3461: Bring v1 changes into main r=curquiza a=Kerollmops
Also bring back changes in milli (the remote repository) into main done during the pre-release
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
Co-authored-by: bors[bot] <26634292+bors[bot]@users.noreply.github.com>
Co-authored-by: curquiza <curquiza@users.noreply.github.com>
Co-authored-by: Tamo <tamo@meilisearch.com>
Co-authored-by: Philipp Ahlner <philipp@ahlner.com>
Co-authored-by: Kerollmops <clement@meilisearch.com>
776: Reduce incremental indexing time of `words_prefix_position_docids` DB r=curquiza a=loiclec
Fixes partially https://github.com/meilisearch/milli/issues/605
The `words_prefix_position_docids` can easily contain millions of entries. Thus, iterating
over it can be very expensive. But we do so needlessly for every document addition tasks.
It can sometimes cause indexing performance issues when :
- a user sends many `documentAdditionOrUpdate` tasks that cannot be all batched together (for example if they are interspersed with `documentDeletion` tasks)
- the documents contain long, diverse text fields, thus increasing the number of entries in `words_prefix_position_docids`
- the index has accumulated many soft-deleted documents, further increasing the size of `words_prefix_position_docids`
- the machine running Meilisearch does not have great IO performance (e.g. slow SSD, or quota-limited by the cloud provider)
Note, before approving the PR: the only changed file should be `milli/src/update/words_prefix_position_docids.rs`.
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
774: Update version for the next release (v0.41.1) in Cargo.toml files r=curquiza a=meili-bot
⚠️ This PR is automatically generated. Check the new version is the expected one before merging.
Co-authored-by: curquiza <curquiza@users.noreply.github.com>
This database can easily contain millions of entries. Thus, iterating
over it can be very expensive.
For regular `documentAdditionOrUpdate` tasks, `del_prefix_fst_words`
will always be empty. Thus, we can save a significant amount of time
by adding this `if !del_prefix_fst_words.is_empty()` condition.
The code's behaviour remains completely unchanged.
763: Fixes error message when lat and lng are unparseable r=loiclec a=ahlner
# Pull Request
## Related issue
Fixes partially [#3007](https://github.com/meilisearch/meilisearch/issues/3007)
## What does this PR do?
- Changes function validate_geo_from_json to return a BadLatitudeAndLongitude if lat or lng is a string and not parseable to f64
- implemented some unittests
- Derived PartialEq for GeoError to use assert_eq! in tests
## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?
Thank you so much for contributing to Meilisearch!
Co-authored-by: Philipp Ahlner <philipp@ahlner.com>
767: Update version for the next release (v0.39.2) in Cargo.toml files r=curquiza a=meili-bot
⚠️ This PR is automatically generated. Check the new version is the expected one before merging.
Co-authored-by: curquiza <curquiza@users.noreply.github.com>
765: Update version for the next release (v0.39.1) in Cargo.toml files r=curquiza a=meili-bot
⚠️ This PR is automatically generated. Check the new version is the expected one before merging.
Co-authored-by: curquiza <curquiza@users.noreply.github.com>
764: Update deserr to latest version r=irevoire a=loiclec
Update deserr to 0.1.5, which changes the `DeserializeFromValue` trait, getting rid of the `default()` method.
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
761: Integrate deserr r=irevoire a=loiclec
1. `Setting<T>` now implements `DeserializeFromValue`
2. The settings now store ranking rules as strongly typed `Criterion` instead of `String`, since the validation of the ranking rules will be done on meilisearch's side from now on
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
759: Change primary key inference error messages r=Kerollmops a=dureuill
# Pull Request
## Related issue
Milli part of https://github.com/meilisearch/meilisearch/issues/3301
## What does this PR do?
- Change error message strings
## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?
Thank you so much for contributing to Meilisearch!
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
733: Avoid a prefix-related worst-case scenario in the proximity criterion r=loiclec a=loiclec
# Pull Request
## Related issue
Somewhat fixes (until merged into meilisearch) https://github.com/meilisearch/meilisearch/issues/3118
## What does this PR do?
When a query ends with a word and a prefix, such as:
```
word pr
```
Then we first determine whether `pre` *could possibly* be in the proximity prefix database before querying it. There are then three possibilities:
1. `pr` is not in any prefix cache because it is not the prefix of many words. We don't query the proximity prefix database. Instead, we list all the word derivations of `pre` through the FST and query the regular proximity databases.
2. `pr` is in the prefix cache but cannot be found in the proximity prefix databases. **In this case, we partially disable the proximity ranking rule for the pair `word pre`.** This is done as follows:
1. Only find the documents where `word` is in proximity to `pre` **exactly** (no derivations)
2. Otherwise, assume that their proximity in all the documents in which they coexist is >= 8
3. `pr` is in the prefix cache and can be found in the proximity prefix databases. In this case we simply query the proximity prefix databases.
Note that if a prefix is longer than 2 bytes, then it cannot be in the proximity prefix databases. Also, proximities larger than 4 are not present in these databases either. Therefore, the impact on relevancy is:
1. For common prefixes of one or two letters: we no longer distinguish between proximities from 4 to 8
2. For common prefixes of more than two letters: we no longer distinguish between any proximities
3. For uncommon prefixes: nothing changes
Regarding (1), it means that these two documents would be considered equally relevant according to the proximity rule for the query `heard pr` (IF `pr` is the prefix of more than 200 words in the dataset):
```json
[
{ "text": "I heard there is a faster proximity criterion" },
{ "text": "I heard there is a faster but less relevant proximity criterion" }
]
```
Regarding (2), it means that two documents would be considered equally relevant according to the proximity rule for the query "faster pro":
```json
[
{ "text": "I heard there is a faster but less relevant proximity criterion" }
{ "text": "I heard there is a faster proximity criterion" },
]
```
But the following document would be considered more relevant than the two documents above:
```json
{ "text": "I heard there is a faster swimmer who is competing in the pro section of the competition " }
```
Note, however, that this change of behaviour only occurs when using the set-based version of the proximity criterion. In cases where there are fewer than 1000 candidate documents when the proximity criterion is called, this PR does not change anything.
---
## Performance
I couldn't use the existing search benchmarks to measure the impact of the PR, but I did some manual tests with the `songs` benchmark dataset.
```
1. 10x 'a':
- 640ms ⟹ 630ms = no significant difference
2. 10x 'b':
- set-based: 4.47s ⟹ 7.42 = bad, ~2x regression
- dynamic: 1s ⟹ 870 ms = no significant difference
3. 'Someone I l':
- set-based: 250ms ⟹ 12 ms = very good, x20 speedup
- dynamic: 21ms ⟹ 11 ms = good, x2 speedup
4. 'billie e':
- set-based: 623ms ⟹ 2ms = very good, x300 speedup
- dynamic: ~4ms ⟹ 4ms = no difference
5. 'billie ei':
- set-based: 57ms ⟹ 20ms = good, ~2x speedup
- dynamic: ~4ms ⟹ ~2ms. = no significant difference
6. 'i am getting o'
- set-based: 300ms ⟹ 60ms = very good, 5x speedup
- dynamic: 30ms ⟹ 6ms = very good, 5x speedup
7. 'prologue 1 a 1:
- set-based: 3.36s ⟹ 120ms = very good, 30x speedup
- dynamic: 200ms ⟹ 30ms = very good, 6x speedup
8. 'prologue 1 a 10':
- set-based: 590ms ⟹ 18ms = very good, 30x speedup
- dynamic: 82ms ⟹ 35ms = good, ~2x speedup
```
Performance is often significantly better, but there is also one regression in the set-based implementation with the query `b b b b b b b b b b`.
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
732: Interpret synonyms as phrases r=loiclec a=loiclec
# Pull Request
## Related issue
Fixes (when merged into meilisearch) https://github.com/meilisearch/meilisearch/issues/3125
## What does this PR do?
We now map multi-word synonyms to phrases instead of loose words. Such that the request:
```
btw I am going to nyc soon
```
is interpreted as (when the synonym interpretation is chosen for both `btw` and `nyc`):
```
"by the way" I am going to "New York City" soon
```
instead of:
```
by the way I am going to New York City soon
```
This prevents queries containing multi-word synonyms to exceed to word length limit and degrade the search performance.
In terms of relevancy, there is a debate to have. I personally think this could be considered an improvement, since it would be strange for a user to search for:
```
good DIY project
```
and have a result such as:
```
{
"text": "whether it is a good project to do, you'll have to decide for yourself"
}
```
However, for synonyms such as `NYC -> New York City`, then we will stop matching documents where `New York` is separated from `City`. This is however solvable by adding an additional mapping: `NYC -> New York`.
## Performance
With the old behaviour, some long search requests making heavy uses of synonyms could take minutes to be executed. This is no longer the case, these search requests now take an average amount of time to be resolved.
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
736: Update charabia r=curquiza a=ManyTheFish
Update Charabia to the last version.
> We are now Romanizing Chinese characters into Pinyin.
> Note that we keep the accent because they are in fact never typed directly by the end-user, moreover, changing an accent leads to a different Chinese character, and I don't have sufficient knowledge to forecast the impact of removing accents in this context.
Co-authored-by: ManyTheFish <many@meilisearch.com>
709: Optimise the `ExactWords` sub-criterion within `Exactness` r=loiclec a=loiclec
# Pull Request
## Related issue
Fixes (partially) https://github.com/meilisearch/meilisearch/issues/3116
## What does this PR do?
1. Reduces the algorithmic complexity of finding the documents containing N exact words from something that is exponential to something that is polynomial.
2. Cache intermediary results between different calls to the `exactness` criterion.
## Performance Results
On the `smol_songs.csv` dataset, a request containing 10 common words now takes about 60ms instead of 5 seconds to execute. For example, this is the case with this (admittedly nonsensical) request: `Rock You Hip Hop Folk World Country Electronic Love The`.
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
Displays log message in the form:
```
[2022-12-21T09:19:42Z INFO milli::update::index_documents::enrich] Primary key was not specified in index. Inferred to 'id'
```
742: Add a "Criterion implementation strategy" parameter to Search r=irevoire a=loiclec
Add a parameter to search requests which determines the implementation strategy of the criteria. This can be either `set-based`, `iterative`, or `dynamic` (ie choosing between set-based or iterative at search time). See https://github.com/meilisearch/milli/issues/755 for more context about this change.
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
747: Soft-deletion computation no longer depends on the mapsize r=irevoire a=dureuill
# Pull Request
## Related issue
Related to https://github.com/meilisearch/meilisearch/issues/3231: After removing `--max-index-size`, the `mapsize` will always be unrelated to the actual max size the user wants for their DB, so it doesn't make sense to use these values any longer.
This implements solution 2.3 from https://github.com/meilisearch/meilisearch/issues/3231#issuecomment-1348628824
## What does this PR do?
### User-visible
- Soft-deleted are no longer deleted when there is less than 10% of the mapsize available or when they take more than 10% of the mapsize
- Instead, they are deleted when they are more soft deleted than regular documents, or when they take more than 1GiB disk space (estimated).
### Implementation standpoint
1. Adds a `DeletionStrategy` struct to replace the boolean `disable_soft_deletion` that we had up until now. This enum allows us to specify that we want "always hard", "always soft", or to use the dynamic soft-deletion strategy (default).
2. Uses the current strategy when deleting documents, with the new heuristics being used in the `DeletionStrategy::Dynamic` variant.
3. Updates the tests to use the appropriate DeletionStrategy whenever needed (one of `AlwaysHard` or `AlwaysSoft` depending on the test)
Note to reviewers: this PR is optimized for a commit-by-commit review.
## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?
Thank you so much for contributing to Meilisearch!
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
Co-authored-by: Tamo <tamo@meilisearch.com>
743: Fix finite pagination with placeholder search r=Kerollmops a=ManyTheFish
this bug is reproducible on real datasets and is hard to isolate in a simple test.
related to: https://github.com/meilisearch/meilisearch/issues/3200
poke `@curquiza`
Co-authored-by: ManyTheFish <many@meilisearch.com>
728: Add some integration tests on the sort criterion r=ManyTheFish a=loiclec
This is simply an integration test ensuring that the sort criterion works properly.
However, only one version of the algorithm is tested here (the iterative one). To test the version that uses the facet DB, one has to manually set the `CANDIDATES_THRESHOLD` constant to `0`. I have done that and ensured that the test still succeeds. However, in the future, we will probably want to have an option to force which algorithm is used at runtime, for testing purposes.
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
737: Fix typo initial candidates computation r=Kerollmops a=ManyTheFish
When `Typo` criterion was after a different criterion than `Words` and the previous criterion wasn't returning any candidates at the first iteration of the bucket sort, then the `initial_candidates` were lost.
Now, `Typo`ensure to keep the `initial_candidates` between iterations.
related to https://github.com/meilisearch/meilisearch/issues/3200#issuecomment-1345179578
related to https://github.com/meilisearch/meilisearch/issues/3228
Co-authored-by: ManyTheFish <many@meilisearch.com>
By creating snapshots and updating the format of the existing
snapshots. The next commit will apply the fix, which will show
its effects cleanly on the old and new snapshot tests
723: Fix bug in handling of soft deleted documents when updating settings r=Kerollmops a=loiclec
# Pull Request
## Related issue
Fixes (partially, until merged into meilisearch) https://github.com/meilisearch/meilisearch/issues/3021
## What does this PR do?
This PR fixes the bug where a `missing key in documents database` internal error message could appear when indexing documents.
When updating the settings, before clearing the database and before creating the transform output, we now modify the `ExternalDocumentsIds` structure to get rid of all references to soft deleted document ids in its FSTs.
It used to be that updating the settings would clear the soft-deleted document ids, but keep the original `ExternalDocumentsIds` structure. As a consequence of this, when processing a future document addition, we could wrongly believe that a document was being replaced when, in fact, it was a completely new document. See the tests `bug_3021_first`, `bug_3021_second`, and `bug_3021` for a minimal test case that would have reproduced the issue.
We need to take special care to:
- evaluate how users should update to v0.30.1 (containing this fix): dump? reimporting all documents from scratch?
- understand IF/HOW this bug could have caused duplicate documents to be returned
- and evaluate the correctness of the fix, of course :)
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
719: Add more members of `filter_parser` to `milli::` & `From<&str>` implementation for `Token` r=Kerollmops a=GregoryConrad
## What does this PR do?
The current `milli::Filter` and `milli::FilterCondition` APIs require working with some members of `filter_parser` directly that `milli::` does *not* re-export to its users (at least when not parsing input using `parse`). Also, using `filter_parser` does not make sense when using milli from an embedded context where there is no query to parse.
Instead of reworking `milli::Filter` and `milli::FilterCondition`, this PR adds two non-breaking changes that ease the use of milli:
- Re-exports more members of the dependent version of `filter_parser` in `milli`
- Implements `From<&str>` for `filter_parser::Token`
- This will also allow some basic tests that need to create a `Token` from a string to avoid some boilerplate.
In conjunction, both of these will allow milli users to easily create a `Token` from a `&str` without needing to add `filter_parser` as an extra dependency.
Note: I wanted to use `FromStr` for the `From` implementation; however, it requires returning a `Result` which is not needed for the conversion. Thus, I just left it as `From<&str>`.
Co-authored-by: Gregory Conrad <gregorysconrad@gmail.com>
706: Limit the reindexing caused by updating settings when not needed r=curquiza a=GregoryConrad
## What does this PR do?
When updating index settings using `update::Settings`, sometimes a `reindex` of `update::Settings` is triggered when it doesn't need to be. This PR aims to prevent those unnecessary `reindex` calls.
For reference, here is a snippet from the current `execute` method in `update::Settings`:
```rust
// ...
if stop_words_updated
|| faceted_updated
|| synonyms_updated
|| searchable_updated
|| exact_attributes_updated
{
self.reindex(&progress_callback, &should_abort, old_fields_ids_map)?;
}
```
- [x] `faceted_updated` - looks good as-is ✅
- [x] `stop_words_updated` - looks good as-is ✅
- [x] `synonyms_updated` - looks good as-is ✅
- [x] `searchable_updated` - fixed in this PR
- [x] `exact_attributes_updated` - fixed in this PR
## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?
Thank you so much for contributing to Meilisearch!
Co-authored-by: Gregory Conrad <gregorysconrad@gmail.com>
708: Reduce memory usage of the MatchingWords structure r=ManyTheFish a=loiclec
# Pull Request
## Related issue
Fixes (partially) https://github.com/meilisearch/meilisearch/issues/3115
## What does this PR do?
1. Reduces the memory usage caused by the creation of a 10-word query tree by 20x.
This is done by deduplicating the `MatchingWord` values, which are heavy because of their inner DFA. The deduplication works by wrapping each `MatchingWord` in a reference-counted box and using a hash map to determine whether a `MatchingWord` DFA already exists for a certain signature, or whether a new one needs to be built.
2. Avoid the worst-case scenario of creating a `MatchingWord` for extremely long words that cannot be indexed by milli.
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
712: Fix bulk facet indexing bug r=Kerollmops a=loiclec
# Pull Request
## Related issue
Fixes (partially, until merged into meilisearch) https://github.com/meilisearch/meilisearch/issues/3165
## What does this PR do?
Fixes a bug where indexing certain numbers of filterable attribute values in bulk led to corrupted facet databases. This was due to a lossy integer conversion which would ultimately prevent entire levels of the facet database to be written into LMDB.
More specifically, this change was made:
```diff
- if cur_writer_len as u8 >= self.min_level_size {
+ if cur_writer_len >= self.min_level_size as usize {
```
I also checked other comparisons to `min_level_size` and other conversions such as `x as u8` in this part of the codebase.
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
697: Fix bug in prefix DB indexing r=loiclec a=loiclec
Where the batch's information was not properly updated in cases where only the proximity changed between two consecutive word pair proximities.
Closes partially https://github.com/meilisearch/meilisearch/issues/3043
Co-authored-by: Loïc Lecrenier <loic.lecrenier@me.com>
1. Handle keys with variable length correctly
This fixes https://github.com/meilisearch/meilisearch/issues/3042 and
is easily reproducible with the updated fuzz tests, which now generate
keys with variable lengths.
2. Prevent adding facets to the database if their encoded value does
not satisfy `valid_lmdb_key`.
This fixes an indexing failure when a document had a filterable
attribute containing a value whose length is higher than ~500 bytes.
693: use the lmdb-master.3 branch r=Kerollmops a=irevoire
After investigating https://github.com/meilisearch/meilisearch/issues/3017, we found out that it was due to lmdb and that, without any code change on our side, bumping using the lmdb-master-3 branch fix our issues.
But, we’re not really confident about what changed between the `mdb.master` and `mdb.master3` branches; thus this is a temporary change, and we hope we’ll be able to move to the new version of heed asap (either before the end of the pre-release or for the next release).
--------
The bug is hard to reproduce; I can reproduce it 100% of the time on my archlinux personal computer. But on a scaleway archlinux bare-metal machine, it doesn’t reproduce. It’s flaky on our test suite, but `@loiclec` was able to write a minimal test that reproduces it every time on macOS.
Basically, what happens is when there are multiple threads opening databases in a different directory at the same time.
If there are 10 or more threads running at the same time, lmdb starts throwing the `Invalid argument (os error 22)` error for no reason, we believe.
I would like to submit an issue to lmdb, but I don’t really have the time to write a test in C without heed currently.
`@hyc,` if you want to take a look at it, here is the repo that reproduces the issue on macOS: https://github.com/irevoire/heed-bug
Co-authored-by: Irevoire <tamo@meilisearch.com>
689: Handle non-finite floats consistently in filters r=irevoire a=dureuill
# Pull Request
## Related issue
Related meilisearch/meilisearch#3000
## What does this PR do?
### User
- Filters using `field = inf`, (or `infinite`, `NaN`) now match the value as a string rather than returning an internal error.
- Filters using `field < inf` (or other comparison operators) now return an invalid_filter error rather than returning an internal error, much like when using `field < aaa`.
### Implementation
- Add new `NonFiniteFloat` error variants to the filter-parser errors
- Add `Token::parse_as_finite_float` that can fail both when the string is not a float and when the float is not finite
- Refactor `Filter::inner_evaluate` to always use `parse_as_finite_float` instead of just `parse`
- Add corresponding tests
## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?
Thank you so much for contributing to Meilisearch!
Co-authored-by: Louis Dureuil <louis@meilisearch.com>
659: Fix clippy error to add clippy job on Ci r=Kerollmops a=unvalley
## Related PR
This PR is for #673
## What does this PR do?
- ~~add `Run Clippy` job to CI (rust.yml)~~
- apply `cargo clippy --fix` command
- fix some `cargo clippy` error manually (but warnings still remain on tests)
## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?
Co-authored-by: unvalley <kirohi.code@gmail.com>
Co-authored-by: unvalley <38400669+unvalley@users.noreply.github.com>
664: Fix phrase search containing stop words r=ManyTheFish a=Samyak2
# Pull Request
This a WIP draft PR I wanted to create to let other potential contributors know that I'm working on this issue. I'll be completing this in a few hours from opening this.
## Related issue
Fixes#661 and towards fixing meilisearch/meilisearch#2905
## What does this PR do?
- [x] Change Phrase Operation to use a `Vec<Option<String>>` instead of `Vec<String>` where `None` corresponds to a stop word
- [x] Update all other uses of phrase operation
- [x] Update `resolve_phrase`
- [x] Update `create_primitive_query`?
- [x] Add test
## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?
Co-authored-by: Samyak S Sarnayak <samyak201@gmail.com>
Co-authored-by: Samyak Sarnayak <samyak201@gmail.com>
668: Fix many Clippy errors part 2 r=ManyTheFish a=ehiggs
This brings us a step closer to enforcing clippy on each build.
# Pull Request
## Related issue
This does not fix any issue outright, but it is a second round of fixes for clippy after https://github.com/meilisearch/milli/pull/665. This should contribute to fixing https://github.com/meilisearch/milli/pull/659.
## What does this PR do?
Satisfies many issues for clippy. The complaints are mostly:
* Passing reference where a variable is already a reference.
* Using clone where a struct already implements `Copy`
* Using `ok_or_else` when it is a closure that returns a value instead of using the closure to call function (hence we use `ok_or`)
* Unambiguous lifetimes don't need names, so we can just use `'_`
* Using `return` when it is not needed as we are on the last expression of a function.
## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?
Thank you so much for contributing to Meilisearch!
Co-authored-by: Ewan Higgs <ewan.higgs@gmail.com>
671: Update version for the next release (v0.35.0) in Cargo.toml files r=Kerollmops a=meili-bot
⚠️ This PR is automatically generated. Check the new version is the expected one before merging.
Co-authored-by: curquiza <curquiza@users.noreply.github.com>
e.g. add one facet value incrementally with a group_size = X and then
add another one with group_size = Y
It is not actually possible to do so with the public API of milli,
but I wanted to make sure the algorithm worked well in those cases
anyway.
The bugs were found by fuzzing the code with fuzzcheck, which I've added
to milli as a conditional dev-dependency. But it can be removed later.
616: Introduce an indexation abortion function when indexing documents r=Kerollmops a=Kerollmops
Co-authored-by: Kerollmops <clement@meilisearch.com>
Co-authored-by: Clément Renault <clement@meilisearch.com>
665: Fixing piles of clippy errors. r=ManyTheFish a=ehiggs
## Related issue
No issue fixed. Simply cleaning up some code for clippy on the march towards a clean build when #659 is merged.
## What does this PR do?
Most of these are calling clone when the struct supports Copy.
Many are using & and &mut on `self` when the function they are called from already has an immutable or mutable borrow so this isn't needed.
I tried to stay away from actual changes or places where I'd have to name fresh variables.
## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?
Co-authored-by: Ewan Higgs <ewan.higgs@gmail.com>
Most of these are calling clone when the struct supports Copy.
Many are using & and &mut on `self` when the function they are called
from already has an immutable or mutable borrow so this isn't needed.
I tried to stay away from actual changes or places where I'd have to
name fresh variables.
662: Enhance word splitting strategy r=ManyTheFish a=akki1306
# Pull Request
## Related issue
Fixes#648
## What does this PR do?
- [split_best_frequency](55d889522b/milli/src/search/query_tree.rs (L282-L301)) to use frequency of word pairs near together with proximity value of 1 instead of considering the frequency of individual words. Word pairs having max frequency are considered.
## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue, or have you listed the changes applied in the PR description (and why they are needed)?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?
Thank you so much for contributing to Meilisearch!
Co-authored-by: Akshay Kulkarni <akshayk.gj@gmail.com>
636: Remove unused `infos`, `http-ui`, and `milli/fuzz`, crates r=ManyTheFish a=loiclec
We haven't used the `infos/`, `http-ui/` and `milli/fuzz/` crates in a long time. They are not properly maintained and probably do not work correctly anymore.
This PR removes these crates entirely from the workspace to reduce the amount of code we need to maintain.
Co-authored-by: Loïc Lecrenier <loic@meilisearch.com>
635: Use an unstable algorithm for `grenad::Sorter` when possible r=Kerollmops a=loiclec
# Pull Request
## What does this PR do?
Use an unstable algorithm to sort the internal vector used by `grenad::Sorter` whenever possible to speed up indexing.
In practice, every time the merge function creates a `RoaringBitmap`, we use an unstable sort. For every other merge function, such as `keep_first`, `keep_last`, etc., a stable sort is used.
Co-authored-by: Loïc Lecrenier <loic@meilisearch.com>
618: Update version for next release (v0.33.1) in Cargo.toml r=Kerollmops a=curquiza
No breaking for this release
Co-authored-by: Clémentine Urquizar <clementine@meilisearch.com>
598: Matching query terms policy r=Kerollmops a=ManyTheFish
## Summary
Implement several optional words strategy.
## Content
Replace `optional_words` boolean with an enum containing several term matching strategies:
```rust
pub enum TermsMatchingStrategy {
// remove last word first
Last,
// remove first word first
First,
// remove more frequent word first
Frequency,
// remove smallest word first
Size,
// only one of the word is mandatory
Any,
// all words are mandatory
All,
}
```
All strategies implemented during the prototype are kept, but only `Last` and `All` will be published by Meilisearch in the `v0.29.0` release.
## Related
spec: https://github.com/meilisearch/specifications/pull/173
prototype discussion: https://github.com/meilisearch/meilisearch/discussions/2639#discussioncomment-3447699
Co-authored-by: ManyTheFish <many@meilisearch.com>
596: Filter operators: NOT + IN[..] r=irevoire a=loiclec
# Pull Request
## What does this PR do?
Implements the changes described in https://github.com/meilisearch/meilisearch/issues/2580
It is based on top of #556
Co-authored-by: Loïc Lecrenier <loic@meilisearch.com>
587: Word prefix pair proximity docids indexation refactor r=Kerollmops a=loiclec
# Pull Request
## What does this PR do?
Refactor the code of `WordPrefixPairProximityDocIds` to make it much faster, fix a bug, and add a unit test.
## Why is it faster?
Because we avoid using a sorter to insert the (`word1`, `prefix`, `proximity`) keys and their associated bitmaps, and thus we don't have to sort a potentially very big set of data. I have also added a couple of other optimisations:
1. reusing allocations
2. using a prefix trie instead of an array of prefixes to get all the prefixes of a word
3. inserting directly into the database instead of putting the data in an intermediary grenad when possible. Also avoid checking for pre-existing values in the database when we know for certain that they do not exist.
## What bug was fixed?
When reindexing, the `new_prefix_fst_words` prefixes may look like:
```
["ant", "axo", "bor"]
```
which we group by first letter:
```
[["ant", "axo"], ["bor"]]
```
Later in the code, if we have the word2 "axolotl", we try to find which subarray of prefixes contains its prefixes. This check is done with `word2.starts_with(subarray_prefixes[0])`, but `"axolotl".starts_with("ant")` is false, and thus we wrongly think that there are no prefixes in `new_prefix_fst_words` that are prefixes of `axolotl`.
## StrStrU8Codec
I had to change the encoding of `StrStrU8Codec` to make the second string null-terminated as well. I don't think this should be a problem, but I may have missed some nuances about the impacts of this change.
## Requests when reviewing this PR
I have explained what the code does in the module documentation of `word_pair_proximity_prefix_docids`. It would be nice if someone could read it and give their opinion on whether it is a clear explanation or not.
I also have a couple questions regarding the code itself:
- Should we clean up and factor out the `PrefixTrieNode` code to try and make broader use of it outside this module? For now, the prefixes undergo a few transformations: from FST, to array, to prefix trie. It seems like it could be simplified.
- I wrote a function called `write_into_lmdb_database_without_merging`. (1) Are we okay with such a function existing? (2) Should it be in `grenad_helpers` instead?
## Benchmark Results
We reduce the time it takes to index about 8% in most cases, but it varies between -3% and -20%.
```
group indexing_main_ce90fc62 indexing_word-prefix-pair-proximity-docids-refactor_cbad2023
----- ---------------------- ------------------------------------------------------------
indexing/-geo-delete-facetedNumber-facetedGeo-searchable- 1.00 1893.0±233.03µs ? ?/sec 1.01 1921.2±260.79µs ? ?/sec
indexing/-movies-delete-facetedString-facetedNumber-searchable- 1.05 9.4±3.51ms ? ?/sec 1.00 9.0±2.14ms ? ?/sec
indexing/-movies-delete-facetedString-facetedNumber-searchable-nested- 1.22 18.3±11.42ms ? ?/sec 1.00 15.0±5.79ms ? ?/sec
indexing/-songs-delete-facetedString-facetedNumber-searchable- 1.00 41.4±4.20ms ? ?/sec 1.28 53.0±13.97ms ? ?/sec
indexing/-wiki-delete-searchable- 1.00 285.6±18.12ms ? ?/sec 1.03 293.1±16.09ms ? ?/sec
indexing/Indexing geo_point 1.03 60.8±0.45s ? ?/sec 1.00 58.8±0.68s ? ?/sec
indexing/Indexing movies in three batches 1.14 16.5±0.30s ? ?/sec 1.00 14.5±0.24s ? ?/sec
indexing/Indexing movies with default settings 1.11 13.7±0.07s ? ?/sec 1.00 12.3±0.28s ? ?/sec
indexing/Indexing nested movies with default settings 1.10 10.6±0.11s ? ?/sec 1.00 9.6±0.15s ? ?/sec
indexing/Indexing nested movies without any facets 1.11 9.4±0.15s ? ?/sec 1.00 8.5±0.10s ? ?/sec
indexing/Indexing songs in three batches with default settings 1.18 66.2±0.39s ? ?/sec 1.00 56.0±0.67s ? ?/sec
indexing/Indexing songs with default settings 1.07 58.7±1.26s ? ?/sec 1.00 54.7±1.71s ? ?/sec
indexing/Indexing songs without any facets 1.08 53.1±0.88s ? ?/sec 1.00 49.3±1.43s ? ?/sec
indexing/Indexing songs without faceted numbers 1.08 57.7±1.33s ? ?/sec 1.00 53.3±0.98s ? ?/sec
indexing/Indexing wiki 1.06 1051.1±21.46s ? ?/sec 1.00 989.6±24.55s ? ?/sec
indexing/Indexing wiki in three batches 1.20 1184.8±8.93s ? ?/sec 1.00 989.7±7.06s ? ?/sec
indexing/Reindexing geo_point 1.04 67.5±0.75s ? ?/sec 1.00 64.9±0.32s ? ?/sec
indexing/Reindexing movies with default settings 1.12 13.9±0.17s ? ?/sec 1.00 12.4±0.13s ? ?/sec
indexing/Reindexing songs with default settings 1.05 60.6±0.84s ? ?/sec 1.00 57.5±0.99s ? ?/sec
indexing/Reindexing wiki 1.07 1725.0±17.92s ? ?/sec 1.00 1611.4±9.90s ? ?/sec
```
Co-authored-by: Loïc Lecrenier <loic@meilisearch.com>
608: Fix soft deleted documents r=ManyTheFish a=ManyTheFish
When we replaced or updated some documents, the indexing was skipping the replaced documents.
Related to https://github.com/meilisearch/meilisearch/issues/2672
Co-authored-by: ManyTheFish <many@meilisearch.com>
594: Fix(Search): Fix phrase search candidates computation r=Kerollmops a=ManyTheFish
This bug is an old bug but was hidden by the proximity criterion,
Phrase searches were always returning an empty candidates list when the proximity criterion is deactivated.
Before the fix, we were trying to find any words[n] near words[n]
instead of finding any words[n] near words[n+1], for example:
for a phrase search '"Hello world"' we were searching for "hello" near "hello" first, instead of "hello" near "world".
Co-authored-by: ManyTheFish <many@meilisearch.com>
NOTE: The token_at_depth is method is a bit useless now, as the only
cases where there would be a toke at depth 1000 are the cases where
the parser already stack-overflowed earlier.
Example: (((((... (x=1) ...)))))
602: Use mimalloc as the default allocator r=Kerollmops a=loiclec
## What does this PR do?
Use mimalloc as the global allocator for milli's benchmarks on macOS.
## Why?
On Linux, we use jemalloc, which is a very fast allocator. But on macOS, we currently use the system allocator, which is very slow. In practice, this difference in allocator speed means that it is difficult to gain insight into milli's performance by running benchmarks locally on the Mac.
By using mimalloc, which is another excellent allocator, we reduce the speed difference between the two platforms.
Co-authored-by: Loïc Lecrenier <loic@meilisearch.com>
New full snapshot:
---
source: milli/src/update/word_prefix_pair_proximity_docids.rs
---
5 a 1 [101, ]
5 a 2 [101, ]
5 am 1 [101, ]
5 b 4 [101, ]
5 be 4 [101, ]
am a 3 [101, ]
amazing a 1 [100, ]
amazing a 2 [100, ]
amazing a 3 [100, ]
amazing an 1 [100, ]
amazing an 2 [100, ]
amazing b 2 [100, ]
amazing be 2 [100, ]
an a 1 [100, ]
an a 2 [100, 202, ]
an am 1 [100, ]
an an 2 [100, ]
an b 3 [100, ]
an be 3 [100, ]
and a 2 [100, ]
and a 3 [100, ]
and a 4 [100, ]
and am 2 [100, ]
and an 3 [100, ]
and b 1 [100, ]
and be 1 [100, ]
at a 1 [100, 202, ]
at a 2 [100, 101, ]
at a 3 [100, ]
at am 2 [100, 101, ]
at an 1 [100, 202, ]
at an 3 [100, ]
at b 3 [101, ]
at b 4 [100, ]
at be 3 [101, ]
at be 4 [100, ]
beautiful a 2 [100, ]
beautiful a 3 [100, ]
beautiful a 4 [100, ]
beautiful am 3 [100, ]
beautiful an 2 [100, ]
beautiful an 4 [100, ]
bell a 2 [101, ]
bell a 4 [101, ]
bell am 4 [101, ]
extraordinary a 2 [202, ]
extraordinary a 3 [202, ]
extraordinary an 2 [202, ]
house a 3 [100, 202, ]
house a 4 [100, 202, ]
house am 4 [100, ]
house an 3 [100, 202, ]
house b 2 [100, ]
house be 2 [100, ]
rings a 1 [101, ]
rings a 3 [101, ]
rings am 3 [101, ]
rings b 2 [101, ]
rings be 2 [101, ]
the a 3 [101, ]
the b 1 [101, ]
the be 1 [101, ]
New snapshot (yes, it's wrong as well, it will get fixed later):
---
source: milli/src/update/word_prefix_pair_proximity_docids.rs
---
5 a 1 [101, ]
5 a 2 [101, ]
5 am 1 [101, ]
5 b 4 [101, ]
5 be 4 [101, ]
am a 3 [101, ]
amazing a 1 [100, ]
amazing a 2 [100, ]
amazing a 3 [100, ]
amazing an 1 [100, ]
amazing an 2 [100, ]
amazing b 2 [100, ]
amazing be 2 [100, ]
an a 1 [100, ]
an a 2 [100, 202, ]
an am 1 [100, ]
an b 3 [100, ]
an be 3 [100, ]
and a 2 [100, ]
and a 3 [100, ]
and a 4 [100, ]
and b 1 [100, ]
and be 1 [100, ]
d\0 0 [100, 202, ]
an an 2 [100, ]
and am 2 [100, ]
and an 3 [100, ]
at a 2 [100, 101, ]
at a 3 [100, ]
at am 2 [100, 101, ]
at an 1 [100, 202, ]
at an 3 [100, ]
at b 3 [101, ]
at b 4 [100, ]
at be 3 [101, ]
at be 4 [100, ]
beautiful a 2 [100, ]
beautiful a 3 [100, ]
beautiful a 4 [100, ]
beautiful am 3 [100, ]
beautiful an 2 [100, ]
beautiful an 4 [100, ]
bell a 2 [101, ]
bell a 4 [101, ]
bell am 4 [101, ]
extraordinary a 2 [202, ]
extraordinary a 3 [202, ]
extraordinary an 2 [202, ]
house a 4 [100, 202, ]
house a 4 [100, ]
house am 4 [100, ]
house an 3 [100, 202, ]
house b 2 [100, ]
house be 2 [100, ]
rings a 1 [101, ]
rings a 3 [101, ]
rings am 3 [101, ]
rings b 2 [101, ]
rings be 2 [101, ]
the a 3 [101, ]
the b 1 [101, ]
the be 1 [101, ]
556: Add EXISTS filter r=loiclec a=loiclec
## What does this PR do?
Fixes issue [#2484](https://github.com/meilisearch/meilisearch/issues/2484) in the meilisearch repo.
It creates a `field EXISTS` filter which selects all documents containing the `field` key.
For example, with the following documents:
```json
[{
"id": 0,
"colour": []
},
{
"id": 1,
"colour": ["blue", "green"]
},
{
"id": 2,
"colour": 145238
},
{
"id": 3,
"colour": null
},
{
"id": 4,
"colour": {
"green": []
}
},
{
"id": 5,
"colour": {}
},
{
"id": 6
}]
```
Then the filter `colour EXISTS` selects the ids `[0, 1, 2, 3, 4, 5]`. The filter `colour NOT EXISTS` selects `[6]`.
## Details
There is a new database named `facet-id-exists-docids`. Its keys are field ids and its values are bitmaps of all the document ids where the corresponding field exists.
To create this database, the indexing part of milli had to be adapted. The implementation there is basically copy/pasted from the code handling the `facet-id-f64-docids` database, with appropriate modifications in place.
There was an issue involving the flattening of documents during (re)indexing. Previously, the following JSON:
```json
{
"id": 0,
"colour": [],
"size": {}
}
```
would be flattened to:
```json
{
"id": 0
}
```
prior to being given to the extraction pipeline.
This transformation would lose the information that is needed to populate the `facet-id-exists-docids` database. Therefore, I have also changed the implementation of the `flatten-serde-json` crate. Now, as it traverses the Json, it keeps track of which key was encountered. Then, at the end, if a previously encountered key is not present in the flattened object, it adds that key to the object with an empty array as value. For example:
```json
{
"id": 0,
"colour": {
"green": [],
"blue": 1
},
"size": {}
}
```
becomes
```json
{
"id": 0,
"colour": [],
"colour.green": [],
"colour.blue": 1,
"size": []
}
```
Co-authored-by: Kerollmops <clement@meilisearch.com>
This bug is an old bug but was hidden by the proximity criterion,
Phrase search were always returning an empty candidates list.
Before the fix, we were trying to find any words[n] near words[n]
instead of finding any words[n] near words[n+1], for example:
for a phrase search '"Hello world"' we were searching for "hello" near "hello" first, instead of "hello" near "world".
561: Enriched documents batch reader r=curquiza a=Kerollmops
~This PR is based on #555 and must be rebased on main after it has been merged to ease the review.~
This PR contains the work in #555 and can be merged on main as soon as reviewed and approved.
- [x] Create an `EnrichedDocumentsBatchReader` that contains the external documents id.
- [x] Extract the primary key name and make it accessible in the `EnrichedDocumentsBatchReader`.
- [x] Use the external id from the `EnrichedDocumentsBatchReader` in the `Transform::read_documents`.
- [x] Remove the `update_primary_key` from the _transform.rs_ file.
- [x] Really generate the auto-generated documents ids.
- [x] Insert the (auto-generated) document ids in the document while processing it in `Transform::read_documents`.
Co-authored-by: Kerollmops <clement@meilisearch.com>
The idea is to directly create a sorted and merged list of bitmaps
in the form of a BTreeMap<FieldId, RoaringBitmap> instead of creating
a grenad::Reader where the keys are field_id and the values are docids.
Then we send that BTreeMap to the thing that handles TypedChunks, which
inserts its content into the database.
When a document deletion occurs, instead of deleting the document we mark it as deleted
in the new “soft deleted” bitmap. It is then removed from the search, and all the other
endpoints.
564: Rename the limitedTo parameter into maxTotalHits r=curquiza a=Kerollmops
This PR is related to https://github.com/meilisearch/meilisearch/issues/2542, it renames the `limitedTo` parameter into `maxTotalHits`.
Co-authored-by: Kerollmops <clement@meilisearch.com>
563: Improve the `estimatedNbHits` when a `distinctAttribute` is specified r=irevoire a=Kerollmops
This PR is related to https://github.com/meilisearch/meilisearch/issues/2532 but it doesn't fix it entirely. It improves it by computing the excluded documents (the ones with an already-seen distinct value) before stopping the loop, I think it was a mistake and should always have been this way.
The reason it doesn't fix the issue is that Meilisearch is lazy, just to be sure not to compute too many things and answer by taking too much time. When we deduplicate the documents by their distinct value we must do it along the water, everytime we see a new document we check that its distinct value of it doesn't collide with an already returned document.
The reason we can see the correct result when enough documents are fetched is that we were lucky to see all of the different distinct values possible in the dataset and all of the deduplication was done, no document can be returned.
If we wanted to implement that to have a correct `extimatedNbHits` every time we should have done a pass on the whole set of possible distinct values for the distinct attribute and do a big intersection, this could cost a lot of CPU cycles.
Co-authored-by: Kerollmops <clement@meilisearch.com>
552: Fix escaped quotes in filter r=Kerollmops a=irevoire
Will fix https://github.com/meilisearch/meilisearch/issues/2380
The issue was that in the evaluation of the filter, I was using the deref implementation instead of calling the `value` method of my token.
To avoid the problem happening again, I removed the deref implementation; now, you need to either call the `lexeme` or the `value` methods but can't rely on a « default » implementation to get a string out of a token.
Co-authored-by: Tamo <tamo@meilisearch.com>
547: Update version for next release (v0.29.1) r=Kerollmops a=curquiza
A new milli version will be released once this PR is merged https://github.com/meilisearch/milli/pull/543
Co-authored-by: Clémentine Urquizar <clementine@meilisearch.com>
541: Update version for next release (v0.29.0) r=ManyTheFish a=curquiza
Need to update the version since #540 was merged and breaking
Co-authored-by: Clémentine Urquizar <clementine@meilisearch.com>
535: Reintroduce the max values by facet limit r=ManyTheFish a=Kerollmops
This PR reintroduces the max values by facet limit this is related to https://github.com/meilisearch/meilisearch/issues/2349.
~I would like some help in deciding on whether I keep the default 100 max values in milli and set up the `FacetDistribution` settings in Meilisearch to use 1000 as the new value, I expose the `max_values_by_facet` for this purpose.~
I changed the default value to 1000 and the max to 10000, thank you `@ManyTheFish` for the help!
Co-authored-by: Kerollmops <clement@meilisearch.com>
538: speedup exact words r=Kerollmops a=MarinPostma
This PR make `exact_words` return an `Option` instead of an empty set, since set creation is costly, as noticed by `@kerollmops.`
I was not convinces that this was the cause for all of the performance drop we measured, and then realized that methods that initialized it were called recursively which caused initialization times to add up. While the first fix solves the issue when not using exact words, using exact word remained way more expensive that it should be. To address this issue, the exact words are cached into the `Context`, so they are only initialized once.
Co-authored-by: ad hoc <postma.marin@protonmail.com>
525: Simplify the error creation with thiserror r=irevoire a=irevoire
I introduced [`thiserror`](https://docs.rs/thiserror/latest/thiserror/) to implements all the `Display` trait and most of the `impl From<xxx> for yyy` in way less lines.
And then I introduced a cute macro to implements the `impl<X, Y, Z> From<X> for Z where Y: From<X>, Z: From<X>` more easily.
Co-authored-by: Tamo <tamo@meilisearch.com>
523: Improve geosearch error messages r=irevoire a=irevoire
Improve the geosearch error messages (#488).
And try to parse the string as specified in https://github.com/meilisearch/meilisearch/issues/2354
Co-authored-by: Tamo <tamo@meilisearch.com>
520: fix mistake in Settings initialization r=irevoire a=MarinPostma
fix settings not being correctly initialized and add a test to make sure that they are in the future.
fix https://github.com/meilisearch/meilisearch/issues/2358
Co-authored-by: ad hoc <postma.marin@protonmail.com>
518: Return facets even when there is no value associated to it r=Kerollmops a=Kerollmops
This PR is related to https://github.com/meilisearch/meilisearch/issues/2352 and should fix the issue when Meilisearch is up-to-date with this PR.
Co-authored-by: Kerollmops <clement@meilisearch.com>
511: Update version in every workspace r=curquiza a=curquiza
Checked with `@Kerollmops`
- Update the version into every workspace (the current version is v0.27.0, but I forgot to update it for the previous release)
- add `publish = false` except in `milli` workspace.
Co-authored-by: Clémentine Urquizar <clementine@meilisearch.com>
514: Stop flattening every field r=Kerollmops a=irevoire
When we need to flatten a document:
* The primary key contains a `.`.
* Some fields need to be flattened
Instead of flattening the whole object and thus creating a lot of allocations with the `serde_json_flatten_crate`, we instead generate a minimal sub-object containing only the fields that need to be flattened.
That should create fewer allocations and thus index faster.
---------
```
group indexing_main_e1e362fa indexing_stop-flattening-every-field_40d1bd6b
----- ---------------------- ---------------------------------------------
indexing/Indexing geo_point 1.99 23.7±0.23s ? ?/sec 1.00 11.9±0.21s ? ?/sec
indexing/Indexing movies in three batches 1.00 18.2±0.24s ? ?/sec 1.01 18.3±0.29s ? ?/sec
indexing/Indexing movies with default settings 1.00 17.5±0.09s ? ?/sec 1.01 17.7±0.26s ? ?/sec
indexing/Indexing songs in three batches with default settings 1.00 64.8±0.47s ? ?/sec 1.00 65.1±0.49s ? ?/sec
indexing/Indexing songs with default settings 1.00 54.9±0.99s ? ?/sec 1.01 55.7±1.34s ? ?/sec
indexing/Indexing songs without any facets 1.00 50.6±0.62s ? ?/sec 1.01 50.9±1.05s ? ?/sec
indexing/Indexing songs without faceted numbers 1.00 54.0±1.14s ? ?/sec 1.01 54.7±1.13s ? ?/sec
indexing/Indexing wiki 1.00 996.2±8.54s ? ?/sec 1.02 1021.1±30.63s ? ?/sec
indexing/Indexing wiki in three batches 1.00 1136.8±9.72s ? ?/sec 1.00 1138.6±6.59s ? ?/sec
```
So basically everything slowed down a liiiiiittle bit except the dataset with a nested field which got twice faster
Co-authored-by: Tamo <tamo@meilisearch.com>
505: normalize exact words r=curquiza a=MarinPostma
Normalize the exact words, as specified in the specification.
Co-authored-by: ad hoc <postma.marin@protonmail.com>
483: Enhance matching words r=Kerollmops a=ManyTheFish
# Summary
Enhance milli word-matcher making it handle match computing and cropping.
# Implementation
## Computing best matches for cropping
Before we were considering that the first match of the attribute was the best one, this was accurate when only one word was searched but was missing the target when more than one word was searched.
Now we are searching for the best matches interval to crop around, the chosen interval is the one:
1) that have the highest count of unique matches
> for example, if we have a query `split the world`, then the interval `the split the split the` has 5 matches but only 2 unique matches (1 for `split` and 1 for `the`) where the interval `split of the world` has 3 matches and 3 unique matches. So the interval `split of the world` is considered better.
2) that have the minimum distance between matches
> for example, if we have a query `split the world`, then the interval `split of the world` has a distance of 3 (2 between `split` and `the`, and 1 between `the` and `world`) where the interval `split the world` has a distance of 2. So the interval `split the world` is considered better.
3) that have the highest count of ordered matches
> for example, if we have a query `split the world`, then the interval `the world split` has 2 ordered words where the interval `split the world` has 3. So the interval `split the world` is considered better.
## Cropping around the best matches interval
Before we were cropping around the interval without checking the context.
Now we are cropping around words in the same context as matching words.
This means that we will keep words that are farther from the matching words but are in the same phrase, than words that are nearer but separated by a dot.
> For instance, for the matching word `Split` the text:
`Natalie risk her future. Split The World is a book written by Emily Henry. I never read it.`
will be cropped like:
`…. Split The World is a book written by Emily Henry. …`
and not like:
`Natalie risk her future. Split The World is a book …`
Co-authored-by: ManyTheFish <many@meilisearch.com>
We need to store all the external id (primary key) in a hashmap
associated to their internal id during.
The smartstring remove heap allocation / memory usage and should
improve the cache locality.
486: Update version (v0.25.0) r=curquiza a=curquiza
v0.25.0 will be released once #478 is merged
Co-authored-by: Clémentine Urquizar <clementine@meilisearch.com>
472: Remove useless variables in proximity r=Kerollmops a=ManyTheFish
Was passing by plane sweep algorithm to find some inspiration, and I discover that we have useless variables that were not detected because of the recursive function.
Co-authored-by: ManyTheFish <many@meilisearch.com>
466: Bump version to 0.23.1 r=curquiza a=Kerollmops
This PR bumps the crate versions to 0.23.1. Nothing seems to be breaking in the next release.
Co-authored-by: Kerollmops <clement@meilisearch.com>
467: optimize prefix database r=Kerollmops a=MarinPostma
This pr introduces two optimizations that greatly improve the speed of computing prefix databases.
- The time that it takes to create the prefix FST has been divided by 5 by inverting the way we iterated over the words FST.
- We unconditionally and needlessly checked for documents to remove in `word_prefix_pair`, which caused an iteration over the whole database.
Co-authored-by: ad hoc <postma.marin@protonmail.com>
> "Attribute `{}` is not sortable. This index doesn't have configured sortable attributes."
> "Attribute `{}` is not sortable. Available sortable attributes are: `{}`."
coexist in the error handling
436: Speed up the word prefix databases computation time r=Kerollmops a=Kerollmops
This PR depends on the fixes done in #431 and must be merged after it.
In this PR we will bring the `WordPrefixPairProximityDocids`, `WordPrefixDocids` and, `WordPrefixPositionDocids` update structures to a new era, a better era, where computing the word prefix pair proximities costs much fewer CPU cycles, an era where this update structure can use the, previously computed, set of new word docids from the newly indexed batch of documents.
---
The `WordPrefixPairProximityDocids` is an update structure, which means that it is an object that we feed with some parameters and which modifies the LMDB database of an index when asked for. This structure specifically computes the list of word prefix pair proximities, which correspond to a list of pairs of words associated with a proximity (the distance between both words) where the second word is not a word but a prefix e.g. `s`, `se`, `a`. This word prefix pair proximity is associated with the list of documents ids which contains the pair of words and prefix at the given proximity.
The origin of the performances issue that this struct brings is related to the fact that it starts its job from the beginning, it clears the LMDB database before rewriting everything from scratch, using the other LMDB databases to achieve that. I hope you understand that this is absolutely not an optimized way of doing things.
Co-authored-by: Clément Renault <clement@meilisearch.com>
Co-authored-by: Kerollmops <clement@meilisearch.com>
442: fix phrase search r=curquiza a=MarinPostma
Run the exact match search on 7 words windows instead of only two. This makes false positive very very unlikely, and impossible on phrase query that are less than seven words.
Co-authored-by: ad hoc <postma.marin@protonmail.com>
431: Fix and improve word prefix pair proximity r=ManyTheFish a=Kerollmops
This PR first fixes the algorithm we used to select and compute the word prefix pair proximity database. The previous version was skipping nearly all of the prefixes. The issue is that this fix made this method to take more time and we were trying to reduce the time spent in it.
With `@ManyTheFish` we found out that we could skip some of the work we were doing by:
- discarding the prefixes that were shorter than a specific threshold (default: 2).
- discarding the word prefix pairs with proximity bigger than a specific threshold (default: 4).
- remove the unused threshold that was specifying a minimum amount of word docids to merge.
We will take more time to do some more optimization, like stop clearing and recomputing from scratch the database, we will compute the subsets of keys to create, keep and merge. This change is a little bit more complex than what this PR does.
I keep this PR as a draft as I want to further test the real gain if it is enough or not if it is valid or not. I advise reviewers to review commit by commit to see the changes bit by bit, reviewing the whole PR can be hard.
Co-authored-by: Clément Renault <clement@meilisearch.com>
433: fix(filter): Fix two bugs. r=Kerollmops a=irevoire
- Stop lowercasing the field when looking in the field id map
- When a field id does not exist it means there is currently zero
documents containing this field thus we return an empty RoaringBitmap
instead of throwing an internal error
Will fix https://github.com/meilisearch/MeiliSearch/issues/2082 once meilisearch is released
Co-authored-by: Tamo <tamo@meilisearch.com>
426: Fix search highlight for non-unicode chars r=ManyTheFish a=Samyak2
# Pull Request
## What does this PR do?
Fixes https://github.com/meilisearch/MeiliSearch/issues/1480
<!-- Please link the issue you're trying to fix with this PR, if none then please create an issue first. -->
## PR checklist
Please check if your PR fulfills the following requirements:
- [x] Does this PR fix an existing issue?
- [x] Have you read the contributing guidelines?
- [x] Have you made sure that the title is accurate and descriptive of the changes?
## Changes
The `matching_bytes` function takes a `&Token` now and:
- gets the number of bytes to highlight (unchanged).
- uses `Token.num_graphemes_from_bytes` to get the number of grapheme clusters to highlight.
In essence, the `matching_bytes` function now returns the number of matching grapheme clusters instead of bytes.
Added proper highlighting in the HTTP UI:
- requires dependency on `unicode-segmentation` to extract grapheme clusters from tokens
- `<mark>` tag is put around only the matched part
- before this change, the entire word was highlighted even if only a part of it matched
## Questions
Since `matching_bytes` does not return number of bytes but grapheme clusters, should it be renamed to something like `matching_chars` or `matching_graphemes`? Will this break the API?
Thank you very much `@ManyTheFish` for helping 😄
Co-authored-by: Samyak S Sarnayak <samyak201@gmail.com>
- Stop lowercasing the field when looking in the field id map
- When a field id does not exist it means there is currently zero
documents containing this field thus we returns an empty RoaringBitmap
instead of throwing an internal error
The `matching_bytes` function takes a `&Token` now and:
- gets the number of bytes to highlight (unchanged).
- uses `Token.num_graphemes_from_bytes` to get the number of grapheme
clusters to highlight.
In essence, the `matching_bytes` function returns the number of matching
grapheme clusters instead of bytes. Should this function be renamed
then?
Added proper highlighting in the HTTP UI:
- requires dependency on `unicode-segmentation` to extract grapheme
clusters from tokens
- `<mark>` tag is put around only the matched part
- before this change, the entire word was highlighted even if only a
part of it matched
returned metaimprove document addition returned metaimprove document
addition returned metaimprove document addition returned metaimprove
document addition returned metaimprove document addition returned
metaimprove document addition returned meta