mirror of
https://github.com/meilisearch/MeiliSearch
synced 2025-01-28 22:28:05 +01:00
Add test
This commit is contained in:
parent
6570da3bcb
commit
a05e448cf8
@ -137,13 +137,14 @@ fn long_text() -> &'static str {
|
||||
}
|
||||
|
||||
async fn create_mock_tokenized() -> (MockServer, Value) {
|
||||
create_mock_with_template("{{doc.text}}", ModelDimensions::Large, false).await
|
||||
create_mock_with_template("{{doc.text}}", ModelDimensions::Large, false, false).await
|
||||
}
|
||||
|
||||
async fn create_mock_with_template(
|
||||
document_template: &str,
|
||||
model_dimensions: ModelDimensions,
|
||||
fallible: bool,
|
||||
slow: bool,
|
||||
) -> (MockServer, Value) {
|
||||
let mock_server = MockServer::start().await;
|
||||
const API_KEY: &str = "my-api-key";
|
||||
@ -154,7 +155,11 @@ async fn create_mock_with_template(
|
||||
Mock::given(method("POST"))
|
||||
.and(path("/"))
|
||||
.respond_with(move |req: &Request| {
|
||||
// 0. maybe return 500
|
||||
// 0. wait for a long time
|
||||
if slow {
|
||||
std::thread::sleep(std::time::Duration::from_secs(1));
|
||||
}
|
||||
// 1. maybe return 500
|
||||
if fallible {
|
||||
let attempt = attempt.fetch_add(1, Ordering::Relaxed);
|
||||
let failed = matches!(attempt % 4, 0 | 1 | 3);
|
||||
@ -167,7 +172,7 @@ async fn create_mock_with_template(
|
||||
}))
|
||||
}
|
||||
}
|
||||
// 1. check API key
|
||||
// 3. check API key
|
||||
match req.headers.get("Authorization") {
|
||||
Some(api_key) if api_key == API_KEY_BEARER => {
|
||||
{}
|
||||
@ -202,7 +207,7 @@ async fn create_mock_with_template(
|
||||
)
|
||||
}
|
||||
}
|
||||
// 2. parse text inputs
|
||||
// 3. parse text inputs
|
||||
let query: serde_json::Value = match req.body_json() {
|
||||
Ok(query) => query,
|
||||
Err(_error) => return ResponseTemplate::new(400).set_body_json(
|
||||
@ -223,7 +228,7 @@ async fn create_mock_with_template(
|
||||
panic!("Expected {model_dimensions:?}, got {query_model_dimensions:?}")
|
||||
}
|
||||
|
||||
// 3. for each text, find embedding in responses
|
||||
// 4. for each text, find embedding in responses
|
||||
let serde_json::Value::Array(inputs) = &query["input"] else {
|
||||
panic!("Unexpected `input` value")
|
||||
};
|
||||
@ -283,7 +288,7 @@ async fn create_mock_with_template(
|
||||
"embedding": embedding,
|
||||
})).collect();
|
||||
|
||||
// 4. produce output from embeddings
|
||||
// 5. produce output from embeddings
|
||||
ResponseTemplate::new(200).set_body_json(json!({
|
||||
"object": "list",
|
||||
"data": data,
|
||||
@ -317,23 +322,27 @@ const DOGGO_TEMPLATE: &str = r#"{%- if doc.gender == "F" -%}Une chienne nommée
|
||||
{%- endif %}, de race {{doc.breed}}."#;
|
||||
|
||||
async fn create_mock() -> (MockServer, Value) {
|
||||
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large, false).await
|
||||
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large, false, false).await
|
||||
}
|
||||
|
||||
async fn create_mock_dimensions() -> (MockServer, Value) {
|
||||
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large512, false).await
|
||||
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large512, false, false).await
|
||||
}
|
||||
|
||||
async fn create_mock_small_embedding_model() -> (MockServer, Value) {
|
||||
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Small, false).await
|
||||
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Small, false, false).await
|
||||
}
|
||||
|
||||
async fn create_mock_legacy_embedding_model() -> (MockServer, Value) {
|
||||
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Ada, false).await
|
||||
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Ada, false, false).await
|
||||
}
|
||||
|
||||
async fn create_fallible_mock() -> (MockServer, Value) {
|
||||
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large, true).await
|
||||
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large, true, false).await
|
||||
}
|
||||
|
||||
async fn create_slow_mock() -> (MockServer, Value) {
|
||||
create_mock_with_template(DOGGO_TEMPLATE, ModelDimensions::Large, true, true).await
|
||||
}
|
||||
|
||||
// basic test "it works"
|
||||
@ -1873,4 +1882,114 @@ async fn it_still_works() {
|
||||
]
|
||||
"###);
|
||||
}
|
||||
|
||||
// test with a server that responds 500 on 3 out of 4 calls
|
||||
#[actix_rt::test]
|
||||
async fn timeout() {
|
||||
let (_mock, setting) = create_slow_mock().await;
|
||||
let server = get_server_vector().await;
|
||||
let index = server.index("doggo");
|
||||
|
||||
let (response, code) = index
|
||||
.update_settings(json!({
|
||||
"embedders": {
|
||||
"default": setting,
|
||||
},
|
||||
}))
|
||||
.await;
|
||||
snapshot!(code, @"202 Accepted");
|
||||
let task = server.wait_task(response.uid()).await;
|
||||
snapshot!(task["status"], @r###""succeeded""###);
|
||||
let documents = json!([
|
||||
{"id": 0, "name": "kefir", "gender": "M", "birthyear": 2023, "breed": "Patou"},
|
||||
]);
|
||||
let (value, code) = index.add_documents(documents, None).await;
|
||||
snapshot!(code, @"202 Accepted");
|
||||
let task = index.wait_task(value.uid()).await;
|
||||
snapshot!(task, @r###"
|
||||
{
|
||||
"uid": "[uid]",
|
||||
"indexUid": "doggo",
|
||||
"status": "succeeded",
|
||||
"type": "documentAdditionOrUpdate",
|
||||
"canceledBy": null,
|
||||
"details": {
|
||||
"receivedDocuments": 1,
|
||||
"indexedDocuments": 1
|
||||
},
|
||||
"error": null,
|
||||
"duration": "[duration]",
|
||||
"enqueuedAt": "[date]",
|
||||
"startedAt": "[date]",
|
||||
"finishedAt": "[date]"
|
||||
}
|
||||
"###);
|
||||
|
||||
let (documents, _code) = index
|
||||
.get_all_documents(GetAllDocumentsOptions { retrieve_vectors: true, ..Default::default() })
|
||||
.await;
|
||||
snapshot!(json_string!(documents, {".results.*._vectors.default.embeddings" => "[vector]"}), @r###"
|
||||
{
|
||||
"results": [
|
||||
{
|
||||
"id": 0,
|
||||
"name": "kefir",
|
||||
"gender": "M",
|
||||
"birthyear": 2023,
|
||||
"breed": "Patou",
|
||||
"_vectors": {
|
||||
"default": {
|
||||
"embeddings": "[vector]",
|
||||
"regenerate": true
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"offset": 0,
|
||||
"limit": 20,
|
||||
"total": 1
|
||||
}
|
||||
"###);
|
||||
|
||||
let (response, code) = index
|
||||
.search_post(json!({
|
||||
"q": "grand chien de berger des montagnes",
|
||||
"hybrid": {"semanticRatio": 0.99, "embedder": "default"}
|
||||
}))
|
||||
.await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(json_string!(response["semanticHitCount"]), @"0");
|
||||
snapshot!(json_string!(response["hits"]), @"[]");
|
||||
|
||||
let (response, code) = index
|
||||
.search_post(json!({
|
||||
"q": "grand chien de berger des montagnes",
|
||||
"hybrid": {"semanticRatio": 0.99, "embedder": "default"}
|
||||
}))
|
||||
.await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(json_string!(response["semanticHitCount"]), @"1");
|
||||
snapshot!(json_string!(response["hits"]), @r###"
|
||||
[
|
||||
{
|
||||
"id": 0,
|
||||
"name": "kefir",
|
||||
"gender": "M",
|
||||
"birthyear": 2023,
|
||||
"breed": "Patou"
|
||||
}
|
||||
]
|
||||
"###);
|
||||
|
||||
let (response, code) = index
|
||||
.search_post(json!({
|
||||
"q": "grand chien de berger des montagnes",
|
||||
"hybrid": {"semanticRatio": 0.99, "embedder": "default"}
|
||||
}))
|
||||
.await;
|
||||
snapshot!(code, @"200 OK");
|
||||
snapshot!(json_string!(response["semanticHitCount"]), @"0");
|
||||
snapshot!(json_string!(response["hits"]), @"[]");
|
||||
}
|
||||
|
||||
// test with a server that wrongly responds 400
|
||||
|
Loading…
x
Reference in New Issue
Block a user