29 lines
1.2 KiB
XML
29 lines
1.2 KiB
XML
|
<?xml version='1.0' encoding='UTF-8'?>
|
||
|
<!DOCTYPE pkgmetadata SYSTEM "http://www.gentoo.org/dtd/metadata.dtd">
|
||
|
<pkgmetadata>
|
||
|
<maintainer type="person">
|
||
|
<email>gentoo@chymera.eu</email>
|
||
|
<name>Horea Christian</name>
|
||
|
</maintainer>
|
||
|
<maintainer type="project">
|
||
|
<email>sci@gentoo.org</email>
|
||
|
<name>Gentoo Science Project</name>
|
||
|
</maintainer>
|
||
|
<longdescription lang="en">
|
||
|
HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with
|
||
|
Noise. Performs DBSCAN over varying epsilon values and integrates the result
|
||
|
to find a clustering that gives the best stability over epsilon. This allows
|
||
|
HDBSCAN to find clusters of varying densities (unlike DBSCAN), and be more
|
||
|
robust to parameter selection.
|
||
|
|
||
|
In practice this means that HDBSCAN returns a good clustering straight away
|
||
|
with little or no parameter tuning -- and the primary parameter, minimum
|
||
|
cluster size, is intuitive and easy to select. HDBSCAN is ideal for
|
||
|
exploratory data analysis; it's a fast and robust algorithm that you can
|
||
|
trust to return meaningful clusters (if there are any).
|
||
|
</longdescription>
|
||
|
<upstream>
|
||
|
<remote-id type="github">scikit-learn-contrib/hdbscan</remote-id>
|
||
|
</upstream>
|
||
|
</pkgmetadata>
|