4313: Fix document formatting performances r=Kerollmops a=ManyTheFish
reduce the formatted option list to the attributes that should be formatted,
instead of all the attributes to display.
The time to compute the `format` list scales with the number of fields to format;
cumulated with `map_leaf_values` that iterates over all the nested fields, it gives a quadratic complexity:
`d*f` where `d` is the total number of fields to display and `f` is the total number of fields to format.
Co-authored-by: ManyTheFish <many@meilisearch.com>
- DistributionShift in Search object (to be set from model in embed?)
- Fix issue where embedder index wasn't computed at search time
- Accept as default embedder either the "default" one, or the only embedder when there is only one
3945: Do not leak field information on error r=Kerollmops a=vivek-26
# Pull Request
## Related issue
Fixes#3865
## What does this PR do?
This PR ensures that `InvalidSortableAttribute`and `InvalidFacetSearchFacetName` errors do not leak field information i.e. fields which are not part of `displayedAttributes` in the settings are hidden from the error message.
## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?
Thank you so much for contributing to Meilisearch!
Co-authored-by: Vivek Kumar <vivek.26@outlook.com>
3942: Normalize for the search the facets values r=ManyTheFish a=Kerollmops
This PR improves and fixes the search for facet values feature. Searching for _bre_ wasn't returning facet values like _brévent_ or _brô_.
The issue was related to the fact that facets are normalized but not in the same way as the `searchableAttributes` are. We decided to normalize them further and add another intermediate database where the key is the normalized facet value, and the value is a set of the non-normalized facets. We then use these non-normalized ones to get the correct counts by fetching the associated databases.
### What's missing in this PR?
- [x] Apply the change to the whole set of `SearchForFacetValue::execute` conditions.
- [x] Factorize the code that does an intermediate normalized value fetch in a function.
- [x] Add or modify the search for facet value test.
Co-authored-by: Clément Renault <clement@meilisearch.com>
Co-authored-by: Kerollmops <clement@meilisearch.com>
3866: Update charabia v0.8.0 r=dureuill a=ManyTheFish
# Pull Request
Update Charabia:
- enhance Japanese segmentation
- enhance Latin Tokenization
- words containing `_` are now properly segmented into several words
- brackets `{([])}` are no more considered as context separators so word separated by brackets are now considered near together for the proximity ranking rule
- fixes#3815
- fixes#3778
- fixes [product#151](https://github.com/meilisearch/product/discussions/151)
> Important note: now the float numbers are segmented around the `.` so `3.22` is segmented as [`3`, `.`, `22`] but the middle dot isn't considered as a hard separator, which means that if we search `3.22` we find documents containing `3.22`
Co-authored-by: ManyTheFish <many@meilisearch.com>
3834: Define searchable fields at runtime r=Kerollmops a=ManyTheFish
## Summary
This feature allows the end-user to search in one or multiple attributes using the search parameter `attributesToSearchOn`:
```json
{
"q": "Captain Marvel",
"attributesToSearchOn": ["title"]
}
```
This feature act like a filter, forcing Meilisearch to only return the documents containing the requested words in the attributes-to-search-on. Note that, with the matching strategy `last`, Meilisearch will only ensure that the first word is in the attributes-to-search-on, but, the retrieved documents will be ordered taking into account the word contained in the attributes-to-search-on.
## Trying the prototype
A dedicated docker image has been released for this feature:
#### last prototype version:
```bash
docker pull getmeili/meilisearch:prototype-define-searchable-fields-at-search-time-1
```
#### others prototype versions:
```bash
docker pull getmeili/meilisearch:prototype-define-searchable-fields-at-search-time-0
```
## Technical Detail
The attributes-to-search-on list is given to the search context, then, the search context uses the `fid_word_docids`database using only the allowed field ids instead of the global `word_docids` database. This is the same for the prefix databases.
The database cache is updated with the merged values, meaning that the union of the field-id-database values is only made if the requested key is missing from the cache.
### Relevancy limits
Almost all ranking rules behave as expected when ordering the documents.
Only `proximity` could miss-order documents if all the searched words are in the restricted attribute but a better proximity is found in an ignored attribute in a document that should be ranked lower. I put below a failing test showing it:
```rust
#[actix_rt::test]
async fn proximity_ranking_rule_order() {
let server = Server::new().await;
let index = index_with_documents(
&server,
&json!([
{
"title": "Captain super mega cool. A Marvel story",
// Perfect distance between words in an ignored attribute
"desc": "Captain Marvel",
"id": "1",
},
{
"title": "Captain America from Marvel",
"desc": "a Shazam ersatz",
"id": "2",
}]),
)
.await;
// Document 2 should appear before document 1.
index
.search(json!({"q": "Captain Marvel", "attributesToSearchOn": ["title"], "attributesToRetrieve": ["id"]}), |response, code| {
assert_eq!(code, 200, "{}", response);
assert_eq!(
response["hits"],
json!([
{"id": "2"},
{"id": "1"},
])
);
})
.await;
}
```
Fixing this would force us to create a `fid_word_pair_proximity_docids` and a `fid_word_prefix_pair_proximity_docids` databases which may multiply the keys of `word_pair_proximity_docids` and `word_prefix_pair_proximity_docids` by the number of attributes in the searchable_attributes list. If we think we should fix this test, I'll suggest doing it in another PR.
## Related
Fixes#3772
Co-authored-by: Tamo <tamo@meilisearch.com>
Co-authored-by: ManyTheFish <many@meilisearch.com>
3768: Fix bugs in graph-based ranking rules + make `words` a graph-based ranking rule r=dureuill a=loiclec
This PR contains three changes:
## 1. Don't call the `words` ranking rule if the term matching strategy is `All`
This is because the purpose of `words` is only to remove nodes from the query graph. It would never do any useful work when the matching strategy was `All`. Remember that the universe was already computed before by computing all the docids corresponding to the "maximally reduced" query graph, which, in the case of `All`, is equal to the original graph.
## 2. The `words` ranking rule is replaced by a graph-based ranking rule.
This is for three reasons:
1. **performance**: graph-based ranking rules benefit from a lot of optimisations by default, which ensures that they are never too slow. The previous implementation of `words` could call `compute_query_graph_docids` many times if some words had to be removed from the query, which would be quite expensive. I was especially worried about its performance in cases where it is placed right after the `sort` ranking rule. Furthermore, `compute_query_graph_docids` would clone a lot of bitmaps many times unnecessarily.
2. **consistency**: every other ranking rule (except `sort`) is graph-based. It makes sense to implement `words` like that as well. It will automatically benefit from all the features, optimisations, and bug fixes that all the other ranking rules get.
3. **surfacing bugs**: as the first ranking rule to be called (most of the time), I'd like `words` to behave the same as the other ranking rules so that we can quickly detect bugs in our graph algorithms. This actually already happened, which is why this PR also contains a bug fix.
## 3. Fix the `update_all_costs_before_nodes` function
It is a bit difficult to explain what was wrong, but I'll try. The bug happened when we had graphs like:
<img width="730" alt="Screenshot 2023-05-16 at 10 58 57" src="https://github.com/meilisearch/meilisearch/assets/6040237/40db1a68-d852-4e89-99d5-0d65757242a7">
and we gave the node `is` as argument.
Then, we'd walk backwards from the node breadth-first. We'd update the costs of:
1. `sun`
2. `thesun`
3. `start`
4. `the`
which is an incorrect order. The correct order is:
1. `sun`
2. `thesun`
3. `the`
4. `start`
That is, we can only update the cost of a node when all of its successors have either already been visited or were not affected by the update to the node passed as argument. To solve this bug, I factored out the graph-traversal logic into a `traverse_breadth_first_backward` function.
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
3741: Add ngram support to the highlighter r=ManyTheFish a=loiclec
This PR fixes a bug introduced by the search refactor, where ngrams were not highlighted.
The solution was to add the ngrams to the vector of `LocatedQueryTerm` that is given to the `MatchingWords` structure.
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
3726: Fix prefix highlighting r=loiclec a=ManyTheFish
The prefix queries were not properly highlighted, this PR now highlights only the start of a word when it matched with a prefix
Co-authored-by: ManyTheFish <many@meilisearch.com>
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>