Duration::from_millis(cutoff)), None => TimeBudget::default(), }; let (search, is_finite_pagination, max_total_hits, offset) = prepare_search(index, &rtxn, &query, &search_kind, time_budget)?; let ( milli::SearchResult { documents_ids, matching_words, candidates, document_scores, degraded, used_negative_operator, }, semantic_hit_count, ) = match &search_kind { SearchKind::KeywordOnly => (search.execute()?, None), SearchKind::SemanticOnly { .. } => { let results = search.execute()?; let semantic_hit_count = results.document_scores.len() as u32; (results, Some(semantic_hit_count)) } SearchKind::Hybrid { semantic_ratio, .. } => search.execute_hybrid(*semantic_ratio)?, }; let SearchQuery { q, limit, page, hits_per_page, attributes_to_retrieve, // use the enum passed as parameter retrieve_vectors: _, attributes_to_crop, crop_length, attributes_to_highlight, show_matches_position, show_ranking_score, show_ranking_score_details, sort, facets, highlight_pre_tag, highlight_post_tag, crop_marker, // already used in prepare_search vector: _, hybrid: _, offset: _, ranking_score_threshold: _, matching_strategy: _, attributes_to_search_on: _, filter: _, distinct: _, } = query; let format = AttributesFormat { attributes_to_retrieve, retrieve_vectors, attributes_to_highlight, attributes_to_crop, crop_length, crop_marker, highlight_pre_tag, highlight_post_tag, show_matches_position, sort, show_ranking_score, show_ranking_score_details, }; let documents = make_hits(index, &rtxn, format, matching_words, documents_ids, document_scores)?; let number_of_hits = min(candidates.len() as usize, max_total_hits); let hits_info = if is_finite_pagination { let hits_per_page = hits_per_page.unwrap_or_else(DEFAULT_SEARCH_LIMIT); // If hit_per_page is 0, then pages can't be computed and so we respond 0. let total_pages = (number_of_hits + hits_per_page.saturating_sub(1)) .checked_div(hits_per_page) .unwrap_or(0); HitsInfo::Pagination { hits_per_page, page: page.unwrap_or(1), total_pages, total_hits: number_of_hits, } } else { HitsInfo::OffsetLimit { limit, offset, estimated_total_hits: number_of_hits } }; let (facet_distribution, facet_stats) = match facets { Some(ref fields) => { let mut facet_distribution = index.facets_distribution(&rtxn); let max_values_by_facet = index .max_values_per_facet(&rtxn) .map_err(milli::Error::from)? .map(|x| x as usize) .unwrap_or(DEFAULT_VALUES_PER_FACET); facet_distribution.max_values_per_facet(max_values_by_facet); let sort_facet_values_by = index.sort_facet_values_by(&rtxn).map_err(milli::Error::from)?; if fields.iter().all(|f| f != "*") { let fields: Vec<_> = fields.iter().map(|n| (n, sort_facet_values_by.get(n))).collect(); facet_distribution.facets(fields); } let distribution = facet_distribution .candidates(candidates) .default_order_by(sort_facet_values_by.get("*")) .execute()?; let stats = facet_distribution.compute_stats()?; (Some(distribution), Some(stats)) } None => (None, None), }; let facet_stats = facet_stats.map(|stats| { stats.into_iter().map(|(k, (min, max))| (k, FacetStats { min, max })).collect() }); let result = SearchResult { hits: documents, hits_info, query: q.unwrap_or_default(), processing_time_ms: before_search.elapsed().as_millis(), facet_distribution, facet_stats, degraded, used_negative_operator, semantic_hit_count, }; Ok(result) } struct AttributesFormat { attributes_to_retrieve: Option>, retrieve_vectors: RetrieveVectors, attributes_to_highlight: Option>, attributes_to_crop: Option>, crop_length: usize, crop_marker: String, highlight_pre_tag: String, highlight_post_tag: String, show_matches_position: bool, sort: Option>, show_ranking_score: bool, show_ranking_score_details: bool, } #[derive(Debug, Clone, Copy, PartialEq, Eq)] pub enum RetrieveVectors { /// Do not touch the `_vectors` field /// /// this is the behavior when the vectorStore feature is disabled Ignore, /// Remove the `_vectors` field /// /// this is the behavior when the vectorStore feature is enabled, and `retrieveVectors` is `false` Hide, /// Retrieve vectors from the DB and merge them into the `_vectors` field /// /// this is the behavior when the vectorStore feature is enabled, and `retrieveVectors` is `true` Retrieve, } impl RetrieveVectors { pub fn new( retrieve_vector: bool, features: index_scheduler::RoFeatures, ) -> Result { match (retrieve_vector, features.check_vector("Passing `retrieveVectors` as a parameter")) { (true, Ok(())) => Ok(Self::Retrieve), (true, Err(error)) => Err(error), (false, Ok(())) => Ok(Self::Hide), (false, Err(_)) => Ok(Self::Ignore), } } } fn make_hits( index: &Index, rtxn: &RoTxn<'_>, format: AttributesFormat, matching_words: milli::MatchingWords, documents_ids: Vec, document_scores: Vec>, ) -> Result, MeilisearchHttpError> { let fields_ids_map = index.fields_ids_map(rtxn).unwrap(); let displayed_ids = index.displayed_fields_ids(rtxn)?.map(|fields| fields.into_iter().collect::>()); let vectors_fid = fields_ids_map.id(milli::vector::parsed_vectors::RESERVED_VECTORS_FIELD_NAME); let vectors_is_hidden = match (&displayed_ids, vectors_fid) { // displayed_ids is a wildcard, so `_vectors` can be displayed regardless of its fid (None, _) => false, // displayed_ids is a finite list, and `_vectors` cannot be part of it because it is not an existing field (Some(_), None) => true, // displayed_ids is a finit list, so hide if `_vectors` is not part of it (Some(map), Some(vectors_fid)) => map.contains(&vectors_fid), }; let retrieve_vectors = if let RetrieveVectors::Retrieve = format.retrieve_vectors { if vectors_is_hidden { RetrieveVectors::Hide } else { RetrieveVectors::Retrieve } } else { format.retrieve_vectors }; let displayed_ids = displayed_ids.unwrap_or_else(|| fields_ids_map.iter().map(|(id, _)| id).collect()); let fids = |attrs: &BTreeSet| { let mut ids = BTreeSet::new(); for attr in attrs { if attr == "*" { ids.clone_from(&displayed_ids); break; } if let Some(id) = fields_ids_map.id(attr) { ids.insert(id); } } ids }; let to_retrieve_ids: BTreeSet<_> = format .attributes_to_retrieve .as_ref() .map(fids) .unwrap_or_else(|| displayed_ids.clone()) .intersection(&displayed_ids) .cloned() .collect(); let attr_to_highlight = format.attributes_to_highlight.unwrap_or_default(); let attr_to_crop = format.attributes_to_crop.unwrap_or_default(); let formatted_options = compute_formatted_options( &attr_to_highlight, &attr_to_crop, format.crop_length, &to_retrieve_ids, &fields_ids_map, &displayed_ids, ); let mut tokenizer_builder = TokenizerBuilder::default(); tokenizer_builder.create_char_map(true); let script_lang_map = index.script_language(rtxn)?; if !script_lang_map.is_empty() { tokenizer_builder.allow_list(&script_lang_map); } let separators = index.allowed_separators(rtxn)?; let separators: Option> = separators.as_ref().map(|x| x.iter().map(String::as_str).collect()); if let Some(ref separators) = separators { tokenizer_builder.separators(separators); } let dictionary = index.dictionary(rtxn)?; let dictionary: Option> = dictionary.as_ref().map(|x| x.iter().map(String::as_str).collect()); if let Some(ref dictionary) = dictionary { tokenizer_builder.words_dict(dictionary); } let mut formatter_builder = MatcherBuilder::new(matching_words, tokenizer_builder.build()); formatter_builder.crop_marker(format.crop_marker); formatter_builder.highlight_prefix(format.highlight_pre_tag); formatter_builder.highlight_suffix(format.highlight_post_tag); let mut documents = Vec::new(); let embedding_configs = index.embedding_configs(rtxn)?; let documents_iter = index.documents(rtxn, documents_ids)?; for ((id, obkv), score) in documents_iter.into_iter().zip(document_scores.into_iter()) { // First generate a document with all the displayed fields let displayed_document = make_document(&displayed_ids, &fields_ids_map, obkv)?; let add_vectors_fid = vectors_fid.filter(|_fid| retrieve_vectors == RetrieveVectors::Retrieve); // select the attributes to retrieve let attributes_to_retrieve = to_retrieve_ids .iter() // skip the vectors_fid if RetrieveVectors::Hide .filter(|fid| match vectors_fid { Some(vectors_fid) => { !(retrieve_vectors == RetrieveVectors::Hide && **fid == vectors_fid) } None => true, }) // need to retrieve the existing `_vectors` field if the `RetrieveVectors::Retrieve` .chain(add_vectors_fid.iter()) .map(|&fid| fields_ids_map.name(fid).expect("Missing field name")); let mut document = permissive_json_pointer::select_values(&displayed_document, attributes_to_retrieve); if retrieve_vectors == RetrieveVectors::Retrieve { let mut vectors = match document.remove("_vectors") { Some(Value::Object(map)) => map, _ => Default::default(), }; for (name, vector) in index.embeddings(rtxn, id)? { let user_provided = embedding_configs .iter() .find(|conf| conf.name == name) .is_some_and(|conf| conf.user_provided.contains(id)); let embeddings = ExplicitVectors { embeddings: Some(vector.into()), regenerate: !user_provided }; vectors.insert(name, serde_json::to_value(embeddings)?); } document.insert("_vectors".into(), vectors.into()); } let (matches_position, formatted) = format_fields( &displayed_document, &fields_ids_map, &formatter_builder, &formatted_options, format.show_matches_position, &displayed_ids, )?; if let Some(sort) = format.sort.as_ref() { insert_geo_distance(sort, &mut document); } let ranking_score = format.show_ranking_score.then(|| ScoreDetails::global_score(score.iter())); let ranking_score_details = format.show_ranking_score_details.then(|| ScoreDetails::to_json_map(score.iter())); let hit = SearchHit { document, formatted, matches_position, ranking_score_details, ranking_score, }; documents.push(hit); } Ok(documents) } pub fn perform_facet_search( index: &Index, search_query: SearchQuery, facet_query: Option, facet_name: String, search_kind: SearchKind, ) -> Result { let before_search = Instant::now(); let rtxn = index.read_txn()?; let time_budget = match index.search_cutoff(&rtxn)? { Some(cutoff) => TimeBudget::new(Duration::from_millis(cutoff)), None => TimeBudget::default(), }; let (search, _, _, _) = prepare_search(index, &rtxn, &search_query, &search_kind, time_budget)?; let mut facet_search = SearchForFacetValues::new( facet_name, search, matches!(search_kind, SearchKind::Hybrid { .. }), ); if let Some(facet_query) = &facet_query { facet_search.query(facet_query); } if let Some(max_facets) = index.max_values_per_facet(&rtxn)? { facet_search.max_values(max_facets as usize); } Ok(FacetSearchResult { facet_hits: facet_search.execute()?, facet_query, processing_time_ms: before_search.elapsed().as_millis(), }) } pub fn perform_similar( index: &Index, query: SimilarQuery, embedder_name: String, embedder: Arc, retrieve_vectors: RetrieveVectors, ) -> Result { let before_search = Instant::now(); let rtxn = index.read_txn()?; let SimilarQuery { id, offset, limit, filter: _, embedder: _, attributes_to_retrieve, retrieve_vectors: _, show_ranking_score, show_ranking_score_details, ranking_score_threshold, } = query; // using let-else rather than `?` so that the borrow checker identifies we're always returning here, // preventing a use-after-move let Some(internal_id) = index.external_documents_ids().get(&rtxn, &id)? else { return Err(ResponseError::from_msg( MeilisearchHttpError::DocumentNotFound(id.into_inner()).to_string(), Code::NotFoundSimilarId, )); }; let mut similar = milli::Similar::new(internal_id, offset, limit, index, &rtxn, embedder_name, embedder); if let Some(ref filter) = query.filter { if let Some(facets) = parse_filter(filter) // inject InvalidSimilarFilter code .map_err(|e| ResponseError::from_msg(e.to_string(), Code::InvalidSimilarFilter))? { similar.filter(facets); } } if let Some(ranking_score_threshold) = ranking_score_threshold { similar.ranking_score_threshold(ranking_score_threshold.0); } let milli::SearchResult { documents_ids, matching_words: _, candidates, document_scores, degraded: _, used_negative_operator: _, } = similar.execute().map_err(|err| match err { milli::Error::UserError(milli::UserError::InvalidFilter(_)) => { ResponseError::from_msg(err.to_string(), Code::InvalidSimilarFilter) } err => err.into(), })?; let format = AttributesFormat { attributes_to_retrieve, retrieve_vectors, attributes_to_highlight: None, attributes_to_crop: None, crop_length: DEFAULT_CROP_LENGTH(), crop_marker: DEFAULT_CROP_MARKER(), highlight_pre_tag: DEFAULT_HIGHLIGHT_PRE_TAG(), highlight_post_tag: DEFAULT_HIGHLIGHT_POST_TAG(), show_matches_position: false, sort: None, show_ranking_score, show_ranking_score_details, }; let hits = make_hits(index, &rtxn, format, Default::default(), documents_ids, document_scores)?; let max_total_hits = index .pagination_max_total_hits(&rtxn) .map_err(milli::Error::from)? .map(|x| x as usize) .unwrap_or(DEFAULT_PAGINATION_MAX_TOTAL_HITS); let number_of_hits = min(candidates.len() as usize, max_total_hits); let hits_info = HitsInfo::OffsetLimit { limit, offset, estimated_total_hits: number_of_hits }; let result = SimilarResult { hits, hits_info, id: id.into_inner(), processing_time_ms: before_search.elapsed().as_millis(), }; Ok(result) } fn insert_geo_distance(sorts: &[String], document: &mut Document) { lazy_static::lazy_static! { static ref GEO_REGEX: Regex = Regex::new(r"_geoPoint\(\s*([[:digit:].\-]+)\s*,\s*([[:digit:].\-]+)\s*\)").unwrap(); }; if let Some(capture_group) = sorts.iter().find_map(|sort| GEO_REGEX.captures(sort)) { // TODO: TAMO: milli encountered an internal error, what do we want to do? let base = [capture_group[1].parse().unwrap(), capture_group[2].parse().unwrap()]; let geo_point = &document.get("_geo").unwrap_or(&json!(null)); if let Some((lat, lng)) = extract_geo_value(&geo_point["lat"]).zip(extract_geo_value(&geo_point["lng"])) { let distance = milli::distance_between_two_points(&base, &[lat, lng]); document.insert("_geoDistance".to_string(), json!(distance.round() as usize)); } } } fn extract_geo_value(value: &Value) -> Option { match value { Value::Number(n) => n.as_f64(), Value::String(s) => s.parse().ok(), _ => None, } } fn compute_formatted_options( attr_to_highlight: &HashSet, attr_to_crop: &[String], query_crop_length: usize, to_retrieve_ids: &BTreeSet, fields_ids_map: &FieldsIdsMap, displayed_ids: &BTreeSet, ) -> BTreeMap { let mut formatted_options = BTreeMap::new(); add_highlight_to_formatted_options( &mut formatted_options, attr_to_highlight, fields_ids_map, displayed_ids, ); add_crop_to_formatted_options( &mut formatted_options, attr_to_crop, query_crop_length, fields_ids_map, displayed_ids, ); // Should not return `_formatted` if no valid attributes to highlight/crop if !formatted_options.is_empty() { add_non_formatted_ids_to_formatted_options(&mut formatted_options, to_retrieve_ids); } formatted_options } fn add_highlight_to_formatted_options( formatted_options: &mut BTreeMap, attr_to_highlight: &HashSet, fields_ids_map: &FieldsIdsMap, displayed_ids: &BTreeSet, ) { for attr in attr_to_highlight { let new_format = FormatOptions { highlight: true, crop: None }; if attr == "*" { for id in displayed_ids { formatted_options.insert(*id, new_format); } break; } if let Some(id) = fields_ids_map.id(attr) { if displayed_ids.contains(&id) { formatted_options.insert(id, new_format); } } } } fn add_crop_to_formatted_options( formatted_options: &mut BTreeMap, attr_to_crop: &[String], crop_length: usize, fields_ids_map: &FieldsIdsMap, displayed_ids: &BTreeSet, ) { for attr in attr_to_crop { let mut split = attr.rsplitn(2, ':'); let (attr_name, attr_len) = match split.next().zip(split.next()) { Some((len, name)) => { let crop_len = len.parse::().unwrap_or(crop_length); (name, crop_len) } None => (attr.as_str(), crop_length), }; if attr_name == "*" { for id in displayed_ids { formatted_options .entry(*id) .and_modify(|f| f.crop = Some(attr_len)) .or_insert(FormatOptions { highlight: false, crop: Some(attr_len) }); } } if let Some(id) = fields_ids_map.id(attr_name) { if displayed_ids.contains(&id) { formatted_options .entry(id) .and_modify(|f| f.crop = Some(attr_len)) .or_insert(FormatOptions { highlight: false, crop: Some(attr_len) }); } } } } fn add_non_formatted_ids_to_formatted_options( formatted_options: &mut BTreeMap, to_retrieve_ids: &BTreeSet, ) { for id in to_retrieve_ids { formatted_options.entry(*id).or_insert(FormatOptions { highlight: false, crop: None }); } } fn make_document( displayed_attributes: &BTreeSet, field_ids_map: &FieldsIdsMap, obkv: obkv::KvReaderU16, ) -> Result { let mut document = serde_json::Map::new(); // recreate the original json for (key, value) in obkv.iter() { let value = serde_json::from_slice(value)?; let key = field_ids_map.name(key).expect("Missing field name").to_string(); document.insert(key, value); } // select the attributes to retrieve let displayed_attributes = displayed_attributes .iter() .map(|&fid| field_ids_map.name(fid).expect("Missing field name")); let document = permissive_json_pointer::select_values(&document, displayed_attributes); Ok(document) } fn format_fields<'a>( document: &Document, field_ids_map: &FieldsIdsMap, builder: &'a MatcherBuilder<'a>, formatted_options: &BTreeMap, compute_matches: bool, displayable_ids: &BTreeSet, ) -> Result<(Option, Document), MeilisearchHttpError> { let mut matches_position = compute_matches.then(BTreeMap::new); let mut document = document.clone(); // reduce the formatted option list to the attributes that should be formatted, // instead of all the attributes to display. let formatting_fields_options: Vec<_> = formatted_options .iter() .filter(|(_, option)| option.should_format()) .map(|(fid, option)| (field_ids_map.name(*fid).unwrap(), option)) .collect(); // select the attributes to retrieve let displayable_names = displayable_ids.iter().map(|&fid| field_ids_map.name(fid).expect("Missing field name")); permissive_json_pointer::map_leaf_values(&mut document, displayable_names, |key, value| { // To get the formatting option of each key we need to see all the rules that applies // to the value and merge them together. eg. If a user said he wanted to highlight `doggo` // and crop `doggo.name`. `doggo.name` needs to be highlighted + cropped while `doggo.age` is only // highlighted. // Warn: The time to compute the format list scales with the number of fields to format; // cumulated with map_leaf_values that iterates over all the nested fields, it gives a quadratic complexity: // d*f where d is the total number of fields to display and f is the total number of fields to format. let format = formatting_fields_options .iter() .filter(|(name, _option)| { milli::is_faceted_by(name, key) || milli::is_faceted_by(key, name) }) .map(|(_, option)| **option) .reduce(|acc, option| acc.merge(option)); let mut infos = Vec::new(); *value = format_value(std::mem::take(value), builder, format, &mut infos, compute_matches); if let Some(matches) = matches_position.as_mut() { if !infos.is_empty() { matches.insert(key.to_owned(), infos); } } }); let selectors = formatted_options .keys() // This unwrap must be safe since we got the ids from the fields_ids_map just // before. .map(|&fid| field_ids_map.name(fid).unwrap()); let document = permissive_json_pointer::select_values(&document, selectors); Ok((matches_position, document)) } fn format_value<'a>( value: Value, builder: &'a MatcherBuilder<'a>, format_options: Option, infos: &mut Vec, compute_matches: bool, ) -> Value { match value { Value::String(old_string) => { let mut matcher = builder.build(&old_string); if compute_matches { let matches = matcher.matches(); infos.extend_from_slice(&matches[..]); } match format_options { Some(format_options) => { let value = matcher.format(format_options); Value::String(value.into_owned()) } None => Value::String(old_string), } } Value::Array(values) => Value::Array( values .into_iter() .map(|v| { format_value( v, builder, format_options.map(|format_options| FormatOptions { highlight: format_options.highlight, crop: None, }), infos, compute_matches, ) }) .collect(), ), Value::Object(object) => Value::Object( object .into_iter() .map(|(k, v)| { ( k, format_value( v, builder, format_options.map(|format_options| FormatOptions { highlight: format_options.highlight, crop: None, }), infos, compute_matches, ), ) }) .collect(), ), Value::Number(number) => { let s = number.to_string(); let mut matcher = builder.build(&s); if compute_matches { let matches = matcher.matches(); infos.extend_from_slice(&matches[..]); } match format_options { Some(format_options) => { let value = matcher.format(format_options); Value::String(value.into_owned()) } None => Value::String(s), } } value => value, } } pub(crate) fn parse_filter(facets: &Value) -> Result, MeilisearchHttpError> { match facets { Value::String(expr) => { let condition = Filter::from_str(expr)?; Ok(condition) } Value::Array(arr) => parse_filter_array(arr), v => Err(MeilisearchHttpError::InvalidExpression(&["String", "Array"], v.clone())), } } fn parse_filter_array(arr: &[Value]) -> Result, MeilisearchHttpError> { let mut ands = Vec::new(); for value in arr { match value { Value::String(s) => ands.push(Either::Right(s.as_str())), Value::Array(arr) => { let mut ors = Vec::new(); for value in arr { match value { Value::String(s) => ors.push(s.as_str()), v => { return Err(MeilisearchHttpError::InvalidExpression( &["String"], v.clone(), )) } } } ands.push(Either::Left(ors)); } v => { return Err(MeilisearchHttpError::InvalidExpression( &["String", "[String]"], v.clone(), )) } } } Ok(Filter::from_array(ands)?) } #[cfg(test)] mod test { use super::*; #[test] fn test_insert_geo_distance() { let value: Document = serde_json::from_str( r#"{ "_geo": { "lat": 50.629973371633746, "lng": 3.0569447399419567 }, "city": "Lille", "id": "1" }"#, ) .unwrap(); let sorters = &["_geoPoint(50.629973371633746,3.0569447399419567):desc".to_string()]; let mut document = value.clone(); insert_geo_distance(sorters, &mut document); assert_eq!(document.get("_geoDistance"), Some(&json!(0))); let sorters = &["_geoPoint(50.629973371633746, 3.0569447399419567):asc".to_string()]; let mut document = value.clone(); insert_geo_distance(sorters, &mut document); assert_eq!(document.get("_geoDistance"), Some(&json!(0))); let sorters = &["_geoPoint( 50.629973371633746 , 3.0569447399419567 ):desc".to_string()]; let mut document = value.clone(); insert_geo_distance(sorters, &mut document); assert_eq!(document.get("_geoDistance"), Some(&json!(0))); let sorters = &[ "prix:asc", "villeneuve:desc", "_geoPoint(50.629973371633746, 3.0569447399419567):asc", "ubu:asc", ] .map(|s| s.to_string()); let mut document = value.clone(); insert_geo_distance(sorters, &mut document); assert_eq!(document.get("_geoDistance"), Some(&json!(0))); // only the first geoPoint is used to compute the distance let sorters = &[ "chien:desc", "_geoPoint(50.629973371633746, 3.0569447399419567):asc", "pangolin:desc", "_geoPoint(100.0, -80.0):asc", "chat:asc", ] .map(|s| s.to_string()); let mut document = value.clone(); insert_geo_distance(sorters, &mut document); assert_eq!(document.get("_geoDistance"), Some(&json!(0))); // there was no _geoPoint so nothing is inserted in the document let sorters = &["chien:asc".to_string()]; let mut document = value; insert_geo_distance(sorters, &mut document); assert_eq!(document.get("_geoDistance"), None); } #[test] fn test_insert_geo_distance_with_coords_as_string() { let value: Document = serde_json::from_str( r#"{ "_geo": { "lat": "50", "lng": 3 } }"#, ) .unwrap(); let sorters = &["_geoPoint(50,3):desc".to_string()]; let mut document = value.clone(); insert_geo_distance(sorters, &mut document); assert_eq!(document.get("_geoDistance"), Some(&json!(0))); let value: Document = serde_json::from_str( r#"{ "_geo": { "lat": "50", "lng": "3" }, "id": "1" }"#, ) .unwrap(); let sorters = &["_geoPoint(50,3):desc".to_string()]; let mut document = value.clone(); insert_geo_distance(sorters, &mut document); assert_eq!(document.get("_geoDistance"), Some(&json!(0))); let value: Document = serde_json::from_str( r#"{ "_geo": { "lat": 50, "lng": "3" }, "id": "1" }"#, ) .unwrap(); let sorters = &["_geoPoint(50,3):desc".to_string()]; let mut document = value.clone(); insert_geo_distance(sorters, &mut document); assert_eq!(document.get("_geoDistance"), Some(&json!(0))); } }