use std::mem; use std::ops::RangeInclusive; use charabia::normalizer::NormalizedTokenIter; use charabia::{SeparatorKind, TokenKind}; use fst::automaton::Str; use fst::{Automaton, IntoStreamer, Streamer}; use heed::types::DecodeIgnore; use heed::RoTxn; use itertools::Itertools; use super::interner::{Interned, Interner}; use super::SearchContext; use crate::search::fst_utils::{Complement, Intersection, StartsWith, Union}; use crate::search::{build_dfa, get_first}; use crate::{CboRoaringBitmapLenCodec, Index, Result}; /// A phrase in the user's search query, consisting of several words /// that must appear side-by-side in the search results. #[derive(Default, Clone, PartialEq, Eq, Hash)] pub struct Phrase { pub words: Vec>>, } impl Phrase { pub fn description(&self, interner: &Interner) -> String { self.words.iter().flatten().map(|w| interner.get(*w)).join(" ") } } /// A structure storing all the different ways to match /// a term in the user's search query. #[derive(Clone, PartialEq, Eq, Hash)] pub struct WordDerivations { /// The original word pub original: Interned, // TODO: original should only be used for debugging purposes? // TODO: pub zero_typo: Option>, // TODO: pub prefix_of: Box<[Interned]>, /// All the synonyms of the original word pub synonyms: Box<[Interned]>, /// The original word split into multiple consecutive words pub split_words: Option>, /// The original words and words which are prefixed by it pub zero_typo: Box<[Interned]>, /// Words that are 1 typo away from the original word pub one_typo: Box<[Interned]>, /// Words that are 2 typos away from the original word pub two_typos: Box<[Interned]>, /// True if the prefix databases must be used to retrieve /// the words which are prefixed by the original word. pub use_prefix_db: bool, } impl WordDerivations { /// Return an iterator over all the single words derived from the original word. /// /// This excludes synonyms, split words, and words stored in the prefix databases. pub fn all_single_word_derivations_except_prefix_db( &'_ self, ) -> impl Iterator> + Clone + '_ { self.zero_typo.iter().chain(self.one_typo.iter()).chain(self.two_typos.iter()).copied() } pub fn is_empty(&self) -> bool { self.zero_typo.is_empty() && self.one_typo.is_empty() && self.two_typos.is_empty() && self.synonyms.is_empty() && self.split_words.is_none() && !self.use_prefix_db } } /// Compute the word derivations for the given word pub fn word_derivations( ctx: &mut SearchContext, word: &str, max_typo: u8, is_prefix: bool, ) -> Result> { let fst = ctx.index.words_fst(ctx.txn)?; let word_interned = ctx.word_interner.insert(word.to_owned()); let use_prefix_db = is_prefix && ctx .index .word_prefix_docids .remap_data_type::() .get(ctx.txn, word)? .is_some(); let mut zero_typo = vec![]; let mut one_typo = vec![]; let mut two_typos = vec![]; if max_typo == 0 { if is_prefix && !use_prefix_db { let prefix = Str::new(word).starts_with(); let mut stream = fst.search(prefix).into_stream(); while let Some(derived_word) = stream.next() { let derived_word = std::str::from_utf8(derived_word)?.to_owned(); let derived_word_interned = ctx.word_interner.insert(derived_word); zero_typo.push(derived_word_interned); } } else if fst.contains(word) { zero_typo.push(word_interned); } } else if max_typo == 1 { let dfa = build_dfa(word, 1, is_prefix); let starts = StartsWith(Str::new(get_first(word))); let mut stream = fst.search_with_state(Intersection(starts, &dfa)).into_stream(); // TODO: There may be wayyy too many matches (e.g. in the thousands), how to reduce them? while let Some((derived_word, state)) = stream.next() { let derived_word = std::str::from_utf8(derived_word)?; let d = dfa.distance(state.1); let derived_word_interned = ctx.word_interner.insert(derived_word.to_owned()); match d.to_u8() { 0 => { zero_typo.push(derived_word_interned); } 1 => { one_typo.push(derived_word_interned); } _ => panic!(), } } } else { let starts = StartsWith(Str::new(get_first(word))); let first = Intersection(build_dfa(word, 1, is_prefix), Complement(&starts)); let second_dfa = build_dfa(word, 2, is_prefix); let second = Intersection(&second_dfa, &starts); let automaton = Union(first, &second); let mut stream = fst.search_with_state(automaton).into_stream(); // TODO: There may be wayyy too many matches (e.g. in the thousands), how to reduce them? while let Some((derived_word, state)) = stream.next() { let derived_word = std::str::from_utf8(derived_word)?; let derived_word_interned = ctx.word_interner.insert(derived_word.to_owned()); // in the case the typo is on the first letter, we know the number of typo // is two if get_first(derived_word) != get_first(word) { two_typos.push(derived_word_interned); } else { // Else, we know that it is the second dfa that matched and compute the // correct distance let d = second_dfa.distance((state.1).0); match d.to_u8() { 0 => { zero_typo.push(derived_word_interned); } 1 => { one_typo.push(derived_word_interned); } 2 => { two_typos.push(derived_word_interned); } _ => panic!(), } } } } let split_words = split_best_frequency(ctx.index, ctx.txn, word)?.map(|(l, r)| { ctx.phrase_interner.insert(Phrase { words: vec![Some(ctx.word_interner.insert(l)), Some(ctx.word_interner.insert(r))], }) }); let synonyms = ctx.index.synonyms(ctx.txn)?; let synonyms = synonyms .get(&vec![word.to_owned()]) .cloned() .unwrap_or_default() .into_iter() .map(|words| { let words = words.into_iter().map(|w| Some(ctx.word_interner.insert(w))).collect(); ctx.phrase_interner.insert(Phrase { words }) }) .collect(); let interned = ctx.derivations_interner.insert(WordDerivations { original: ctx.word_interner.insert(word.to_owned()), synonyms, split_words, zero_typo: zero_typo.into_boxed_slice(), one_typo: one_typo.into_boxed_slice(), two_typos: two_typos.into_boxed_slice(), use_prefix_db, }); Ok(interned) } /// Split the original word into the two words that appear the /// most next to each other in the index. /// /// Return `None` if the original word cannot be split. fn split_best_frequency( index: &Index, txn: &RoTxn, original: &str, ) -> Result> { let chars = original.char_indices().skip(1); let mut best = None; for (i, _) in chars { let (left, right) = original.split_at(i); let key = (1, left, right); let frequency = index .word_pair_proximity_docids .remap_data_type::() .get(txn, &key)? .unwrap_or(0); if frequency != 0 && best.map_or(true, |(old, _, _)| frequency > old) { best = Some((frequency, left, right)); } } Ok(best.map(|(_, left, right)| (left.to_owned(), right.to_owned()))) } #[derive(Clone, PartialEq, Eq, Hash)] pub enum QueryTerm { Phrase { phrase: Interned }, // TODO: change to `Interned`? Word { derivations: Interned }, } impl QueryTerm { /// Return the original word from the given query term pub fn original_single_word<'interner>( &self, word_interner: &'interner Interner, derivations_interner: &'interner Interner, ) -> Option<&'interner str> { match self { QueryTerm::Phrase { phrase: _ } => None, QueryTerm::Word { derivations } => { let derivations = derivations_interner.get(*derivations); if derivations.is_empty() { None } else { Some(word_interner.get(derivations.original)) } } } } } /// A query term term coupled with its position in the user's search query. #[derive(Clone)] pub struct LocatedQueryTerm { pub value: QueryTerm, pub positions: RangeInclusive, } impl LocatedQueryTerm { /// Return `true` iff the word derivations within the query term are empty pub fn is_empty(&self, interner: &Interner) -> bool { match self.value { // TODO: phrases should be greedily computed, so that they can be excluded from // the query graph right from the start? QueryTerm::Phrase { phrase: _ } => false, QueryTerm::Word { derivations, .. } => interner.get(derivations).is_empty(), } } } /// Convert the tokenised search query into a list of located query terms. pub fn located_query_terms_from_string<'ctx>( ctx: &mut SearchContext<'ctx>, query: NormalizedTokenIter>, words_limit: Option, ) -> Result> { let authorize_typos = ctx.index.authorize_typos(ctx.txn)?; let min_len_one_typo = ctx.index.min_word_len_one_typo(ctx.txn)?; let min_len_two_typos = ctx.index.min_word_len_two_typos(ctx.txn)?; // TODO: should `exact_words` also disable prefix search, ngrams, split words, or synonyms? let exact_words = ctx.index.exact_words(ctx.txn)?; let nbr_typos = |word: &str| { if !authorize_typos || word.len() < min_len_one_typo as usize || exact_words.as_ref().map_or(false, |fst| fst.contains(word)) { 0 } else if word.len() < min_len_two_typos as usize { 1 } else { 2 } }; let mut located_terms = Vec::new(); let mut phrase = Vec::new(); let mut quoted = false; let parts_limit = words_limit.unwrap_or(usize::MAX); let mut position = -1i8; let mut phrase_start = -1i8; let mut phrase_end = -1i8; let mut peekable = query.peekable(); while let Some(token) = peekable.next() { // early return if word limit is exceeded if located_terms.len() >= parts_limit { return Ok(located_terms); } match token.kind { TokenKind::Word | TokenKind::StopWord => { position += 1; // 1. if the word is quoted we push it in a phrase-buffer waiting for the ending quote, // 2. if the word is not the last token of the query and is not a stop_word we push it as a non-prefix word, // 3. if the word is the last token of the query we push it as a prefix word. if quoted { phrase_end = position; if phrase.is_empty() { phrase_start = position; } if let TokenKind::StopWord = token.kind { phrase.push(None); } else { let word = ctx.word_interner.insert(token.lemma().to_string()); // TODO: in a phrase, check that every word exists // otherwise return WordDerivations::Empty phrase.push(Some(word)); } } else if peekable.peek().is_some() { match token.kind { TokenKind::Word => { let word = token.lemma(); let derivations = word_derivations(ctx, word, nbr_typos(word), false)?; let located_term = LocatedQueryTerm { value: QueryTerm::Word { derivations }, positions: position..=position, }; located_terms.push(located_term); } TokenKind::StopWord | TokenKind::Separator(_) | TokenKind::Unknown => {} } } else { let word = token.lemma(); let derivations = word_derivations(ctx, word, nbr_typos(word), true)?; let located_term = LocatedQueryTerm { value: QueryTerm::Word { derivations }, positions: position..=position, }; located_terms.push(located_term); } } TokenKind::Separator(separator_kind) => { match separator_kind { SeparatorKind::Hard => { position += 1; } SeparatorKind::Soft => { position += 0; } } let quote_count = token.lemma().chars().filter(|&s| s == '"').count(); // swap quoted state if we encounter a double quote if quote_count % 2 != 0 { quoted = !quoted; } // if there is a quote or a hard separator we close the phrase. if !phrase.is_empty() && (quote_count > 0 || separator_kind == SeparatorKind::Hard) { let located_query_term = LocatedQueryTerm { value: QueryTerm::Phrase { phrase: ctx .phrase_interner .insert(Phrase { words: mem::take(&mut phrase) }), }, positions: phrase_start..=phrase_end, }; located_terms.push(located_query_term); } } _ => (), } } // If a quote is never closed, we consider all of the end of the query as a phrase. if !phrase.is_empty() { let located_query_term = LocatedQueryTerm { value: QueryTerm::Phrase { phrase: ctx.phrase_interner.insert(Phrase { words: mem::take(&mut phrase) }), }, positions: phrase_start..=phrase_end, }; located_terms.push(located_query_term); } Ok(located_terms) } // TODO: return a word derivations instead? pub fn ngram2( ctx: &mut SearchContext, x: &LocatedQueryTerm, y: &LocatedQueryTerm, ) -> Option<(Interned, RangeInclusive)> { if *x.positions.end() != y.positions.start() - 1 { return None; } match ( &x.value.original_single_word(&ctx.word_interner, &ctx.derivations_interner), &y.value.original_single_word(&ctx.word_interner, &ctx.derivations_interner), ) { (Some(w1), Some(w2)) => { let term = ( ctx.word_interner.insert(format!("{w1}{w2}")), *x.positions.start()..=*y.positions.end(), ); Some(term) } _ => None, } } // TODO: return a word derivations instead? pub fn ngram3( ctx: &mut SearchContext, x: &LocatedQueryTerm, y: &LocatedQueryTerm, z: &LocatedQueryTerm, ) -> Option<(Interned, RangeInclusive)> { if *x.positions.end() != y.positions.start() - 1 || *y.positions.end() != z.positions.start() - 1 { return None; } match ( &x.value.original_single_word(&ctx.word_interner, &ctx.derivations_interner), &y.value.original_single_word(&ctx.word_interner, &ctx.derivations_interner), &z.value.original_single_word(&ctx.word_interner, &ctx.derivations_interner), ) { (Some(w1), Some(w2), Some(w3)) => { let term = ( ctx.word_interner.insert(format!("{w1}{w2}{w3}")), *x.positions.start()..=*z.positions.end(), ); Some(term) } _ => None, } }