mirror of
https://github.com/meilisearch/MeiliSearch
synced 2025-07-04 04:17:10 +02:00
Move crates under a sub folder to clean up the code
This commit is contained in:
parent
30f3c30389
commit
9c1e54a2c8
1062 changed files with 19 additions and 20 deletions
413
crates/milli/src/search/mod.rs
Normal file
413
crates/milli/src/search/mod.rs
Normal file
|
@ -0,0 +1,413 @@
|
|||
use std::fmt;
|
||||
use std::sync::Arc;
|
||||
|
||||
use charabia::Language;
|
||||
use levenshtein_automata::{LevenshteinAutomatonBuilder as LevBuilder, DFA};
|
||||
use once_cell::sync::Lazy;
|
||||
use roaring::bitmap::RoaringBitmap;
|
||||
|
||||
pub use self::facet::{FacetDistribution, Filter, OrderBy, DEFAULT_VALUES_PER_FACET};
|
||||
pub use self::new::matches::{FormatOptions, MatchBounds, MatcherBuilder, MatchingWords};
|
||||
use self::new::{execute_vector_search, PartialSearchResult};
|
||||
use crate::score_details::{ScoreDetails, ScoringStrategy};
|
||||
use crate::vector::Embedder;
|
||||
use crate::{
|
||||
execute_search, filtered_universe, AscDesc, DefaultSearchLogger, DocumentId, Error, Index,
|
||||
Result, SearchContext, TimeBudget, UserError,
|
||||
};
|
||||
|
||||
// Building these factories is not free.
|
||||
static LEVDIST0: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(0, true));
|
||||
static LEVDIST1: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(1, true));
|
||||
static LEVDIST2: Lazy<LevBuilder> = Lazy::new(|| LevBuilder::new(2, true));
|
||||
|
||||
pub mod facet;
|
||||
mod fst_utils;
|
||||
pub mod hybrid;
|
||||
pub mod new;
|
||||
pub mod similar;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct SemanticSearch {
|
||||
vector: Option<Vec<f32>>,
|
||||
embedder_name: String,
|
||||
embedder: Arc<Embedder>,
|
||||
quantized: bool,
|
||||
}
|
||||
|
||||
pub struct Search<'a> {
|
||||
query: Option<String>,
|
||||
// this should be linked to the String in the query
|
||||
filter: Option<Filter<'a>>,
|
||||
offset: usize,
|
||||
limit: usize,
|
||||
sort_criteria: Option<Vec<AscDesc>>,
|
||||
distinct: Option<String>,
|
||||
searchable_attributes: Option<&'a [String]>,
|
||||
geo_strategy: new::GeoSortStrategy,
|
||||
terms_matching_strategy: TermsMatchingStrategy,
|
||||
scoring_strategy: ScoringStrategy,
|
||||
words_limit: usize,
|
||||
exhaustive_number_hits: bool,
|
||||
rtxn: &'a heed::RoTxn<'a>,
|
||||
index: &'a Index,
|
||||
semantic: Option<SemanticSearch>,
|
||||
time_budget: TimeBudget,
|
||||
ranking_score_threshold: Option<f64>,
|
||||
locales: Option<Vec<Language>>,
|
||||
}
|
||||
|
||||
impl<'a> Search<'a> {
|
||||
pub fn new(rtxn: &'a heed::RoTxn<'a>, index: &'a Index) -> Search<'a> {
|
||||
Search {
|
||||
query: None,
|
||||
filter: None,
|
||||
offset: 0,
|
||||
limit: 20,
|
||||
sort_criteria: None,
|
||||
distinct: None,
|
||||
searchable_attributes: None,
|
||||
geo_strategy: new::GeoSortStrategy::default(),
|
||||
terms_matching_strategy: TermsMatchingStrategy::default(),
|
||||
scoring_strategy: Default::default(),
|
||||
exhaustive_number_hits: false,
|
||||
words_limit: 10,
|
||||
rtxn,
|
||||
index,
|
||||
semantic: None,
|
||||
locales: None,
|
||||
time_budget: TimeBudget::max(),
|
||||
ranking_score_threshold: None,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn query(&mut self, query: impl Into<String>) -> &mut Search<'a> {
|
||||
self.query = Some(query.into());
|
||||
self
|
||||
}
|
||||
|
||||
pub fn semantic(
|
||||
&mut self,
|
||||
embedder_name: String,
|
||||
embedder: Arc<Embedder>,
|
||||
quantized: bool,
|
||||
vector: Option<Vec<f32>>,
|
||||
) -> &mut Search<'a> {
|
||||
self.semantic = Some(SemanticSearch { embedder_name, embedder, quantized, vector });
|
||||
self
|
||||
}
|
||||
|
||||
pub fn offset(&mut self, offset: usize) -> &mut Search<'a> {
|
||||
self.offset = offset;
|
||||
self
|
||||
}
|
||||
|
||||
pub fn limit(&mut self, limit: usize) -> &mut Search<'a> {
|
||||
self.limit = limit;
|
||||
self
|
||||
}
|
||||
|
||||
pub fn sort_criteria(&mut self, criteria: Vec<AscDesc>) -> &mut Search<'a> {
|
||||
self.sort_criteria = Some(criteria);
|
||||
self
|
||||
}
|
||||
|
||||
pub fn distinct(&mut self, distinct: String) -> &mut Search<'a> {
|
||||
self.distinct = Some(distinct);
|
||||
self
|
||||
}
|
||||
|
||||
pub fn searchable_attributes(&mut self, searchable: &'a [String]) -> &mut Search<'a> {
|
||||
self.searchable_attributes = Some(searchable);
|
||||
self
|
||||
}
|
||||
|
||||
pub fn terms_matching_strategy(&mut self, value: TermsMatchingStrategy) -> &mut Search<'a> {
|
||||
self.terms_matching_strategy = value;
|
||||
self
|
||||
}
|
||||
|
||||
pub fn scoring_strategy(&mut self, value: ScoringStrategy) -> &mut Search<'a> {
|
||||
self.scoring_strategy = value;
|
||||
self
|
||||
}
|
||||
|
||||
pub fn words_limit(&mut self, value: usize) -> &mut Search<'a> {
|
||||
self.words_limit = value;
|
||||
self
|
||||
}
|
||||
|
||||
pub fn filter(&mut self, condition: Filter<'a>) -> &mut Search<'a> {
|
||||
self.filter = Some(condition);
|
||||
self
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
pub fn geo_sort_strategy(&mut self, strategy: new::GeoSortStrategy) -> &mut Search<'a> {
|
||||
self.geo_strategy = strategy;
|
||||
self
|
||||
}
|
||||
|
||||
/// Forces the search to exhaustively compute the number of candidates,
|
||||
/// this will increase the search time but allows finite pagination.
|
||||
pub fn exhaustive_number_hits(&mut self, exhaustive_number_hits: bool) -> &mut Search<'a> {
|
||||
self.exhaustive_number_hits = exhaustive_number_hits;
|
||||
self
|
||||
}
|
||||
|
||||
pub fn time_budget(&mut self, time_budget: TimeBudget) -> &mut Search<'a> {
|
||||
self.time_budget = time_budget;
|
||||
self
|
||||
}
|
||||
|
||||
pub fn ranking_score_threshold(&mut self, ranking_score_threshold: f64) -> &mut Search<'a> {
|
||||
self.ranking_score_threshold = Some(ranking_score_threshold);
|
||||
self
|
||||
}
|
||||
|
||||
pub fn locales(&mut self, locales: Vec<Language>) -> &mut Search<'a> {
|
||||
self.locales = Some(locales);
|
||||
self
|
||||
}
|
||||
|
||||
pub fn execute_for_candidates(&self, has_vector_search: bool) -> Result<RoaringBitmap> {
|
||||
if has_vector_search {
|
||||
let ctx = SearchContext::new(self.index, self.rtxn)?;
|
||||
filtered_universe(ctx.index, ctx.txn, &self.filter)
|
||||
} else {
|
||||
Ok(self.execute()?.candidates)
|
||||
}
|
||||
}
|
||||
|
||||
pub fn execute(&self) -> Result<SearchResult> {
|
||||
let mut ctx = SearchContext::new(self.index, self.rtxn)?;
|
||||
|
||||
if let Some(searchable_attributes) = self.searchable_attributes {
|
||||
ctx.attributes_to_search_on(searchable_attributes)?;
|
||||
}
|
||||
|
||||
if let Some(distinct) = &self.distinct {
|
||||
let filterable_fields = ctx.index.filterable_fields(ctx.txn)?;
|
||||
if !crate::is_faceted(distinct, &filterable_fields) {
|
||||
let (valid_fields, hidden_fields) =
|
||||
ctx.index.remove_hidden_fields(ctx.txn, filterable_fields)?;
|
||||
return Err(Error::UserError(UserError::InvalidDistinctAttribute {
|
||||
field: distinct.clone(),
|
||||
valid_fields,
|
||||
hidden_fields,
|
||||
}));
|
||||
}
|
||||
}
|
||||
|
||||
let universe = filtered_universe(ctx.index, ctx.txn, &self.filter)?;
|
||||
let PartialSearchResult {
|
||||
located_query_terms,
|
||||
candidates,
|
||||
documents_ids,
|
||||
document_scores,
|
||||
degraded,
|
||||
used_negative_operator,
|
||||
} = match self.semantic.as_ref() {
|
||||
Some(SemanticSearch { vector: Some(vector), embedder_name, embedder, quantized }) => {
|
||||
execute_vector_search(
|
||||
&mut ctx,
|
||||
vector,
|
||||
self.scoring_strategy,
|
||||
universe,
|
||||
&self.sort_criteria,
|
||||
&self.distinct,
|
||||
self.geo_strategy,
|
||||
self.offset,
|
||||
self.limit,
|
||||
embedder_name,
|
||||
embedder,
|
||||
*quantized,
|
||||
self.time_budget.clone(),
|
||||
self.ranking_score_threshold,
|
||||
)?
|
||||
}
|
||||
_ => execute_search(
|
||||
&mut ctx,
|
||||
self.query.as_deref(),
|
||||
self.terms_matching_strategy,
|
||||
self.scoring_strategy,
|
||||
self.exhaustive_number_hits,
|
||||
universe,
|
||||
&self.sort_criteria,
|
||||
&self.distinct,
|
||||
self.geo_strategy,
|
||||
self.offset,
|
||||
self.limit,
|
||||
Some(self.words_limit),
|
||||
&mut DefaultSearchLogger,
|
||||
&mut DefaultSearchLogger,
|
||||
self.time_budget.clone(),
|
||||
self.ranking_score_threshold,
|
||||
self.locales.as_ref(),
|
||||
)?,
|
||||
};
|
||||
|
||||
// consume context and located_query_terms to build MatchingWords.
|
||||
let matching_words = match located_query_terms {
|
||||
Some(located_query_terms) => MatchingWords::new(ctx, located_query_terms),
|
||||
None => MatchingWords::default(),
|
||||
};
|
||||
|
||||
Ok(SearchResult {
|
||||
matching_words,
|
||||
candidates,
|
||||
document_scores,
|
||||
documents_ids,
|
||||
degraded,
|
||||
used_negative_operator,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Debug for Search<'_> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
let Search {
|
||||
query,
|
||||
filter,
|
||||
offset,
|
||||
limit,
|
||||
sort_criteria,
|
||||
distinct,
|
||||
searchable_attributes,
|
||||
geo_strategy: _,
|
||||
terms_matching_strategy,
|
||||
scoring_strategy,
|
||||
words_limit,
|
||||
exhaustive_number_hits,
|
||||
rtxn: _,
|
||||
index: _,
|
||||
semantic,
|
||||
time_budget,
|
||||
ranking_score_threshold,
|
||||
locales,
|
||||
} = self;
|
||||
f.debug_struct("Search")
|
||||
.field("query", query)
|
||||
.field("vector", &"[...]")
|
||||
.field("filter", filter)
|
||||
.field("offset", offset)
|
||||
.field("limit", limit)
|
||||
.field("sort_criteria", sort_criteria)
|
||||
.field("distinct", distinct)
|
||||
.field("searchable_attributes", searchable_attributes)
|
||||
.field("terms_matching_strategy", terms_matching_strategy)
|
||||
.field("scoring_strategy", scoring_strategy)
|
||||
.field("exhaustive_number_hits", exhaustive_number_hits)
|
||||
.field("words_limit", words_limit)
|
||||
.field(
|
||||
"semantic.embedder_name",
|
||||
&semantic.as_ref().map(|semantic| &semantic.embedder_name),
|
||||
)
|
||||
.field("time_budget", time_budget)
|
||||
.field("ranking_score_threshold", ranking_score_threshold)
|
||||
.field("locales", locales)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Default, Debug)]
|
||||
pub struct SearchResult {
|
||||
pub matching_words: MatchingWords,
|
||||
pub candidates: RoaringBitmap,
|
||||
pub documents_ids: Vec<DocumentId>,
|
||||
pub document_scores: Vec<Vec<ScoreDetails>>,
|
||||
pub degraded: bool,
|
||||
pub used_negative_operator: bool,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
|
||||
pub enum TermsMatchingStrategy {
|
||||
// remove last word first
|
||||
Last,
|
||||
// all words are mandatory
|
||||
All,
|
||||
// remove more frequent word first
|
||||
Frequency,
|
||||
}
|
||||
|
||||
impl Default for TermsMatchingStrategy {
|
||||
fn default() -> Self {
|
||||
Self::Last
|
||||
}
|
||||
}
|
||||
|
||||
fn get_first(s: &str) -> &str {
|
||||
match s.chars().next() {
|
||||
Some(c) => &s[..c.len_utf8()],
|
||||
None => panic!("unexpected empty query"),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn build_dfa(word: &str, typos: u8, is_prefix: bool) -> DFA {
|
||||
let lev = match typos {
|
||||
0 => &LEVDIST0,
|
||||
1 => &LEVDIST1,
|
||||
_ => &LEVDIST2,
|
||||
};
|
||||
|
||||
if is_prefix {
|
||||
lev.build_prefix_dfa(word)
|
||||
} else {
|
||||
lev.build_dfa(word)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
#[allow(unused_imports)]
|
||||
use super::*;
|
||||
|
||||
#[cfg(feature = "japanese")]
|
||||
#[cfg(not(feature = "chinese-pinyin"))]
|
||||
#[test]
|
||||
fn test_kanji_language_detection() {
|
||||
use crate::index::tests::TempIndex;
|
||||
|
||||
let index = TempIndex::new();
|
||||
|
||||
index
|
||||
.add_documents(documents!([
|
||||
{ "id": 0, "title": "The quick (\"brown\") fox can't jump 32.3 feet, right? Brr, it's 29.3°F!" },
|
||||
{ "id": 1, "title": "東京のお寿司。" },
|
||||
{ "id": 2, "title": "הַשּׁוּעָל הַמָּהִיר (״הַחוּם״) לֹא יָכוֹל לִקְפֹּץ 9.94 מֶטְרִים, נָכוֹן? ברר, 1.5°C- בַּחוּץ!" }
|
||||
]))
|
||||
.unwrap();
|
||||
|
||||
let txn = index.write_txn().unwrap();
|
||||
let mut search = Search::new(&txn, &index);
|
||||
|
||||
search.query("東京");
|
||||
let SearchResult { documents_ids, .. } = search.execute().unwrap();
|
||||
|
||||
assert_eq!(documents_ids, vec![1]);
|
||||
}
|
||||
|
||||
#[cfg(feature = "korean")]
|
||||
#[test]
|
||||
fn test_hangul_language_detection() {
|
||||
use crate::index::tests::TempIndex;
|
||||
|
||||
let index = TempIndex::new();
|
||||
|
||||
index
|
||||
.add_documents(documents!([
|
||||
{ "id": 0, "title": "The quick (\"brown\") fox can't jump 32.3 feet, right? Brr, it's 29.3°F!" },
|
||||
{ "id": 1, "title": "김밥먹을래。" },
|
||||
{ "id": 2, "title": "הַשּׁוּעָל הַמָּהִיר (״הַחוּם״) לֹא יָכוֹל לִקְפֹּץ 9.94 מֶטְרִים, נָכוֹן? ברר, 1.5°C- בַּחוּץ!" }
|
||||
]))
|
||||
.unwrap();
|
||||
|
||||
let txn = index.write_txn().unwrap();
|
||||
let mut search = Search::new(&txn, &index);
|
||||
|
||||
search.query("김밥");
|
||||
let SearchResult { documents_ids, .. } = search.execute().unwrap();
|
||||
|
||||
assert_eq!(documents_ids, vec![1]);
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue